Rotary embeddings of Praeger-Xu graphs

Luyi Liu

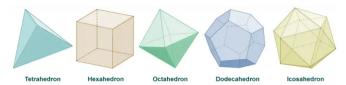
International center for mathematics, Sustech

September 17, 2025

Мар

A map $\mathcal{M}=(V,E,F)$ is a 2-cell embedding of a graph $\Gamma=(V,E)$ into a closed surface $\mathcal{S}.$

A map $\mathcal{M}=(V,E,F)$ is a 2-cell embedding of a graph $\Gamma=(V,E)$ into a closed surface $\mathcal{S}.$



A map $\mathcal{M} = (V, E, F)$ is a 2-cell embedding of a graph $\Gamma = (V, E)$ into a closed surface \mathcal{S} .

The face set:

The open disks $F := S \setminus \Gamma$.

A map $\mathcal{M} = (V, E, F)$ is a 2-cell embedding of a graph $\Gamma = (V, E)$ into a closed surface \mathcal{S} .

The face set:

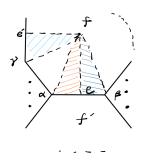
The open disks $F := S \setminus \Gamma$.

The flag set:

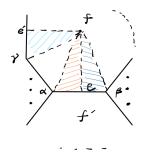
 $\Phi := \{(\alpha, e, f) : \alpha \in V, e \in E, f \in F \text{ are mutually incident}\}.$

Remark: $|\Phi| = 4|E|$.

Automorphisms of maps



Automorphisms of maps



Automorphisms of map

 $Aut\mathcal{M} := \{ \sigma \in Sym(\Phi) : \sigma \text{ preserves incidences between flags} \}.$

- **②** $\operatorname{Aut}(\mathcal{M})_{\omega}$ is cyclic or dihedral, $\omega \in V \cup E \cup F$. $\Rightarrow G_e \leqslant D_4$.

 (α, e, f) : a flag.

Rotary maps: a class of arc-regular map

 (α, e, f) : a flag.

G-arc-transitive maps:

 $G \leqslant \operatorname{Aut}(\mathcal{M})$ is transitive on arcs of \mathcal{M} .

 (α, e, f) : a flag.

G-arc-transitive maps:

 $G \leqslant \operatorname{Aut}(\mathcal{M})$ is transitive on arcs of \mathcal{M} .

G-vertex (face)-rotary:

 G_{α} (G_{f}) induces a transitive cyclic subgroup on edges that incident with the vertex α (the face f).

G-rotary map:

A map which is both *G*-vertex-rotary and *G*-face-rotary.

Constructions of rotary maps

G: a finite group.

⁰[15] C. H. Li, C. E. Praeger, and S. J. Song. Locally finite vertex-rotary maps and coset graphs with finite valency and finite edge multiplicity. *Journal of Combinatorial Theory. Series B*, 2024.

G: a finite group.

$\mathsf{RotaMap}(\mathsf{G}, \rho, \tau)$

A rotary pair $(\rho, \tau) \in G \times G$ of a group G satisfies $G = \langle \rho, \tau \rangle$ and $|\tau| = 2$. Define an incidence configuration RotaMap (G, ρ, τ) by

vertex set $[G:\langle \rho \rangle]$, edge set $[G:\langle \tau \rangle]$ and face set $[G:\langle \rho \tau \rangle]$,

where two objects are incident if and only if their set intersection is non-empty.

⁰[15] C. H. Li, C. E. Praeger, and S. J. Song. Locally finite vertex-rotary maps and coset graphs with finite valency and finite edge multiplicity. *Journal of Combinatorial Theory. Series B*, 2024.

G: a finite group.

$\mathsf{RotaMap}(\mathsf{G}, \rho, \tau)$

A rotary pair $(\rho, \tau) \in G \times G$ of a group G satisfies $G = \langle \rho, \tau \rangle$ and $|\tau| = 2$. Define an incidence configuration RotaMap (G, ρ, τ) by

vertex set $[G:\langle \rho \rangle]$, edge set $[G:\langle \tau \rangle]$ and face set $[G:\langle \rho \tau \rangle]$,

where two objects are incident if and only if their set intersection is non-empty.

[15, Proposition 5.1]

A G-rotary map is isomorphic to RotaMap (G, ρ, τ) for some rotary pair (ρ, τ) for G.

[15, Proposition 4.1]

Two maps RotaMap(G, ρ, τ) and RotaMap(H, ρ', τ') are isomorphic if there is a group isomorphism $f: G \to H$ such that $f(\rho) = \rho'$ and $f(\tau) = \tau'$.

⁰[15] C. H. Li, C. E. Praeger, and S. J. Song. Locally finite vertex-rotary maps and coset graphs with finite valency and finite edge multiplicity. *Journal of Combinatorial Theory. Series B*, 2024.

- $\mathcal{M} = \mathsf{RotaMap}(\mathsf{G}, \rho, \tau)$.
- $M \lhd G$ with $\rho, \tau \notin M$

 $^{^{0}}$ [1] J. Chen, W. Fan, C. H. Li, and Y. Z. Zhu. Coverings of groups, regular dessins, and surfaces, 2024.

- $\mathcal{M} = \mathsf{RotaMap}(G, \rho, \tau)$.
- $M \triangleleft G$ with $\rho, \tau \notin M$

Quotient rotary maps[1]

 $\mathcal{M}/M := \mathsf{RotaMap}(G/M, \rho M, \tau M)$

⁰[1] J. Chen, W. Fan, C. H. Li, and Y. Z. Zhu. Coverings of groups, regular dessins, and surfaces, 2024.

- $\mathcal{M} = \mathsf{RotaMap}(G, \rho, \tau)$.
- $M \triangleleft G$ with $\rho, \tau \notin M$

Quotient rotary maps[1]

 $\mathcal{M}/M := \mathsf{RotaMap}(G/M, \rho M, \tau M)$

- $\mathcal{M}_i = \mathsf{RotaMap}(G_i, \rho_i, \tau_i) \ (i = 1, \dots, n).$
- $H = \langle (\rho_1, \ldots, \rho_n), (\tau_1, \ldots, \tau_n) \rangle \leqslant \prod_{i=1}^n G_i$.

⁰[1] J. Chen, W. Fan, C. H. Li, and Y. Z. Zhu. Coverings of groups, regular dessins, and surfaces, 2024.

- $\mathcal{M} = \mathsf{RotaMap}(G, \rho, \tau)$.
- $M \triangleleft G$ with $\rho, \tau \notin M$

Quotient rotary maps[1]

 $\mathcal{M}/M := \mathsf{RotaMap}(G/M, \rho M, \tau M)$

- $\mathcal{M}_i = \mathsf{RotaMap}(G_i, \rho_i, \tau_i) \ (i = 1, \dots, n).$
- $H = \langle (\rho_1, \ldots, \rho_n), (\tau_1, \ldots, \tau_n) \rangle \leqslant \prod_{i=1}^n G_i$.

Direct products

$$\prod_{i=1}^n \mathcal{M}_i := \mathsf{RotaMap}(H, (\rho_1, \dots, \rho_n), (\tau_1, \dots, \tau_n)).$$

 $^{^{0}}$ [1] J. Chen, W. Fan, C. H. Li, and Y. Z. Zhu. Coverings of groups, regular dessins, and surfaces, 2024.

Praeger-Xu graphs

Praeger-Xu graph

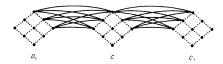
Let p, r, s be positive integers such that $p\geqslant 2$ and $r\geqslant 3$. Define a simple graph C(p,r,s)=(V,E) as follows:

- ① the vertex set V is $\mathbb{Z}_r \times \mathbb{Z}_p^s$;
- \bullet the edge set E is defined to be the set of all pairs of the form

$$\{(i, x_0, x_1, \ldots, x_{s-1}), (i+1, x_1, \ldots, x_{s-1}, x_s)\}$$

for every $i \in \mathbb{Z}_r$ and $x_0, x_1, \ldots, x_{s-1}, x_s \in \mathbb{Z}_p$.

There are $p^{s+1}r$ edges.



Praeger-Xu graphs

Praeger-Xu graph

Let p, r, s be positive integers such that $p \geqslant 2$ and $r \geqslant 3$. Define a simple graph C(p, r, s) = (V, E) as follows:

- ① the vertex set V is $\mathbb{Z}_r \times \mathbb{Z}_p^s$;
- \bullet the edge set E is defined to be the set of all pairs of the form

$$\{(i, x_0, x_1, \ldots, x_{s-1}), (i+1, x_1, \ldots, x_{s-1}, x_s)\}$$

for every $i \in \mathbb{Z}_r$ and $x_0, x_1, \ldots, x_{s-1}, x_s \in \mathbb{Z}_p$.

There are $p^{s+1}r$ edges.

Augmented PX-graphs

PX-graphs, multicycles $C_r^{(p)}$ (denoted by $C^*(p, r, 0, 1)$), and cycles C_{pr} (denoted by $C^*(p, r, 0, -1)$).

Properties of Praeger-Xu graphs

[19, Theorem 2.10]

The graph C(p, r, s) is symmetric if and only if $r \ge s + 1$, and is vertex transitive if and only if $r \ge s$.

⁰19. C. E. Praeger and M. Y. Xu. A Characterization of a Class of Symmetric Graphs of Twice Prime Valency. European Journal of Combinatorics, 1989

Properties of Praeger-Xu graphs

[19, Theorem 2.10]

The graph C(p, r, s) is symmetric if and only if $r \ge s + 1$, and is vertex transitive if and only if $r \ge s$.

[19, Theorem 2.13]

The full automorphism group of C(p, r, s) is equal to S_p wr D_{2r} where $(r, s) \neq (4, 1)$, $r \ge \max\{s + 1, 3\}$ and p is odd.

