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A map M = (V,E,F) is a 2-cell embedding of a graph I = (V, E) into a
closed surface S.
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A map M = (V,E,F) is a 2-cell embedding of a graph I = (V, E) into a
closed surface S.

Nl 7,1 .

Tetrahedron t O Dodecahedron Icosahedron

The face set:

The open disks F :=S\T.

The flag set:

¢ :={(o,e,f):a € V,e€ E,f € F are mutually incident}.

Remark: |®| = 4|E|.
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Automorphisms of maps
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Automorphisms of maps

Automorphisms of map

AutM = {o € Sym(®) : o preserves incidences between flags}.
Q Aut(M)y =1, V¢ € & = |Aut M| divides |P| = 4|E]|.
@ Aut(M)., is cyclic or dihedral, w € VUEUF. = G. < Ds.
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Rotary maps: a class of arc-regular map

(o, e, f): aflag.
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Rotary maps: a class of arc-regular map

(o, e, f): aflag.

G-arc-transitive maps:

G < Aut(M) is transitive on arcs of M.
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Rotary maps: a class of arc-regular map

(o, e, f): aflag.

G-arc-transitive maps:

G < Aut(M) is transitive on arcs of M.

G-vertex (face)-rotary:

Go (Gr) induces a transitive cyclic subgroup on edges that incident with the
vertex « (the face f).

G-rotary map:

A map which is both G-vertex-rotary and G-face-rotary.
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Constructions of rotary maps

G: a finite group.

0[15] C. H. Li, C. E. Praeger, and S. J. Song. Locally finite vertex-rotary maps and coset graphs
with finite valency and finite edge multiplicity. Journal of Combinatorial Theory. Series B, 2024.
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Constructions of rotary maps

G: a finite group.

RotaMap(G, p, T)

A rotary pair (p,7) € G x G of a group G satisfies G = (p, 7) and || = 2.
Define an incidence configuration RotaMap(G, p, T) by

vertex set [G : (p)], edge set [G : (7)] and face set [G : (p7)],

where two objects are incident if and only if their set intersection is non-empty.

0[15] C. H. Li, C. E. Praeger, and S. J. Song. Locally finite vertex-rotary maps and coset graphs
with finite valency and finite edge multiplicity. Journal of Combinatorial Theory. Series B, 2024.
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Constructions of rotary maps

G: a finite group.

RotaMap(G, p, T)

A rotary pair (p,7) € G x G of a group G satisfies G = (p, 7) and || = 2.
Define an incidence configuration RotaMap(G, p, T) by

vertex set [G : (p)], edge set [G : (7)] and face set [G : (p7)],

where two objects are incident if and only if their set intersection is non-empty. )

[15, Proposition 5.1]

A G-rotary map is isomorphic to RotaMap(G, p, 7) for some rotary pair (p, 7)
for G.

[15, Proposition 4.1]

Two maps RotaMap(G, p,7) and RotaMap(H, p’, ') are isomorphic if there is

’

a group isomorphism f : G — H such that f(p) = p’ and f(7) = 7'

0[15] C. H. Li, C. E. Praeger, and S. J. Song. Locally finite vertex-rotary maps and coset graphs
with finite valency and finite edge multiplicity. Journal of Combinatorial Theory. Series B, 2024.
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Rotary map: quotient and direct product

o M = RotaMap(G, p, 7).
e M« G with p,7¢ M

O[1] J. Chen, W. Fan, C. H. Li, and Y. Z. Zhu. Coverings of groups, regular dessins, and surfaces, 2024.
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Rotary map: quotient and direct product

o M = RotaMap(G, p, 7).
e M« G with p,7¢ M

Quotient rotary maps[1]
M/M := RotaMap(G /M, pM, ™M)

O[1] J. Chen, W. Fan, C. H. Li, and Y. Z. Zhu. Coverings of groups, regular dessins, and surfaces, 2024.
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Rotary map: quotient and direct product

o M = RotaMap(G, p, 7).
e M« G with p,7¢ M

Quotient rotary maps[1]
M/M := RotaMap(G /M, pM, ™M)

@ M; = RotaMap(Gj, pi, ) (i =1,...,n).
o H= <(p15'--7p")7(7—17~~~77—")> < H?:l Gi.