⁰19. C. E. Praeger and M. Y. Xu. A Characterization of a Class of Symmetric Graphs of Twice Prime Valency. European Journal of Combinatorics, 1989

Properties of Praeger-Xu graphs

[19, Theorem 2.10]

The graph C(p, r, s) is symmetric if and only if $r \ge s + 1$, and is vertex transitive if and only if $r \ge s$.

[19, Theorem 2.13]

The full automorphism group of C(p,r,s) is equal to S_p wr D_{2r} where $(r,s) \neq (4,1)$, $r \geqslant \max\{s+1,3\}$ and p is odd.

[19, Theorem 1]

Let Γ be a connected, simple, G-arc-transitive graph of valency 2p. If G contains an abelian normal p-subgroup which is not semiregular on the vertices of Γ , then $\Gamma = C(p,r,s)$ for some $r \geqslant \max\{3,s+1\}$ and $s \geqslant 1$.

⁰19. C. E. Praeger and M. Y. Xu. A Characterization of a Class of Symmetric Graphs of Twice Prime Valency. European Journal of Combinatorics, 1989

Let $s \geqslant 0$, $r \geqslant \max\{s+1,3\}$ and $(r,s) \neq (4,1)$.

Let $s \ge 0$, $r \ge \max\{s+1,3\}$ and $(r,s) \ne (4,1)$.

[2, Lemma 4.5]

Suppose that G is an arc-regular subgroup of $\operatorname{Aut}(\operatorname{C}(p,r,s))$. Then

$$G\cong \mathbb{Z}_p^{s+1}$$
: D_{2r} .

Let $s \ge 0$, $r \ge \max\{s+1,3\}$ and $(r,s) \ne (4,1)$.

[2, Lemma 4.5]

Suppose that G is an arc-regular subgroup of $\operatorname{Aut}(\operatorname{C}(p,r,s))$. Then

$$G\cong \mathbb{Z}_p^{s+1}$$
: D_{2r} .

Proof

The order $|G| = 2p^{s+1}r$ which is the arc number of C(p, r, s).

Let $s \ge 0$, $r \ge \max\{s+1,3\}$ and $(r,s) \ne (4,1)$.

[2, Lemma 4.5]

Suppose that G is an arc-regular subgroup of $\operatorname{Aut}(\operatorname{C}(p,r,s))$. Then

$$G\cong \mathbb{Z}_p^{s+1}$$
: D_{2r} .

Proof

The order $|G| = 2p^{s+1}r$ which is the arc number of C(p, r, s). Let $\overline{\Gamma} = C(p, r, s)_{S_p^r}$ which is isomorphic to C_r .

Let $s \ge 0$, $r \ge \max\{s+1,3\}$ and $(r,s) \ne (4,1)$.

[2, Lemma 4.5]

Suppose that G is an arc-regular subgroup of $\operatorname{Aut}(\operatorname{C}(p,r,s))$. Then

$$G\cong \mathbb{Z}_p^{s+1}$$
: D_{2r} .

Proof

The order $|G|=2p^{s+1}r$ which is the arc number of $\mathrm{C}(p,r,s)$. Let $\overline{\Gamma}=\mathrm{C}(p,r,s)_{\mathrm{S}_p^r}$ which is isomorphic to C_r . Since G is transitive on arcs of $\overline{\Gamma}\cong\mathrm{C}_r$ with the kernel $G\cap\mathrm{S}_p^r$, we have that

$$G/(G \cap S_p^r) \cong D_{2r} \text{ and } |G \cap S_p^r| = p^{s+1}.$$

Let $s \ge 0$, $r \ge \max\{s+1,3\}$ and $(r,s) \ne (4,1)$.

[2, Lemma 4.5]

Suppose that G is an arc-regular subgroup of $\operatorname{Aut}(\operatorname{C}(p,r,s))$. Then

$$G\cong \mathbb{Z}_p^{s+1}$$
:D_{2r}.

Proof

The order $|G|=2p^{s+1}r$ which is the arc number of $\mathrm{C}(p,r,s)$. Let $\overline{\Gamma}=\mathrm{C}(p,r,s)_{\mathrm{S}_p^r}$ which is isomorphic to C_r . Since G is transitive on arcs of $\overline{\Gamma}\cong\mathrm{C}_r$ with the kernel $G\cap\mathrm{S}_p^r$, we have that

$$G/(G \cap S_p') \cong D_{2r}$$
 and $|G \cap S_p'| = p^{s+1}$.

It follows from $(S_p^r)_p = \mathbb{Z}_p^r$ that

$$G=\mathbb{Z}_p^{s+1}$$
: D_{2r} .

 $\mathrm{C}(\textit{p},4,1)$ is the complete bipartite graph $\mathrm{K}_{2\textit{p},2\textit{p}}.$

C(p, 4, 1) is the complete bipartite graph $K_{2p,2p}$. $Aut(K_{2p,2p}) = S_{2p}$ wr \mathbb{Z}_2 .

[2, Lemma 4.6]

Suppose that G is an arc-regular subgroup of $\operatorname{Aut}(\mathrm{K}_{2\rho,2\rho})$. Then $G\cong\mathbb{Z}_{\rho}^2:\mathrm{D}_8.$

Proof.

The order of G is $8p^2$.

C(p, 4, 1) is the complete bipartite graph $K_{2p,2p}$. $Aut(K_{2p,2p}) = S_{2p}$ wr \mathbb{Z}_2 .

[2, Lemma 4.6]

Suppose that G is an arc-regular subgroup of $\operatorname{Aut}(K_{2p,2p})$. Then $G \cong \mathbb{Z}_p^2:D_8$.

Proof.

The order of G is $8p^2$. Let L is the subgroup which preserving the two parts of $K_{2p,2p}$, and so $|L|=4p^2$. Note that $L=G_{\alpha}G_{\beta}$, where α,β are two vertices in the two parts, respectively.

C(p,4,1) is the complete bipartite graph $K_{2p,2p}$. $Aut(K_{2p,2p}) = S_{2p}$ wr \mathbb{Z}_2 .

[2, Lemma 4.6]

Suppose that G is an arc-regular subgroup of $\operatorname{Aut}(\mathrm{K}_{2p,2p})$. Then $G\cong\mathbb{Z}_p^2:\mathrm{D}_8$.

Proof.

The order of G is $8p^2$. Let L is the subgroup which preserving the two parts of $K_{2p,2p}$, and so $|L|=4p^2$. Note that $L=G_{\alpha}G_{\beta}$, where α,β are two vertices in the two parts, respectively. Since $G_{\alpha}\cong G_{\beta}\cong D_{2p}$ or \mathbb{Z}_{2p} , we have that $L_p\cong \mathbb{Z}_p^2$.

C(p, 4, 1) is the complete bipartite graph $K_{2p,2p}$. $Aut(K_{2p,2p}) = S_{2p}$ wr \mathbb{Z}_2 .

[2, Lemma 4.6]

Suppose that G is an arc-regular subgroup of $\operatorname{Aut}(\mathrm{K}_{2\rho,2\rho})$. Then $G\cong\mathbb{Z}_p^2:\mathrm{D}_8$.

Proof.

The order of G is $8p^2$. Let L is the subgroup which preserving the two parts of $K_{2p,2p}$, and so $|L|=4p^2$. Note that $L=G_{\alpha}G_{\beta}$, where α,β are two vertices in the two parts, respectively. Since $G_{\alpha}\cong G_{\beta}\cong D_{2p}$ or \mathbb{Z}_{2p} , we have that $L_p\cong \mathbb{Z}_p^2$.

We claim that $L_p \lhd L$, and so $L \cong \mathbb{Z}_p^2: \mathbb{Z}_2^2$ implying

$$G \cong (\mathbb{Z}_p^2:\mathbb{Z}_2^2):\mathbb{Z}_2 \cong \mathbb{Z}_p^2:D_8.$$

C(p, 4, 1) is the complete bipartite graph $K_{2p,2p}$. $Aut(K_{2p,2p}) = S_{2p} \ wr \ \mathbb{Z}_2$.

[2, Lemma 4.6]

Suppose that G is an arc-regular subgroup of $\operatorname{Aut}(\mathrm{K}_{2p,2p})$. Then $G\cong\mathbb{Z}_p^2:\mathrm{D}_8$.

Proof.

The order of G is $8p^2$. Let L is the subgroup which preserving the two parts of $K_{2p,2p}$, and so $|L|=4p^2$. Note that $L=G_{\alpha}G_{\beta}$, where α,β are two vertices in the two parts, respectively. Since $G_{\alpha}\cong G_{\beta}\cong D_{2p}$ or \mathbb{Z}_{2p} , we have that $L_p\cong \mathbb{Z}_p^2$.

We claim that $L_p \lhd L$, and so $L \cong \mathbb{Z}_p^2 : \mathbb{Z}_2^2$ implying

$$G\cong (\mathbb{Z}_p^2{:}\mathbb{Z}_2^2){:}\mathbb{Z}_2\cong \mathbb{Z}_p^2{:}\mathrm{D}_8.$$

Let p=3. By Brodkey's theorem, there are two Sylow 3-subgroups P and Q of L such that $P\cap Q=\mathrm{O}_3(L)\cong \mathbb{Z}_3$. The quotient group $L/\mathrm{O}_3(L)\cong \mathrm{A}_4$ since its Sylow 3-subgroups are not normal.

C(p, 4, 1) is the complete bipartite graph $K_{2p,2p}$. $Aut(K_{2p,2p}) = S_{2p}$ wr \mathbb{Z}_2 .

[2, Lemma 4.6]

Suppose that G is an arc-regular subgroup of $\operatorname{Aut}(\mathrm{K}_{2p,2p})$. Then $G\cong\mathbb{Z}_p^2:\mathrm{D}_8$.

Proof.

The order of G is $8p^2$. Let L is the subgroup which preserving the two parts of $K_{2p,2p}$, and so $|L|=4p^2$. Note that $L=G_{\alpha}G_{\beta}$, where α,β are two vertices in the two parts, respectively. Since $G_{\alpha}\cong G_{\beta}\cong D_{2p}$ or \mathbb{Z}_{2p} , we have that $L_p\cong \mathbb{Z}_p^2$.

We claim that $L_p \triangleleft L$, and so $L \cong \mathbb{Z}_p^2 : \mathbb{Z}_2^2$ implying

$$G\cong (\mathbb{Z}_p^2{:}\mathbb{Z}_2^2){:}\mathbb{Z}_2\cong \mathbb{Z}_p^2{:}\mathrm{D}_8.$$

Let p=3. By Brodkey's theorem, there are two Sylow 3-subgroups P and Q of L such that $P\cap Q=\mathrm{O}_3(L)\cong\mathbb{Z}_3$. The quotient group $L/\mathrm{O}_3(L)\cong\mathrm{A}_4$ since its Sylow 3-subgroups are not normal. Note that $L/\mathrm{O}_3(L)=(G_\alpha G_\beta)/\mathrm{O}_3(L)$. Contradiction comes to that $G_\alpha\cong G_\beta\cong\mathbb{Z}_{2p}$ or D_{2p} .

$$\operatorname{Aut}(C_{pr} = C^*(p, r, 0, -1)) = D_{2pr}, \operatorname{Aut}(C_r^{(p)} = C^*(p, r, 0, 1)) = \mathbb{Z}_p:D_{2r}.$$

$$\operatorname{Aut}(\mathrm{C}_{pr}=\mathrm{C}^*(p,r,0,-1))=\mathrm{D}_{2pr},\ \operatorname{Aut}(\mathrm{C}_r^{(p)}=\mathrm{C}^*(p,r,0,1))=\mathbb{Z}_p:\mathrm{D}_{2r}.$$

Theorem

Let $s\geqslant 0$ be an integer, let $\delta\in\{1,-1\}$ and let r be an integer such that $r\geqslant \max\{3,s+1\}$. Let G be an arc-regular group of automorphisms of $C^*(p,r,s,\delta)$. Then $G\cong\mathbb{Z}_p^{s+1}\colon D_{2r}$.

$$\operatorname{Aut}(C_{pr} = \operatorname{C}^*(p, r, 0, -1)) = \operatorname{D}_{2pr}, \ \operatorname{Aut}(\operatorname{C}_r^{(p)} = \operatorname{C}^*(p, r, 0, 1)) = \mathbb{Z}_p: \operatorname{D}_{2r}.$$

Theorem

Let $s\geqslant 0$ be an integer, let $\delta\in\{1,-1\}$ and let r be an integer such that $r\geqslant \max\{3,s+1\}$. Let G be an arc-regular group of automorphisms of $C^*(p,r,s,\delta)$. Then $G\cong \mathbb{Z}_p^{s+1}\colon \mathsf{D}_{2r}$.

Corollary

Let \mathcal{M} be a G-rotary map with underlying graph isomorphic to $C^*(p, r, s, \delta)$. Then G is isomorphic to $\mathbb{Z}_p^{s+1}: \mathsf{D}_{2r}$.

$$\operatorname{Aut}(C_{\rho r} = C^*(\rho, r, 0, -1)) = D_{2\rho r}, \operatorname{Aut}(C_r^{(\rho)} = C^*(\rho, r, 0, 1)) = \mathbb{Z}_{\rho}: D_{2r}.$$

Theorem

Let $s\geqslant 0$ be an integer, let $\delta\in\{1,-1\}$ and let r be an integer such that $r\geqslant \max\{3,s+1\}$. Let G be an arc-regular group of automorphisms of $C^*(p,r,s,\delta)$. Then $G\cong \mathbb{Z}_p^{s+1}\colon \mathsf{D}_{2r}$.

Corollary

Let \mathcal{M} be a G-rotary map with underlying graph isomorphic to $C^*(p, r, s, \delta)$. Then G is isomorphic to \mathbb{Z}_p^{s+1} : D_{2r} .

Lemma

Let $G = \mathbb{Z}_p^{s+1}$: D_{2r} with $s \geqslant 0$, and let \mathcal{M} be a G-arc-regular map. If $|G_{\alpha}| = 2p$, then the underlying graph Γ is isomorphic to $C^*(p, r, s)$.

$$\operatorname{Aut}(C_{pr} = \operatorname{C}^*(p, r, 0, -1)) = \operatorname{D}_{2pr}, \ \operatorname{Aut}(\operatorname{C}_r^{(p)} = \operatorname{C}^*(p, r, 0, 1)) = \mathbb{Z}_p: \operatorname{D}_{2r}.$$

Theorem

Let $s\geqslant 0$ be an integer, let $\delta\in\{1,-1\}$ and let r be an integer such that $r\geqslant \max\{3,s+1\}$. Let G be an arc-regular group of automorphisms of $C^*(p,r,s,\delta)$. Then $G\cong \mathbb{Z}_p^{s+1}\colon D_{2r}$.

Corollary

Let \mathcal{M} be a G-rotary map with underlying graph isomorphic to $C^*(p, r, s, \delta)$. Then G is isomorphic to \mathbb{Z}_p^{s+1} : D_{2r} .

Lemma

Let $G = \mathbb{Z}_p^{s+1}$: D_{2r} with $s \geqslant 0$, and let \mathcal{M} be a G-arc-regular map. If $|G_{\alpha}| = 2p$, then the underlying graph Γ is isomorphic to $C^*(p, r, s)$.

$$|G_{\alpha\beta}| = egin{cases} 2 \Rightarrow r = 2; \ p \Rightarrow ext{the underlying graph is the multi-cycle C}^*(p,r,0,1) \ 2p \Rightarrow r = 2; \end{cases}$$

A PX map is a map with the underlying graph is a augmented Praeger-Xu graph $C^*(p, r, s, \delta)$, the length of this map is defined as r.

A PX map is a map with the underlying graph is a augmented Praeger-Xu graph $\mathrm{C}^*(p,r,s,\delta)$, the length of this map is defined as r. Let $\mathcal M$ be a G-rotary embedding of $\mathrm{C}^*(p,r,s,\delta)$ with $p\nmid r$. By Lemma 11, $G\cong \mathbb{Z}_{s}^{s+1}:_{\imath}\mathrm{D}_{2r}$.

A PX map is a map with the underlying graph is a augmented Praeger-Xu graph $\mathrm{C}^*(p,r,s,\delta)$, the length of this map is defined as r. Let $\mathcal M$ be a G-rotary embedding of $\mathrm{C}^*(p,r,s,\delta)$ with $p\nmid r$. By Lemma 11, $G\cong \mathbb{Z}_p^{s+1}:_{\psi}\mathrm{D}_{2r}$.

Irreducible G-rotary PX maps

The *G*-rotary PX map is *irreducible* if ψ is irreducible.

A PX map is a map with the underlying graph is a augmented Praeger-Xu graph $\mathrm{C}^*(p,r,s,\delta)$, the length of this map is defined as r. Let $\mathcal M$ be a G-rotary embedding of $\mathrm{C}^*(p,r,s,\delta)$ with $p\nmid r$. By Lemma 11, $G\cong \mathbb Z_p^{s+1}:_\psi \mathrm{D}_{2r}$.

Irreducible G-rotary PX maps

The *G*-rotary PX map is *irreducible* if ψ is irreducible.

- $G = V:_{\psi} D = \mathbb{Z}_p^d:_{\psi} D_{2r}, d \geqslant 2, \psi$ is irreducible.
- $D_{2r} = \langle c \rangle : \langle b \rangle = \mathbb{Z}_r : \mathbb{Z}_2$.
- $v^{b^{-1}} = \psi(b)(v)$, $v \in V$ and $b \in D$.

Note that the degree d is even, and $C_V(x) \cong \mathbb{Z}_p^{d/2}$ for each involution $x \in D \setminus Z(D)[2$, Lemma 2.9].

A PX map is a map with the underlying graph is a augmented Praeger-Xu graph $\mathrm{C}^*(p,r,s,\delta)$, the length of this map is defined as r. Let $\mathcal M$ be a G-rotary embedding of $\mathrm{C}^*(p,r,s,\delta)$ with $p\nmid r$. By Lemma 11, $G\cong \mathbb Z_p^{s+1}:_\psi \mathrm{D}_{2r}$.

Irreducible G-rotary PX maps

The G-rotary PX map is irreducible if ψ is irreducible.

- $G = V:_{\psi}D = \mathbb{Z}_p^d:_{\psi}D_{2r}, d \geqslant 2, \psi$ is irreducible.
- $D_{2r} = \langle c \rangle : \langle b \rangle = \mathbb{Z}_r : \mathbb{Z}_2$.
- $v^{b^{-1}} = \psi(b)(v)$, $v \in V$ and $b \in D$.

Note that the degree d is even, and $C_V(x) \cong \mathbb{Z}_p^{d/2}$ for each involution $x \in D \setminus Z(D)[2$, Lemma 2.9].

Proposition

Let $x, y \in D$ be involutions such that $D = \langle x, y \rangle$, and let $v \neq v' \in C_V(x) \setminus \{1\}$. Then RotaMap $(G, vx, y) \cong \text{RotaMap}(G, v'x, y)$ are rotary PX maps

Since $\langle vx \rangle \cap V \cong \mathbb{Z}_p$, the map RotaMap(G, vx, y) has underlying graph being a PX graph by Theorem 11.

Since $\langle vx \rangle \cap V \cong \mathbb{Z}_p$, the map RotaMap(G, vx, y) has underlying graph being a PX graph by Theorem 11. Note that there exists an $\sigma \in (\operatorname{End}_D(V))^{\times}$ such that $\sigma(v) = v'[2$, Lemma 2.10].