O[1] J. Chen, W. Fan, C. H. Li, and Y. Z. Zhu. Coverings of groups, regular dessins, and surfaces, 2024.
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Rotary map: quotient and direct product

o M = RotaMap(G, p, 7).
e M« G with p,7¢ M

Quotient rotary maps[1]
M/M := RotaMap(G /M, pM, ™M)

@ M; = RotaMap(Gj, pi, ) (i =1,...,n).
o H= <(p15'--7p")7(7—17~~~77—")> < H?:l Gi.

Direct products

[T, M; := RotaMap (H, (p1, .- -, pn), (11, - .., Tn))-

O[1] J. Chen, W. Fan, C. H. Li, and Y. Z. Zhu. Coverings of groups, regular dessins, and surfaces, 2024.
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Praeger-Xu graphs

Praeger-Xu graph

Let p, r, s be positive integers such that p > 2 and r > 3. Define a simple graph
C(p, r,s) = (V, E) as follows:

@ the vertexset Vis Z, x Z;

@ the edge set E is defined to be the set of all pairs of the form
{(i7X01 X1y - 1Xs—1)7 (’ F L X1,y Xs—1, Xs)}
for every i € Z, and xp, X1, . .., Xs—1,Xs € Zp.

There are p**1r edges.
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Praeger-Xu graphs

Praeger-Xu graph

Let p, r, s be positive integers such that p > 2 and r > 3. Define a simple graph
C(p, r,s) = (V, E) as follows:

@ the vertexset Vis Z, x Z;

@ the edge set E is defined to be the set of all pairs of the form
{(i7X01 X1y - 1Xs—1)7 (’ F L X1,y Xs—1, Xs)}

for every i € Z, and xp, X1, . .., Xs—1,Xs € Zp.

There are p**1r edges.

Augmented PX-graphs

PX-graphs, multicycles C* (denoted by C*(p, r,0,1)), and cycles Cp
(denoted by C*(p, r,0,—1)).

Luyi Liu7 / 23
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Properties of Praeger-Xu graphs

[19, Theorem 2.10]

The graph C(p, r, s) is symmetric if and only if r > s+ 1, and is vertex
transitive if and only if r > s.

019. C. E. Praeger and M. Y. Xu. A Characterization of a Class of Symmetric Graphs of Twice
Prime Valency. European Journal of Combinatorics, 1989
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Properties of Praeger-Xu graphs

[19, Theorem 2.10]

The graph C(p, r, s) is symmetric if and only if r > s+ 1, and is vertex
transitive if and only if r > s.

[19, Theorem 2.13]

The full automorphism group of C(p, r,s) is equal to S, wr D3, where
(r,s) # (4,1), r > max{s + 1,3} and p is odd.

019. C. E. Praeger and M. Y. Xu. A Characterization of a Class of Symmetric Graphs of Twice
Prime Valency. European Journal of Combinatorics, 1989
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Properties of Praeger-Xu graphs

[19, Theorem 2.10]

The graph C(p, r, s) is symmetric if and only if r > s+ 1, and is vertex
transitive if and only if r > s.

[19, Theorem 2.13]

The full automorphism group of C(p, r,s) is equal to S, wr D3, where
(r,s) # (4,1), r > max{s + 1,3} and p is odd.

[19, Theorem 1]

Let I be a connected, simple, G-arc-transitive graph of valency 2p. If G
contains an abelian normal p-subgroup which is not semiregular on the vertices
of I', then I = C(p, r,s) for some r > max{3,s+ 1} and s > 1.

019. C. E. Praeger and M. Y. Xu. A Characterization of a Class of Symmetric Graphs of Twice
Prime Valency. European Journal of Combinatorics, 1989
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Arc-regular automorphism groups of Praeger-Xu graphs C(p, r,s), ptr

Case 1. (r,s) # (4,1)
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Arc-regular automorphism groups of Praeger-Xu graphs C(p, r,s), ptr

Case 1. (r,s) # (4,1)

Let s > 0, r > max{s + 1,3} and (r,s) # (4,1).