Since $\langle vx \rangle \cap V \cong \mathbb{Z}_p$, the map RotaMap(G, vx, y) has underlying graph being a PX graph by Theorem 11. Note that there exists an $\sigma \in (\operatorname{End}_D(V))^{\times}$ such that $\sigma(v) = v'[2$, Lemma 2.10]. Define $f: G \to G$, $f(wg) := \sigma(w)g$ for every $w \in V$, $g \in D$.

Since $\langle vx \rangle \cap V \cong \mathbb{Z}_p$, the map RotaMap(G, vx, y) has underlying graph being a PX graph by Theorem 11. Note that there exists an $\sigma \in (\operatorname{End}_D(V))^{\times}$ such that $\sigma(v) = v'[2$, Lemma 2.10]. Define $f: G \to G$, $f(wg) := \sigma(w)g$ for every $w \in V$, $g \in D$. The function f is one-to-one,

Since $\langle vx \rangle \cap V \cong \mathbb{Z}_p$, the map RotaMap(G,vx,y) has underlying graph being a PX graph by Theorem 11. Note that there exists an $\sigma \in (\operatorname{End}_D(V))^{\times}$ such that $\sigma(v) = v'[2$, Lemma 2.10]. Define $f: G \to G$, $f(wg) := \sigma(w)g$ for every $w \in V$, $g \in D$. The function f is one-to-one, and is a group homomorphism as: for $w_1g_1, w_2g_2 \in G$,

$$f(w_1g_1w_2g_2) = f(w_1w_2^{g_1^{-1}}g_1g_2)$$

$$= \sigma(w_1)\sigma(w_2^{g_1^{-1}})g_1g_2$$

$$= \sigma(w_1)(\sigma(w_2))^{g_1^{-1}}g_1g_2$$

$$= \sigma(w_1)g_1\sigma(w_2)g_2$$

$$= f(w_1g_1)f(w_2g_2).$$

By definition, RotaMap $(G, vx, y) \cong \text{RotaMap}(G, v'x, y)$.

Since $\langle vx \rangle \cap V \cong \mathbb{Z}_p$, the map RotaMap(G, vx, y) has underlying graph being a PX graph by Theorem 11. Note that there exists an $\sigma \in (\operatorname{End}_D(V))^{\times}$ such that $\sigma(v) = v'[2$, Lemma 2.10]. Define $f: G \to G$, $f(wg) := \sigma(w)g$ for every $w \in V$, $g \in D$. The function f is one-to-one, and is a group homomorphism as: for $w_1g_1, w_2g_2 \in G$,

$$f(w_1g_1w_2g_2) = f(w_1w_2^{g_1^{-1}}g_1g_2)$$

$$= \sigma(w_1)\sigma(w_2^{g_1^{-1}})g_1g_2$$

$$= \sigma(w_1)(\sigma(w_2))^{g_1^{-1}}g_1g_2$$

$$= \sigma(w_1)g_1\sigma(w_2)g_2$$

$$= f(w_1g_1)f(w_2g_2).$$

By definition, RotaMap(G, vx, y) \cong RotaMap(G, v'x, y).

ρ_{x}

For any $x \in D \leq G = V_{:\psi}D$, let ρ_x denote an element in the set

$$\{vx \mid 1 \neq v \in C_V(x)\}.$$

$$G = V:_{\psi}D = \mathbb{Z}_p^d:_{\psi}D_{2r}, \ d \geqslant 2, \ \psi \text{ is irreducible.}$$

$$G = V:_{\psi}D = \mathbb{Z}_{p}^{d}:_{\psi}D_{2r}, d \geqslant 2, \psi$$
 is irreducible.

Proposition

Let $x_1, y_1, x_2, y_2 \in D$ be involutions where $D = \langle x_1, y_1 \rangle = \langle x_2, y_2 \rangle$. Let $\sigma \in \operatorname{Aut}(D)$ be given by $\sigma(x_1) = x_2$ and $\sigma(y_1) = y_2$. Then

- $\blacksquare \ \, \mathsf{RotaMap}(\mathsf{G},\rho_{\mathsf{x}_1},y_1) \cong \mathsf{RotaMap}(\mathsf{G},\rho_{\mathsf{x}_2},y_2) \ \mathsf{if} \ \mathsf{and} \ \mathsf{only} \ \mathsf{if} \ \psi \cong \psi \circ \sigma.$
- **1** Define $\mathcal{RM}_G := \{ \mathsf{RotaMap}(G, \rho_x, y) \mid \langle x, y \rangle = D \}$. The mapping

$$\psi^{\operatorname{Aut}(D_{2r})} \to \mathcal{RM}_{\mathcal{G}},$$
$$\psi \circ \eta \mapsto \operatorname{RotaMap}(\mathcal{G}, \rho_{\eta(x_1)}, \eta(y_1))$$

is a one-to-one correspondence.

$$G = V:_{\psi} D = \mathbb{Z}_{p}^{d}:_{\psi} D_{2r}, d \geqslant 2, \psi$$
 is irreducible.

Proposition

Let $x_1, y_1, x_2, y_2 \in D$ be involutions where $D = \langle x_1, y_1 \rangle = \langle x_2, y_2 \rangle$. Let $\sigma \in \operatorname{Aut}(D)$ be given by $\sigma(x_1) = x_2$ and $\sigma(y_1) = y_2$. Then

- RotaMap $(G, \rho_{x_1}, y_1) \cong \text{RotaMap}(G, \rho_{x_2}, y_2)$ if and only if $\psi \cong \psi \circ \sigma$.
- ① Define $\mathcal{RM}_G := \{ \mathsf{RotaMap}(G, \rho_x, y) \mid \langle x, y \rangle = D \}$. The mapping

$$\psi^{\operatorname{Aut}(D_{2r})} \to \mathcal{RM}_{G},$$
$$\psi \circ \eta \mapsto \operatorname{RotaMap}(G, \rho_{\eta(x_{1})}, \eta(y_{1}))$$

is a one-to-one correspondence.

Proof

 \Rightarrow : Let $f \in \operatorname{Aut}(G)$ be the isomorphism. Since x_1 and x_2 are involutions, there is

$$f(x_1) = f(x_1^p) = f(\rho_{x_1}^p) = \rho_{x_2}^p = x_2.$$

So $\sigma := f|_D \in \operatorname{Aut}(D)$.

$$G = V:_{\psi} D = \mathbb{Z}_{p}^{d}:_{\psi} D_{2r}, d \geqslant 2, \psi$$
 is irreducible.

Proposition

Let $x_1, y_1, x_2, y_2 \in D$ be involutions where $D = \langle x_1, y_1 \rangle = \langle x_2, y_2 \rangle$. Let $\sigma \in \operatorname{Aut}(D)$ be given by $\sigma(x_1) = x_2$ and $\sigma(y_1) = y_2$. Then

- RotaMap $(G, \rho_{x_1}, y_1) \cong \text{RotaMap}(G, \rho_{x_2}, y_2)$ if and only if $\psi \cong \psi \circ \sigma$.
- **1** Define $\mathcal{RM}_G := \{ \mathsf{RotaMap}(G, \rho_x, y) \mid \langle x, y \rangle = D \}$. The mapping

$$\psi^{\operatorname{Aut}(D_{2r})} \to \mathcal{RM}_{\mathcal{G}},$$

$$\psi \circ \eta \mapsto \operatorname{\mathsf{RotaMap}}(\mathcal{G}, \rho_{\eta(\mathsf{x}_1)}, \eta(\mathsf{y}_1))$$

is a one-to-one correspondence.

Proof

 \Rightarrow : Let $f \in \operatorname{Aut}(G)$ be the isomorphism. Since x_1 and x_2 are involutions, there is

$$f(x_1) = f(x_1^p) = f(\rho_{x_1}^p) = \rho_{x_2}^p = x_2.$$

So $\sigma := f|_D \in \operatorname{Aut}(D)$. Straightforward checking shows that $f|_V$ serves as the isomorphism between $\psi \circ \sigma$ and ψ .

Proof

 $\Leftarrow: \ \mathsf{Denote} \ \ell \ \mathsf{the} \ \mathsf{isomorphism} \ \mathsf{between} \ \psi \ \mathsf{and} \ \psi \circ \sigma.$

Proof

 \Leftarrow : Denote ℓ the isomorphism between ψ and $\psi \circ \sigma$. Define $f: G \to G$ by $vg \mapsto \ell(v)\sigma(g)$. Then $f \in \operatorname{Aut}(G)$ is such that $f(x_1) = x_2$ and $f(y_1) = y_2$. Statement i is proved.

Proof

 \Leftarrow : Denote ℓ the isomorphism between ψ and $\psi \circ \sigma$. Define $f: G \to G$ by $vg \mapsto \ell(v)\sigma(g)$. Then $f \in \operatorname{Aut}(G)$ is such that $f(x_1) = x_2$ and $f(y_1) = y_2$. Statement i is proved.

Note that $\operatorname{Aut}(D)$ acts transitively on the set \mathcal{RM}_G . There is $|\mathcal{RM}_G| = |\operatorname{Aut}(D)|/|\operatorname{Aut}(D)_\psi| = |\psi^{\operatorname{Aut}(D)}|$, which completes the proof.

Proof

 \Leftarrow : Denote ℓ the isomorphism between ψ and $\psi \circ \sigma$. Define $f: G \to G$ by $vg \mapsto \ell(v)\sigma(g)$. Then $f \in \operatorname{Aut}(G)$ is such that $f(x_1) = x_2$ and $f(y_1) = y_2$. Statement i is proved.