Rotary embeddings of Praeger-Xu graphs Luyi Liu9 /23



Arc-regular automorphism groups of Praeger-Xu graphs C(p, r,s), ptr

Case 1. (r,s) # (4,1)

Let s > 0, r > max{s + 1,3} and (r,s) # (4,1).

Suppose that G is an arc-regular subgroup of Aut(C(p, r,s)). Then

G = 73Dy,
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Arc-regular automorphism groups of Praeger-Xu graphs C(p, r,s), ptr

Case 1. (r,s) # (4,1)

Let s > 0, r > max{s + 1,3} and (r,s) # (4,1).

Suppose that G is an arc-regular subgroup of Aut(C(p, r,s)). Then

G = 73Dy,

The order |G| = 2p°™ r which is the arc number of C(p, r,s).
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Arc-regular automorphism groups of Praeger-Xu graphs C(p, r,s), ptr

Case 1. (r,s) # (4,1)

Let s > 0, r > max{s + 1,3} and (r,s) # (4,1).

Suppose that G is an arc-regular subgroup of Aut(C(p, r,s)). Then

G = 73Dy,

The order |G| = 2p*Tr which is the arc number of C(p, r, s).
Let I' = C(p, r, s)s; which is isomorphic to C;.
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Arc-regular automorphism groups of Praeger-Xu graphs C(p, r,s), ptr

Case 1. (r,s) # (4,1)

Let s > 0, r > max{s + 1,3} and (r,s) # (4,1).

Suppose that G is an arc-regular subgroup of Aut(C(p, r,s)). Then

G = 73Dy,

4

The order |G| = 2p*Tr which is the arc number of C(p, r, s).
Let I = C(p,r, s)s; which is isomorphic to C,. Since G is transitive on arcs of

T = C, with the kernel G N Sp. we have that

G/(GNSL) =Dy and [GNSH = p.
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Arc-regular automorphism groups of Praeger-Xu graphs C(p, r,s), ptr

Case 1. (r,s) # (4,1)

Let s > 0, r > max{s + 1,3} and (r,s) # (4,1).

Suppose that G is an arc-regular subgroup of Aut(C(p, r,s)). Then

G = 73Dy,

4

The order |G| = 2p*Tr which is the arc number of C(p, r, s).
Let I = C(p,r, s)s; which is isomorphic to C,. Since G is transitive on arcs of

T = C, with the kernel G N Sp. we have that

G/(GNSL) =Dy and [GNSH = p.

It follows from (S,), = Z, that

G =175 Dy,.
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Arc-regular automorphism groups of Praeger-Xu graphs

Case 2.(r,s) = (4,1)

C(p,4,1) is the complete bipartite graph Kop,2p.
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Arc-regular automorphism groups of Praeger-Xu graphs

Case 2.(r,s) = (4,1)

C(p,4,1) is the complete bipartite graph Kop,2p.
Aut(szyzp) = S2P wr Zo.

[2, Lemma 4.6]

Suppose that G is an arc-regular subgroup of Aut(K2p,2,). Then G 22 Zf,:Dg.

The order of G is 8p?.
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Arc-regular automorphism groups of Praeger-Xu graphs

Case 2.(r,s) = (4,1)

C(p,4,1) is the complete bipartite graph Kop,2p.
Aut(szyzp) = S2P wr Zo.

[2, Lemma 4.6]

Suppose that G is an arc-regular subgroup of Aut(K2p,2,). Then G 22 Zf,:Dg.

The order of G is 8p°. Let L is the subgroup which preserving the two parts of
Kap.25, and so |L| = 4p>. Note that L = G, Gs, where , § are two vertices in
the two parts, respectively.
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Arc-regular automorphism groups of Praeger-Xu graphs

Case 2.(r,s) = (4,1)

C(p,4,1) is the complete bipartite graph Kop,2p.
Aut(szyzp) = S2P wr Zo.

[2, Lemma 4.6]

Suppose that G is an arc-regular subgroup of Aut(K2p,2,). Then G 22 Zf,:Dg.

The order of G is 8p°. Let L is the subgroup which preserving the two parts of
Kap.25, and so |L| = 4p>. Note that L = G, Gs, where , § are two vertices in

the two parts, respectively. Since G, = Gg = Do, of Zop, we have that
L, =72
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Arc-regular automorphism groups of Praeger-Xu graphs

Case 2.(r,s) = (4,1)

C(p,4,1) is the complete bipartite graph Kop,2p.
Aut(szyzp) = S2P wr Zo.

[2, Lemma 4.6]

Suppose that G is an arc-regular subgroup of Aut(K2p,2,). Then G 22 Zf,:Dg.

The order of G is 8p°. Let L is the subgroup which preserving the two parts of
Kap.25, and so |L| = 4p>. Note that L = G, Gs, where , § are two vertices in
the two parts, respectively. Since G, = Gg = Do, of Zop, we have that

L, =72

We claim that L, < L, and so L = Zf,:Z% implying

G = (Z3:23):Z2 = 72:Ds.
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Arc-regular automorphism groups of Praeger-Xu graphs

Case 2.(r,s) = (4,1)

C(p,4,1) is the complete bipartite graph Kop,2p.
Aut(szyzp) = S2P wr Zo.

[2, Lemma 4.6]

Suppose that G is an arc-regular subgroup of Aut(K2p,2,). Then G 22 Zf,:Dg.

The order of G is 8p°. Let L is the subgroup which preserving the two parts of
Kap.25, and so |L| = 4p>. Note that L = G, Gs, where , § are two vertices in
the two parts, respectively. Since G, = Gg = Do, of Zop, we have that

L, =72

We claim that L, < L, and so L = Zf,:Z% implying

G = (Z3:23):Z2 = 72:Ds.

Let p = 3. By Brodkey's theorem, there are two Sylow 3-subgroups P and Q of
L such that PN Q = O3(L) = Zs. The quotient group L/Os(L) = A4 since its
Sylow 3-subgroups are not normal.
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Arc-regular automorphism groups of Praeger-Xu graphs

Case 2.(r,s) = (4,1)

C(p,4,1) is the complete bipartite graph Kop,2p.
Aut(szyzp) = S2P wr Zo.

[2, Lemma 4.6]

Suppose that G is an arc-regular subgroup of Aut(K2p,2,). Then G 22 Zf,:Dg.

The order of G is 8p°. Let L is the subgroup which preserving the two parts of
Kap.25, and so |L| = 4p>. Note that L = G, Gs, where , § are two vertices in
the two parts, respectively. Since G, = Gg = Do, of Zop, we have that

L, =72

We claim that L, < L, and so L = Zf,:Z% implying

G = (Z3:23):Z2 = 72:Ds.

Let p = 3. By Brodkey's theorem, there are two Sylow 3-subgroups P and Q of
L such that PN Q = O3(L) = Zs. The quotient group L/Os(L) = A4 since its
Sylow 3-subgroups are not normal. Note that L/Os(L) = (GaGg)/Os(L).
Contradiction comes to that G, =2 Gg = Zyp, or Dap.
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Arc-regular automorphism groups of Praeger-Xu graphs

Aut(Cpr = C*(p, r,0,—1)) = Dapr, Aut(C¥) = C*(p, r,0,1)) = Zy:Da,.
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Arc-regular automorphism groups of Praeger-Xu graphs

Aut(Cpr = C*(p, r,0,—1)) = Dapr, Aut(C¥) = C*(p, r,0,1)) = Zy:Da,.

Let s > 0 be an integer, let 6 € {1, —1} and let r be an integer such that
r > max{3,s + 1}. Let G be an arc-regular group of automorphisms of
C*(p,r,s,d). Then G Zf,“: D>, .
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Arc-regular automorphism groups of Praeger-Xu graphs

Aut(Cpr = C*(p, r,0,—1)) = Dapr, Aut(C¥) = C*(p, r,0,1)) = Zy:Da,.

Let s > 0 be an integer, let 6 € {1, —1} and let r be an integer such that
r > max{3,s + 1}. Let G be an arc-regular group of automorphisms of
C*(p,r,s,d). Then G Zf,“: D>, .