Note that $\operatorname{Aut}(D)$ acts transitively on the set \mathcal{RM}_G . There is $|\mathcal{RM}_G| = |\operatorname{Aut}(D)|/|\operatorname{Aut}(D)_\psi| = |\psi^{\operatorname{Aut}(D)}|$, which completes the proof.

We claim that the number of G-rotary augmented PX maps equals $|\psi^{{
m Aut}(D)}|$.

 \Leftarrow : Denote ℓ the isomorphism between ψ and $\psi \circ \sigma$. Define $f: G \to G$ by $vg \mapsto \ell(v)\sigma(g)$. Then $f \in \operatorname{Aut}(G)$ is such that $f(x_1) = x_2$ and $f(y_1) = y_2$. Statement i is proved.

Note that $\operatorname{Aut}(D)$ acts transitively on the set \mathcal{RM}_G . There is $|\mathcal{RM}_G| = |\operatorname{Aut}(D)|/|\operatorname{Aut}(D)_\psi| = |\psi^{\operatorname{Aut}(D)}|$, which completes the proof.

We claim that the number of G-rotary augmented PX maps equals $|\psi^{{
m Aut}(D)}|$.

r	$Irr(D_{2r})$	G	Γ	the count
r is odd	$\gamma_{1,1}$	$\mathbb{Z}_p \times D_{2r}$	$C^*(p, r, 0)$	1
	$\gamma_{-1,-1}$	D_{2pr}	$C^*(p,r,0,-1)$	1
	ψ ($d\geqslant$ 2)	$\mathbb{Z}_p^d \rtimes_{\psi} D_{2r}$	C(p,r,d-1)	$ \psi^{\mathrm{Aut}(D_{2r})} $
r is even	$\gamma_{1,1}$	$\mathbb{Z}_p \times D_{2r}$	$C^*(p, r, 0)$	1
	$\gamma_{1,-1},\gamma_{-1,1}$	$\mathbb{Z}_p \rtimes_{\gamma_{1,-1}} D_{2r}$	$C^*(p, r, 0)$	1
	$\gamma_{-1,-1}$	D_{2pr}	$C^*(p,r,0,-1)$	1
	ψ ($d\geqslant$ 2)	$\mathbb{Z}_p^d \rtimes_{\psi} D_{2r}$	C(p,r,d-1)	$ \psi^{\operatorname{Aut}(D_{2r})} $

Table 1: Irreducible G-rotary PX maps

The number of irreducible PX maps of length r

[2, Theorem 5.7]

The number of irreducible rotary augmented PX map of length r is

- \bigcirc |Irr(D_{2r})| if r is odd;
- $|\operatorname{Irr}(D_{2r})| 1 \text{ if } r \text{ is even.}$

The number of *G*-rotary PX maps

 $\{G ext{-rotary augmented PX maps}\}\$ is in bijection with $\{ ext{the }\operatorname{Aut}(G) ext{-orbits on rotary pairs }(\rho, au)\$ of G where $|\rho|=2p\}$

The number of G-rotary PX maps

{G-rotary augmented PX maps} is in bijection with {the $\operatorname{Aut}(G)$ -orbits on rotary pairs (ρ,τ) of G where $|\rho|=2p$ } $G=V:_{\psi}D=\mathbb{Z}_{p}^{d}:_{\psi}\mathrm{D}_{2r},\ d\geqslant 2,\ \psi$ is irreducible.

The number of G-rotary PX maps

 $\{G ext{-rotary augmented PX maps}\}\$ is in bijection with $\{ ext{the }\operatorname{Aut}(G) ext{-orbits on rotary pairs }(\rho,\tau)\$ of G where $|\rho|=2p\}$ $G=V:_{\psi}D=\mathbb{Z}_p^d:_{\psi}\mathrm{D}_{2r},\ d\geqslant 2,\ \psi$ is irreducible.

[2, Lemma 5.4]

The group G has

$$p^d(p^{d/2}-1)r\varphi(r)$$

rotary pairs (ρ, τ) such that $|\rho| = 2p$.

Proof.

The element ρ equals vc for some $c \in D$ and v not in the -1-eigenspace of c.

 $\{G ext{-rotary augmented PX maps}\}\$ is in bijection with $\{ ext{the }\operatorname{Aut}(G) ext{-orbits on rotary pairs }(\rho,\tau) \text{ of } G \text{ where } |\rho|=2p\}$ $G=V:_{\psi}D=\mathbb{Z}_p^d:_{\psi}\mathrm{D}_{2r},\ d\geqslant 2,\ \psi \text{ is irreducible.}$

[2, Lemma 5.4]

The group G has

$$p^d(p^{d/2}-1)r\varphi(r)$$

rotary pairs (ρ, τ) such that $|\rho| = 2p$.

Proof.

The element ρ equals vc for some $c \in D$ and v not in the -1-eigenspace of c. Since the -1-eigenspace of a none centering involution in D has dimension d/2, there are $(p^d-p^{d/2})r$ choices of ρ .

 $\{G ext{-rotary augmented PX maps}\}\$ is in bijection with $\{ ext{the }\operatorname{Aut}(G) ext{-orbits on rotary pairs }(\rho,\tau)\$ of G where $|\rho|=2p\}$ $G=V:_{\psi}D=\mathbb{Z}_p^d:_{\psi}\mathrm{D}_{2r},\ d\geqslant 2,\ \psi$ is irreducible.

[2, Lemma 5.4]

The group G has

$$p^d(p^{d/2}-1)r\varphi(r)$$

rotary pairs (ρ, τ) such that $|\rho| = 2p$.

Proof.

The element ρ equals vc for some $c\in D$ and v not in the -1-eigenspace of c. Since the -1-eigenspace of a none centering involution in D has dimension d/2, there are $(p^d-p^{d/2})r$ choices of ρ .

The involution τ equals wz for some $z \in D$ and w in the -1-eigenspace of z.

{G-rotary augmented PX maps} is in bijection with {the $\operatorname{Aut}(G)$ -orbits on rotary pairs (ρ, τ) of G where $|\rho| = 2p$ } $G = V:_{\psi}D = \mathbb{Z}_p^d:_{\psi}\operatorname{D}_{2r}, \ d \geqslant 2, \ \psi$ is irreducible.

[2, Lemma 5.4]

The group G has

$$p^d(p^{d/2}-1)r\varphi(r)$$

rotary pairs (ρ, τ) such that $|\rho| = 2p$.

Proof.

The element ρ equals vc for some $c\in D$ and v not in the -1-eigenspace of c. Since the -1-eigenspace of a none centering involution in D has dimension d/2, there are $(p^d-p^{d/2})r$ choices of ρ .

The involution τ equals wz for some $z \in D$ and w in the -1-eigenspace of z. So there are $p^{d/2}\varphi(r)$ choices of τ .

$$G = V:_{\psi} D = \mathbb{Z}_p^d:_{\psi} D_{2r}, \ d \geqslant 2, \ \psi \ \text{is irreducible}.$$

$$G = V:_{\psi}D = \mathbb{Z}_p^d:_{\psi}D_{2r}, \ d \geqslant 2, \ \psi$$
 is irreducible.

$$A := \operatorname{Aut}(G)$$

$$A = \operatorname{Inn}_G(V) : \operatorname{N}_A(D).$$

$$G = V:_{\psi}D = \mathbb{Z}_p^d:_{\psi}D_{2r}, d \geqslant 2, \psi$$
 is irreducible.

$$A := \operatorname{Aut}(G)$$

$$A = \operatorname{Inn}_{G}(V) : \operatorname{N}_{A}(D).$$

The number of of G-rotary augmented PX maps equals

$$(p^{d/2}-1)r\varphi(r)/|\mathrm{N}_A(D)|.$$

$$G = V_{\cdot \psi} D = \mathbb{Z}_p^d_{\cdot \psi} D_{2r}, \ d \geqslant 2, \ \psi \text{ is irreducible.}$$

$A := \operatorname{Aut}(G)$

$$A = \operatorname{Inn}_{G}(V) : \operatorname{N}_{A}(D).$$

The number of of G-rotary augmented PX maps equals

$$(p^{d/2}-1)r\varphi(r)/|\mathrm{N}_A(D)|.$$

[2, Lemma 5.2]

Define a homomorphism $\kappa: \mathrm{N}_A(D) \to \mathrm{Aut}(D)$ by $f \mapsto f|_D$. Then $\ker(\kappa) \cong \mathrm{End}_D(V)^{\times}$ and

$$\operatorname{im}(\kappa) = \operatorname{Aut}(D)_{\psi},$$

where $\operatorname{Aut}(D)_{\psi} = \{ \sigma \in \operatorname{Aut}(D) \mid \psi \circ \sigma \cong \psi \}.$

$$G = V:_{\psi}D = \mathbb{Z}_p^d:_{\psi}D_{2r}, \ d \geqslant 2, \ \psi \text{ is irreducible.}$$

A := Aut(G)

$$A = \operatorname{Inn}_{G}(V) : \operatorname{N}_{A}(D).$$

The number of of G-rotary augmented PX maps equals

$$(p^{d/2}-1)r\varphi(r)/|\mathrm{N}_A(D)|.$$

[2, Lemma 5.2]

Define a homomorphism $\kappa: \mathrm{N}_A(D) \to \mathrm{Aut}(D)$ by $f \mapsto f|_D$. Then $\ker(\kappa) \cong \mathrm{End}_D(V)^{\times}$ and

$$\operatorname{im}(\kappa) = \operatorname{Aut}(D)_{\psi},$$

where $\operatorname{Aut}(D)_{\psi} = \{ \sigma \in \operatorname{Aut}(D) \mid \psi \circ \sigma \cong \psi \}.$

Sketch of the proof

$$\ker(\kappa) = \{ \sigma \in N \mid \sigma \mid_D = \mathrm{id}_D \}.$$

$$G = V:_{\psi}D = \mathbb{Z}_p^d:_{\psi}D_{2r}, \ d \geqslant 2, \ \psi \text{ is irreducible.}$$