Let M be a G-rotary map with underlying graph isomorphic to C*(p, r, s, 9).
Then G is isomorphic to Z5™: Do,.

.

.
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Arc-regular automorphism groups of Praeger-Xu graphs

Aut(Cpr = C*(p, r,0,—1)) = Dapr, Aut(C¥) = C*(p, r,0,1)) = Zy:Da,.

Let s > 0 be an integer, let 6 € {1, —1} and let r be an integer such that
r > max{3,s + 1}. Let G be an arc-regular group of automorphisms of
C*(p,r,s,d). Then G Zf,“: D>, .

.

Let M be a G-rotary map with underlying graph isomorphic to C*(p, r, s, 9).
Then G is isomorphic to Z5™: Do,.

.

Let G = Zf,“: D>, with s > 0, and let M be a G-arc-regular map. If
|Ga| = 2p, then the underlying graph [ is isomorphic to C*(p, r, s).

.
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Arc-regular automorphism groups of Praeger-Xu graphs

Aut(Cpr = C*(p, r,0,—1)) = Dapr, Aut(C¥) = C*(p, r,0,1)) = Zy:Da,.

Let s > 0 be an integer, let 6 € {1, —1} and let r be an integer such that
r > max{3,s + 1}. Let G be an arc-regular group of automorphisms of
C*(p,r,s,d). Then G Zf,“: D>, .

.

Let M be a G-rotary map with underlying graph isomorphic to C*(p, r, s, 9).
Then G is isomorphic to Z5™: Do,.

.

Let G = Zf,“: D>, with s > 0, and let M be a G-arc-regular map. If
|Ga| = 2p, then the underlying graph [ is isomorphic to C*(p, r, s).

v
2=r=2;
|Gas| = { p = the underlying graph is the multi-cycle C*(p, r,0,1)
2p=r=2;
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Irreducible G-rotary PX maps

A PX map is a map with the underlying graph is a augmented Praeger-Xu
graph C*(p, r,s, d), the length of this map is defined as r.
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Irreducible G-rotary PX maps

A PX map is a map with the underlying graph is a augmented Praeger-Xu
graph C*(p, r,s, d), the length of this map is defined as r.

Let M be a G-rotary embedding of C*(p, r,s,d) with ptr. By Lemma 11,
G = Zf,+1:wD2,.
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Irreducible G-rotary PX maps

A PX map is a map with the underlying graph is a augmented Praeger-Xu
graph C*(p, r,s, d), the length of this map is defined as r.

Let M be a G-rotary embedding of C*(p, r,s,d) with ptr. By Lemma 11,
G = Zf,+1:wD2,.

Irreducible G-rotary PX maps

The G-rotary PX map is irreducible if v is irreducible.
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Irreducible G-rotary PX maps

A PX map is a map with the underlying graph is a augmented Praeger-Xu
graph C*(p, r,s, d), the length of this map is defined as r.

Let M be a G-rotary embedding of C*(p, r,s,d) with ptr. By Lemma 11,
G = Zf,+1:wD2,.

Irreducible G-rotary PX maps

The G-rotary PX map is irreducible if v is irreducible.

o G=V:yD=7%yDs, d>2, 9 is irreducible.
@ Do = (c):(b) = Z:Z>.
o v' = 4(b)(v), ve Vand beD.

Note that the degree d is even, and Cy(x) & ZZ/2 for each involution
x € D\ Z(D)[2, Lemma 2.9].
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Irreducible G-rotary PX maps

A PX map is a map with the underlying graph is a augmented Praeger-Xu
graph C*(p, r,s, d), the length of this map is defined as r.

Let M be a G-rotary embedding of C*(p, r,s,d) with ptr. By Lemma 11,
G = Zf,+1:wD2,.

Irreducible G-rotary PX maps

The G-rotary PX map is irreducible if v is irreducible.

o G=V:yD=7%yDs, d>2, 9 is irreducible.
@ Do = (c):(b) = Z:Z>.
o v' = 4(b)(v), ve Vand beD.

Note that the degree d is even, and Cy(x) & ZZ/2 for each involution
x € D\ Z(D)[2, Lemma 2.9].