A := Aut(G)

$$A = \operatorname{Inn}_{G}(V) : \operatorname{N}_{A}(D).$$

The number of of *G*-rotary augmented PX maps equals

$$(p^{d/2}-1)r\varphi(r)/|\mathrm{N}_A(D)|.$$

[2, Lemma 5.2]

Define a homomorphism $\kappa: \mathrm{N}_A(D) \to \mathrm{Aut}(D)$ by $f \mapsto f|_D$. Then $\ker(\kappa) \cong \mathrm{End}_D(V)^{\times}$ and

$$\operatorname{im}(\kappa) = \operatorname{Aut}(D)_{\psi},$$

where $\operatorname{Aut}(D)_{\psi} = \{ \sigma \in \operatorname{Aut}(D) \mid \psi \circ \sigma \cong \psi \}.$

Sketch of the proof

 $\ker(\kappa) = \{ \sigma \in N \mid \sigma \mid_D = \mathrm{id}_D \}.$ For each $\ell \in \mathrm{End}_D(V)^{\times}$, define $\sigma_{\ell} : G \to G$ by $vb \mapsto \ell(v)b$.

$$G = V:_{\psi}D = \mathbb{Z}_p^d:_{\psi}D_{2r}, \ d \geqslant 2, \ \psi \text{ is irreducible.}$$

A := Aut(G)

$$A = \operatorname{Inn}_{G}(V) : \operatorname{N}_{A}(D).$$

The number of of *G*-rotary augmented PX maps equals

$$(p^{d/2}-1)r\varphi(r)/|\mathrm{N}_A(D)|.$$

[2, Lemma 5.2]

Define a homomorphism $\kappa: \mathrm{N}_A(D) \to \mathrm{Aut}(D)$ by $f \mapsto f|_D$. Then $\ker(\kappa) \cong \mathrm{End}_D(V)^{\times}$ and

$$\operatorname{im}(\kappa) = \operatorname{Aut}(D)_{\psi},$$

where $\operatorname{Aut}(D)_{\psi} = \{ \sigma \in \operatorname{Aut}(D) \mid \psi \circ \sigma \cong \psi \}.$

Sketch of the proof

 $\ker(\kappa) = \{ \sigma \in N \mid \sigma \mid_D = \mathrm{id}_D \}. \text{For each } \ell \in \mathrm{End}_D(V)^\times, \text{ define } \sigma_\ell : G \to G \text{ by } vb \mapsto \ell(v)b. \text{Then } \ker(\kappa) \supseteq \{ \sigma_\ell \mid \ell \in \mathrm{End}_D(V)^\times \}.$

$$G = V:_{\psi}D = \mathbb{Z}_p^d:_{\psi}D_{2r}, \ d \geqslant 2, \ \psi \text{ is irreducible.}$$

A := Aut(G)

$$A = \operatorname{Inn}_{G}(V) : \operatorname{N}_{A}(D).$$

The number of of *G*-rotary augmented PX maps equals

$$(p^{d/2}-1)r\varphi(r)/|\mathrm{N}_A(D)|.$$

[2, Lemma 5.2]

Define a homomorphism $\kappa: \mathrm{N}_A(D) \to \mathrm{Aut}(D)$ by $f \mapsto f|_D$. Then $\ker(\kappa) \cong \mathrm{End}_D(V)^{\times}$ and

$$\operatorname{im}(\kappa) = \operatorname{Aut}(D)_{\psi},$$

where $\operatorname{Aut}(D)_{\psi} = \{ \sigma \in \operatorname{Aut}(D) \mid \psi \circ \sigma \cong \psi \}.$

Sketch of the proof

 $\ker(\kappa) = \{\sigma \in N \mid \sigma \mid_D = \mathrm{id}_D\}. \text{For each } \ell \in \mathrm{End}_D(V)^\times, \text{ define } \sigma_\ell : G \to G \text{ by } vb \mapsto \ell(v)b. \text{Then } \ker(\kappa) \supseteq \{\sigma_\ell \mid \ell \in \mathrm{End}_D(V)^\times\}. \text{One the other hand, the function } N \to \mathrm{End}_D(V)^\times, \ \sigma \mapsto \sigma \mid_V, \text{ is injective since } \sigma \mid_D = \mathrm{id}_D.$

Sketch of the proof

For each $\delta \in \operatorname{Aut}(D)_{\psi}$, there exists $\sigma \in \operatorname{Aut}(G)$ such that $\sigma \mid_{D} = \delta$.

Sketch of the proof

For each $\delta \in \operatorname{Aut}(D)_{\psi}$, there exists $\sigma \in \operatorname{Aut}(G)$ such that $\sigma \mid_{D} = \delta$. Fix such an automorphism δ of D, then there exists an $\mathbb{F}_{p}D$ -module isomorphism δ_{V} such that $\delta_{V}(\psi(b)(v)) = \psi \circ \delta(b)\delta_{V}(v)$ for each $b \in D$ and $v \in V$. Define

$$\sigma: G \to G, \ vb \mapsto \delta_V(v)\delta(b),$$

which is an automorphism of G.

Sketch of the proof

For each $\delta \in \operatorname{Aut}(D)_{\psi}$, there exists $\sigma \in \operatorname{Aut}(G)$ such that $\sigma \mid_{D} = \delta$. Fix such an automorphism δ of D, then there exists an $\mathbb{F}_p D$ -module isomorphism δ_V such that $\delta_V(\psi(b)(v)) = \psi \circ \delta(b)\delta_V(v)$ for each $b \in D$ and $v \in V$. Define

$$\sigma: G \to G, \ vb \mapsto \delta_V(v)\delta(b),$$

which is an automorphism of G. Thus $\operatorname{im}(\kappa) = \operatorname{Aut}(D)_{\psi}$.

Sketch of the proof

For each $\delta \in \operatorname{Aut}(D)_{\psi}$, there exists $\sigma \in \operatorname{Aut}(G)$ such that $\sigma \mid_{D} = \delta$. Fix such an automorphism δ of D, then there exists an $\mathbb{F}_p D$ -module isomorphism δ_V such that $\delta_V(\psi(b)(v)) = \psi \circ \delta(b)\delta_V(v)$ for each $b \in D$ and $v \in V$. Define

$$\sigma: G \to G, \ vb \mapsto \delta_V(v)\delta(b),$$

which is an automorphism of G. Thus $\operatorname{im}(\kappa) = \operatorname{Aut}(D)_{\psi}$.

Sketch of the proof

For each $\delta \in \operatorname{Aut}(D)_{\psi}$, there exists $\sigma \in \operatorname{Aut}(G)$ such that $\sigma \mid_{D} = \delta$. Fix such an automorphism δ of D, then there exists an $\mathbb{F}_p D$ -module isomorphism δ_V such that $\delta_V(\psi(b)(v)) = \psi \circ \delta(b)\delta_V(v)$ for each $b \in D$ and $v \in V$. Define

$$\sigma: G \to G, \ vb \mapsto \delta_V(v)\delta(b),$$

which is an automorphism of G. Thus $\operatorname{im}(\kappa) = \operatorname{Aut}(D)_{\psi}$.

Since $\operatorname{End}_{\mathcal{D}}(V) \cong \mathbb{F}_p^{d/2}$, we have that the number of *G*-rotary augmented PX maps equals $\varphi(r)/|\operatorname{N}_A(D)| = |\operatorname{Aut}(D)|/|\operatorname{Aut}(D)_{\psi} = |\psi^{\operatorname{Aut}(D)}|$.

For each $\delta \in \operatorname{Aut}(D)_{\psi}$, there exists $\sigma \in \operatorname{Aut}(G)$ such that $\sigma \mid_{D} = \delta$. Fix such an automorphism δ of D, then there exists an $\mathbb{F}_p D$ -module isomorphism δ_V such that $\delta_V(\psi(b)(v)) = \psi \circ \delta(b)\delta_V(v)$ for each $b \in D$ and $v \in V$. Define

$$\sigma: G \to G, \ vb \mapsto \delta_V(v)\delta(b),$$

which is an automorphism of G. Thus $\operatorname{im}(\kappa) = \operatorname{Aut}(D)_{\psi}$.

Since $\operatorname{End}_{\mathcal{D}}(V) \cong \mathbb{F}_p^{d/2}$, we have that the number of *G*-rotary augmented PX maps equals $\varphi(r)/|\operatorname{N}_A(D)| = |\operatorname{Aut}(D)|/|\operatorname{Aut}(D)_{\psi} = |\psi^{\operatorname{Aut}(D)}|$.

[2, Lemma 5.2]

For $i \in \{1,2\}$, let $G_i = \mathbb{Z}_p^{d_i} :_{\psi_i} D_i$, where $p \nmid |D_1||D_2|$. Then the following are equivalent:

- \bullet there exists an isomorphism $\sigma: D_1 \to D_2$ such that $\psi_2 \circ \sigma \cong \psi_1$.

Moreover, if (ii) holds, there exists an isomorphism $f:G_1\to G_2$ such that $f(D_1)=D_2$ and $f|_{D_1}=\sigma$.

Let $\mathcal M$ be a rotary augmented PX map of length r. Then $\mathcal M$ is isomorphic to a direct product of irreducible rotary augmented PX maps of length r. Conversely, every direct product of irreducible rotary augmented PX maps of length r is a rotary augmented PX map whose underlying graph is of length r.

Let $\mathcal M$ be a rotary augmented PX map of length r. Then $\mathcal M$ is isomorphic to a direct product of irreducible rotary augmented PX maps of length r. Conversely, every direct product of irreducible rotary augmented PX maps of length r is a rotary augmented PX map whose underlying graph is of length r.

By definition, for every rotary map \mathcal{M} , we have $\mathcal{M} \times \mathcal{M} \cong \mathcal{M}$.

Let $\mathcal M$ be a rotary augmented PX map of length r. Then $\mathcal M$ is isomorphic to a direct product of irreducible rotary augmented PX maps of length r. Conversely, every direct product of irreducible rotary augmented PX maps of length r is a rotary augmented PX map whose underlying graph is of length r.

By definition, for every rotary map \mathcal{M} , we have $\mathcal{M} \times \mathcal{M} \cong \mathcal{M}$. Therefore, if there exists a decomposition $\mathcal{M} \cong \mathcal{N}_1 \times \cdots \times \mathcal{N}_n$ for an arc-regular map \mathcal{M} , then we can pick i_1, i_2, \ldots, i_k such that $\mathcal{M} \cong \mathcal{N}_{i_1} \times \cdots \times \mathcal{N}_{i_k}$ and $\mathcal{N}_{i_{j_1}} \not\cong \mathcal{N}_{i_{j_2}}$ if $j_1 \neq j_2$.

Let $\mathcal M$ be a rotary augmented PX map of length r. Then $\mathcal M$ is isomorphic to a direct product of irreducible rotary augmented PX maps of length r. Conversely, every direct product of irreducible rotary augmented PX maps of length r is a rotary augmented PX map whose underlying graph is of length r.

By definition, for every rotary map \mathcal{M} , we have $\mathcal{M} \times \mathcal{M} \cong \mathcal{M}$. Therefore, if there exists a decomposition $\mathcal{M} \cong \mathcal{N}_1 \times \cdots \times \mathcal{N}_n$ for an arc-regular map \mathcal{M} , then we can pick i_1, i_2, \ldots, i_k such that $\mathcal{M} \cong \mathcal{N}_{i_1} \times \cdots \times \mathcal{N}_{i_k}$ and $\mathcal{N}_{i_{j_1}} \not\cong \mathcal{N}_{i_{j_2}}$ if $j_1 \neq j_2$.

[2, Lemma 6.4]

Let $V_1=\mathbb{Z}_p^{d_1}$ and let $V_2=\mathbb{Z}_p^{d_2}$. Let $G=(V_1\times V_2):_{(\psi_1,\psi_2)}\mathsf{D}_{2r}$ where $\psi_i:\mathsf{D}_{2r}\to\mathsf{GL}(V_i)$ is irreducible for every $i\in\{1,2\}$. If G has a rotary pair (ρ,τ) such that $|\rho|=2p$ and $|\tau|=2$, then $\psi_1\not\cong\psi_2$.

Suppose the contradiction. There are $v \in V_1 \times V_2$, $\tau_1 \in D_r$ such that $\rho = v\tau_1$.

Suppose the contradiction. There are $v \in V_1 \times V_2$, $\tau_1 \in D_r$ such that $\rho = v\tau_1$. Let $v' = \rho^2$, and $\tau' = \rho^p$ which is an involution. Let $D = \langle \tau, \tau_1 \rangle$.

Suppose the contradiction. There are $v \in V_1 \times V_2$, $\tau_1 \in D_r$ such that $\rho = v\tau_1$. Let $v' = \rho^2$, and $\tau' = \rho^p$ which is an involution. Let $D = \langle \tau, \tau_1 \rangle$. Then $G = (V_1 \times V_2)D$ implying that $D \cong D_{2pr}$ or D_{2r} .

Suppose the contradiction. There are $v \in V_1 \times V_2$, $\tau_1 \in \mathrm{D}_r$ such that $\rho = v\tau_1$. Let $v' = \rho^2$, and $\tau' = \rho^p$ which is an involution. Let $D = \langle \tau, \tau_1 \rangle$. Then $G = (V_1 \times V_2)D$ implying that $D \cong D_{2pr}$ or D_{2r} . If $D \cong \mathrm{D}_{2pr}$, then $D \cap (V_1 \times V_2) \cong \mathbb{Z}_p$ is a D_{2r} -submodule. Thus $V_1 \cong V_2 \cong \mathbb{Z}_p$. Contradiction comes.

Suppose the contradiction. There are $v \in V_1 \times V_2$, $\tau_1 \in \mathrm{D}_r$ such that $\rho = v\tau_1$. Let $v' = \rho^2$, and $\tau' = \rho^p$ which is an involution. Let $D = \langle \tau, \tau_1 \rangle$. Then $G = (V_1 \times V_2)D$ implying that $D \cong D_{2pr}$ or D_{2r} . If $D \cong \mathrm{D}_{2pr}$, then $D \cap (V_1 \times V_2) \cong \mathbb{Z}_p$ is a D_{2r} -submodule. Thus $V_1 \cong V_2 \cong \mathbb{Z}_p$. Contradiction comes. We therefore have that $D \cong \mathrm{D}_{2r}$. So

$$G=(V_1\times V_2):_{(\eta_1,\eta_2)}D.$$

Suppose the contradiction. There are $v \in V_1 \times V_2$, $\tau_1 \in \mathrm{D}_r$ such that $\rho = v\tau_1$. Let $v' = \rho^2$, and $\tau' = \rho^p$ which is an involution. Let $D = \langle \tau, \tau_1 \rangle$. Then $G = (V_1 \times V_2)D$ implying that $D \cong D_{2pr}$ or D_{2r} . If $D \cong \mathrm{D}_{2pr}$, then $D \cap (V_1 \times V_2) \cong \mathbb{Z}_p$ is a D_{2r} -submodule. Thus $V_1 \cong V_2 \cong \mathbb{Z}_p$. Contradiction comes. We therefore have that $D \cong \mathrm{D}_{2r}$. So

$$G=(V_1\times V_2)_{(\eta_1,\eta_2)}D.$$

By Corollary19, there exists $\sigma \in \operatorname{Aut}(D_{2r})$ such that $\eta_1 = \psi_1 \circ \sigma$ and $\eta_2 \cong \psi_2 \circ \sigma$.

Suppose the contradiction. There are $v \in V_1 \times V_2$, $\tau_1 \in D_r$ such that $\rho = v\tau_1$. Let $v' = \rho^2$, and $\tau' = \rho^p$ which is an involution. Let $D = \langle \tau, \tau_1 \rangle$. Then $G = (V_1 \times V_2)D$ implying that $D \cong D_{2pr}$ or D_{2r} . If $D \cong D_{2pr}$, then $D \cap (V_1 \times V_2) \cong \mathbb{Z}_p$ is a D_{2r} -submodule. Thus $V_1 \cong V_2 \cong \mathbb{Z}_p$. Contradiction comes. We therefore have that $D \cong D_{2r}$. So

$$G=(V_1\times V_2):_{(\eta_1,\eta_2)}D.$$

By Corollary19, there exists $\sigma \in \operatorname{Aut}(\mathbb{D}_{2r})$ such that $\eta_1 = \psi_1 \circ \sigma$ and $\eta_2 \cong \psi_2 \circ \sigma$. So $\eta_1 \cong \eta_2$, denote by f this D-module isomorphism. Let $v' = (x,y) \in V_1 \times V_2$. Then $x \in \operatorname{C}_{V_1}(\tau')$ and $y \in \operatorname{C}_{V_2}(\tau')$.

Suppose the contradiction. There are $v \in V_1 \times V_2$, $\tau_1 \in D_r$ such that $\rho = v\tau_1$. Let $v' = \rho^2$, and $\tau' = \rho^p$ which is an involution. Let $D = \langle \tau, \tau_1 \rangle$. Then $G = (V_1 \times V_2)D$ implying that $D \cong D_{2pr}$ or D_{2r} . If $D \cong D_{2pr}$, then $D \cap (V_1 \times V_2) \cong \mathbb{Z}_p$ is a D_{2r} -submodule. Thus $V_1 \cong V_2 \cong \mathbb{Z}_p$. Contradiction comes. We therefore have that $D \cong D_{2r}$. So

$$G=(V_1\times V_2)_{(\eta_1,\eta_2)}D.$$

By Corollary19, there exists $\sigma \in \operatorname{Aut}(D_{2r})$ such that $\eta_1 = \psi_1 \circ \sigma$ and $\eta_2 \cong \psi_2 \circ \sigma$. So $\eta_1 \cong \eta_2$, denote by f this D-module isomorphism. Let $v' = (x,y) \in V_1 \times V_2$. Then $x \in \operatorname{C}_{V_1}(\tau')$ and $y \in \operatorname{C}_{V_2}(\tau')$. By Lemma[2, Lemma 2.10], there exists $\delta' \in \operatorname{End}_D(V_1)$ and $y' \in V_1$ such that

$$\delta'(x) = y' = f^{-1}(y).$$

Suppose the contradiction. There are $v \in V_1 \times V_2$, $\tau_1 \in D_r$ such that $\rho = v\tau_1$. Let $v' = \rho^2$, and $\tau' = \rho^p$ which is an involution. Let $D = \langle \tau, \tau_1 \rangle$. Then $G = (V_1 \times V_2)D$ implying that $D \cong D_{2pr}$ or D_{2r} . If $D \cong D_{2pr}$, then $D \cap (V_1 \times V_2) \cong \mathbb{Z}_p$ is a D_{2r} -submodule. Thus $V_1 \cong V_2 \cong \mathbb{Z}_p$. Contradiction comes. We therefore have that $D \cong D_{2r}$. So

$$G = (V_1 \times V_2):_{(\eta_1, \eta_2)} D.$$

By Corollary19, there exists $\sigma \in \operatorname{Aut}(D_{2r})$ such that $\eta_1 = \psi_1 \circ \sigma$ and $\eta_2 \cong \psi_2 \circ \sigma$. So $\eta_1 \cong \eta_2$, denote by f this D-module isomorphism. Let $v' = (x,y) \in V_1 \times V_2$. Then $x \in \operatorname{C}_{V_1}(\tau')$ and $y \in \operatorname{C}_{V_2}(\tau')$. By Lemma[2, Lemma 2.10], there exists $\delta' \in \operatorname{End}_D(V_1)$ and $y' \in V_1$ such that

$$\delta'(x) = y' = f^{-1}(y).$$

Define $\delta' = \delta \circ f$, which is a *D*-module isomorphism such that $\delta(x) = y$. Therefore, $v' \in \{(w, \zeta(w)) \mid w \in V_1\}$.

Suppose the contradiction. There are $v \in V_1 \times V_2$, $\tau_1 \in D_r$ such that $\rho = v\tau_1$. Let $v' = \rho^2$, and $\tau' = \rho^p$ which is an involution. Let $D = \langle \tau, \tau_1 \rangle$. Then $G = (V_1 \times V_2)D$ implying that $D \cong D_{2pr}$ or D_{2r} . If $D \cong D_{2pr}$, then $D \cap (V_1 \times V_2) \cong \mathbb{Z}_p$ is a D_{2r} -submodule. Thus $V_1 \cong V_2 \cong \mathbb{Z}_p$. Contradiction comes. We therefore have that $D \cong D_{2r}$. So

$$G = (V_1 \times V_2):_{(\eta_1, \eta_2)} D.$$

By Corollary19, there exists $\sigma \in \operatorname{Aut}(D_{2r})$ such that $\eta_1 = \psi_1 \circ \sigma$ and $\eta_2 \cong \psi_2 \circ \sigma$. So $\eta_1 \cong \eta_2$, denote by f this D-module isomorphism. Let $v' = (x,y) \in V_1 \times V_2$. Then $x \in \operatorname{C}_{V_1}(\tau')$ and $y \in \operatorname{C}_{V_2}(\tau')$. By Lemma[2, Lemma 2.10], there exists $\delta' \in \operatorname{End}_D(V_1)$ and $y' \in V_1$ such that

$$\delta'(x) = y' = f^{-1}(y).$$

Define $\delta' = \delta \circ f$, which is a D-module isomorphism such that $\delta(x) = y$. Therefore, $v' \in \{(w, \zeta(w)) \mid w \in V_1\}$. Note that $\{(w, \zeta(w)) \mid w \in V_1\} \cong \mathbb{Z}_p^{d_1}$ is normal in G. We have that $\langle (v')^D \rangle \leqslant \{(w, \zeta(w)) \mid w \in V_1\}$.

Suppose the contradiction. There are $v \in V_1 \times V_2$, $\tau_1 \in D_r$ such that $\rho = v\tau_1$. Let $v' = \rho^2$, and $\tau' = \rho^p$ which is an involution. Let $D = \langle \tau, \tau_1 \rangle$. Then $G = (V_1 \times V_2)D$ implying that $D \cong D_{2pr}$ or D_{2r} . If $D \cong D_{2pr}$, then $D \cap (V_1 \times V_2) \cong \mathbb{Z}_p$ is a D_{2r} -submodule. Thus $V_1 \cong V_2 \cong \mathbb{Z}_p$. Contradiction comes. We therefore have that $D \cong D_{2r}$. So

$$G = (V_1 \times V_2):_{(\eta_1, \eta_2)} D.$$

By Corollary19, there exists $\sigma \in \operatorname{Aut}(D_{2r})$ such that $\eta_1 = \psi_1 \circ \sigma$ and $\eta_2 \cong \psi_2 \circ \sigma$. So $\eta_1 \cong \eta_2$, denote by f this D-module isomorphism. Let $v' = (x,y) \in V_1 \times V_2$. Then $x \in \operatorname{C}_{V_1}(\tau')$ and $y \in \operatorname{C}_{V_2}(\tau')$. By Lemma[2, Lemma 2.10], there exists $\delta' \in \operatorname{End}_D(V_1)$ and $y' \in V_1$ such that

$$\delta'(x) = y' = f^{-1}(y).$$

Define $\delta' = \delta \circ f$, which is a D-module isomorphism such that $\delta(x) = y$. Therefore, $v' \in \{(w, \zeta(w)) \mid w \in V_1\}$. Note that $\{(w, \zeta(w)) \mid w \in V_1\} \cong \mathbb{Z}_p^{d_1}$ is normal in G. We have that $\langle (v')^D \rangle \leqslant \{(w, \zeta(w)) \mid w \in V_1\}$. However, this is impossible because $\{(w, \zeta(w)) \mid w \in V_1\} \neq V_1 \times V_2$. Therefore, we have that $\psi_1 \not\cong \psi_2$.

Theorem

Let $\mathcal{M}_1, \ldots, \mathcal{M}_m, \mathcal{N}_1, \ldots, \mathcal{N}_n$ be irreducible rotary augmented PX maps whose underlying graph is of length r. Let $\mathcal{M}_i \ncong \mathcal{M}_j$ for $i \neq j$ and let $\mathcal{N}_i \ncong \mathcal{N}_j$ for $i \neq j$. Then $\mathcal{M}_1 \times \cdots \times \mathcal{M}_m \cong \mathcal{N}_1 \times \cdots \times \mathcal{N}_n$ if and only if m = n and there is a permutation σ of $\{1, \ldots, n\}$ such that $\mathcal{M}_i \cong \mathcal{N}_{\sigma(i)}$ for all i.

- Map
- Rotary Praeger-Xu maps (PX maps)
 - Praeger-Xu graphs
 - The characterization of arc-regular automorphism groups of Praeger-Xu graphs
- Irreducible rotary PX maps
 - Construction of a class of irreducible rotary PX maps of length r
 - ullet The correspondence between irreducible rotary PX maps of length r and irreducible representations of D_{2r}
 - ullet The count of $V:_{\psi}\mathrm{D}_{2r}$ -rotary PX maps
- The decomposition of rotary PX maps

- [1] J. Chen, W. Fan, C. H. Li, and Y. Z. Zhu. Coverings of groups, regular dessins, and surfaces, 2024.
- [2] Z. Ding, Z. Guo, and L. Liu.Embedding a praeger-xu graph into a surface, 2025.
- [3] S. F. Du, G. Jones, J. H. Kwak, R. Nedela, and M. Škoviera. Regular embeddings of K_{n,n} where n is a power of 2. I. Metacyclic case. *European Journal of Combinatorics*, 28(6):1595–1609, 2007.
- [4] S. F. Du, G. Jones, J. H. Kwak, R. Nedela, and M. Skoviera. Regular embeddings of K_{n,n} where n is a power of 2. II: The non-metacyclic case. *European Journal of Combinatorics*, 31(7):1946–1956, 2010.
- [5] M. Giudici and G. Verret. Arc-transitive graphs of valency twice a prime admit a semiregular automorphism. Ars Mathematica Contemporanea, 18(1):179–186, 2020.
- [6] D. Gorenstein.
 Finite groups.
 Chelsea Publishing Co., New York, second edition, 1980.
- [7] Š. Gyürki, S. Pavlíková, and J. Širáň.
 Orientably-regular embeddings of complete multigraphs.

- J. Combin. Theory Ser. B, 171:71-95, 2025.
- [8] I. Martin Isaacs.
 Finite Group Theory.
 Number v. 92 in Graduate Studies in Mathematics. American Mathematical Society, Providence, R.I., 2008.
- [9] R. Jajcay, P. Potočnik, and S. Wilson. The praeger-xu graphs: Cycle structures, maps, and semitransitive orientations.

Acta Mathematica Universitatis Comenianae, 88(2):269–291, June 2019.

- [10] R. Jajcay, P. Potočnik, and S. Wilson. On the Cayleyness of Praeger-Xu graphs. Journal of Combinatorial Theory, Series B, 152:55–79, 2022.
- [11] L. D. James and G. A. Jones. Regular orientable imbeddings of complete graphs. Journal of Combinatorial Theory, Series B, 39(3):353–367, 1985.
- [12] G. A. Jones. Regular embeddings of complete bipartite graphs: Classification and enumeration. Proceedings of the London Mathematical Society. Third Series, 101(2):427–453, 2010.

- [13] G. A. Jones, R. Nedela, and M. Škoviera. Regular embeddings of K_{n,n} where n is an odd prime power. European Journal of Combinatorics, 28(6):1863–1875, 2007.
- [14] S. K. Lando and A. K. Zvonkin. Graphs on Surfaces and Their Applications, volume 141 of Encyclopaedia of Mathematical Sciences. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.
- [15] C. H. Li, C. E. Praeger, and S. J. Song. Locally finite vertex-rotary maps and coset graphs with finite valency and finite edge multiplicity. *Journal of Combinatorial Theory. Series B*, 169:1–44, November 2024.
- [16] C. H. Li and Y. Z. Zhu. Covers and pseudocovers of symmetric graphs. Journal of Algebraic Combinatorics, 59(4):1021–1036, 2024.
- [17] P. Potočnik, P. Spiga, and G. Verret. Bounding the order of the vertex-stabiliser in 3-valent vertex-transitive and 4-valent arc-transitive graphs. Journal of Combinatorial Theory, Series B, 111:148–180, 2015.
- [18] C. E. Praeger.Highly Arc Transitive Digraphs.

- European Journal of Combinatorics, 10(3):281–292, 1989.
- [19] C. E. Praeger and M. Y. Xu. A Characterization of a Class of Symmetric Graphs of Twice Prime Valency. European Journal of Combinatorics, 10(1):91–102, 1989.
- [20] J. H. Van Lint. Introduction to Coding Theory, volume 86 of Graduate Texts in Mathematics. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.
- [21] J. Širáň, T. W. Tucker, and M. E. Watkins. Realizing finite edge-transitive orientable maps. J. Graph Theory, 37(1):1–34, 2001.