Proposition

Let x,y € D be involutions such that D = (x, y), and let v # v/ € Cy(x)\{1}.
Then RotaMap(G, vx, y) = RotaMap(G, v'x, y) are rotary PX maps
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Since (vx) NV 2 Z,, the map RotaMap(G, vx, y) has underlying graph being a
PX graph by Theorem 11.
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Since (vx) NV 2 Z,, the map RotaMap(G, vx, y) has underlying graph being a
PX graph by Theorem 11. Note that there exists an o € (Endp(V))* such
that o(v) = v/[2, Lemma 2.10].
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Since (vx) NV 2 Z,, the map RotaMap(G, vx, y) has underlying graph being a
PX graph by Theorem 11. Note that there exists an o € (Endp(V))* such
that o(v) = v/[2, Lemma 2.10]. Define f : G — G, f(wg) := o(w)g for every
weV, geD.

Rotary embeddings of Praeger-Xu graphs

Luyi Liu 13 / 23



Since (vx) NV 2 Z,, the map RotaMap(G, vx, y) has underlying graph being a
PX graph by Theorem 11. Note that there exists an o € (Endp(V))* such
that o(v) = v/[2, Lemma 2.10]. Define f : G — G, f(wg) := o(w)g for every
w € V, g € D. The function f is one-to-one,
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Since (vx) NV 2 Z,, the map RotaMap(G, vx, y) has underlying graph being a
PX graph by Theorem 11. Note that there exists an o € (Endp(V))* such
that o(v) = v/[2, Lemma 2.10]. Define f : G — G, f(wg) := o(w)g for every
w € V, g € D. The function f is one-to-one, and is a group homomorphism
as: for wigi, wog € G,

—1
f(wigiwogr) = f(wmaw,' g182)
—1
=o(m)o(w;' )gre

—1
o(w)(c(n2))* gig2
o(wi)gio(w2)g>
f(wigi)f(wag).

By definition, RotaMap(G, vx, y) & RotaMap(G, v'x, y).
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that o(v) = v/[2, Lemma 2.10]. Define f : G — G, f(wg) := o(w)g for every
w € V, g € D. The function f is one-to-one, and is a group homomorphism
as: for wigi, wog € G,

—1
f(wigiwogr) = f(wmaw,' g182)
—1
=o(m)o(w;' )gre

—1
o(w)(c(n2))* gig2
o(wi)gio(w2)g>
f(wigi)f(wag).

By definition, RotaMap(G, vx, y) & RotaMap(G, v'x, y).

Forany x € D < G = V4D, let px denote an element in the set

{wx | 1# v e Cy(x)}.
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The correspondence

G=VyD= ZZ:tz,, d > 2, v is irreducible.
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The correspondence

G=VyD= ZZ:tz,, d > 2, v is irreducible.

Let x1, y1, X2, ¥ € D be involutions where D = (x1, y1) = (x2, y2). Let
o € Aut(D) be given by o(x1) = x2 and o(y1) = y». Then

@ RotaMap(G, py, y1) = RotaMap(G, px,, y2) if and only if ) 2o 0.

@ Define RMg := {RotaMap(G, px,y) | (x,y) = D}. The mapping

wAut(Dz,) N RMG,
1 om — RotaMap(G, py(x), n(y1))

is a one-to-one correspondence.

A
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The correspondence

G=VyD= ZZ:tz,, d > 2, v is irreducible.

Let x1, y1, X2, ¥ € D be involutions where D = (x1, y1) = (x2, y2). Let
o € Aut(D) be given by o(x1) = x2 and o(y1) = y». Then

@ RotaMap(G, py, y1) = RotaMap(G, px,, y2) if and only if ) 2o 0.

@ Define RMg := {RotaMap(G, px,y) | (x,y) = D}. The mapping

wAut(Dz,) N RMG,
1 om — RotaMap(G, py(x), n(y1))

is a one-to-one correspondence.

=: Let f € Aut(G) be the isomorphism. Since x; and x are involutions, there
is

fa) = () = (%) = P, = .
So 0 := f|p € Aut(D).
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The correspondence

G=VyD= ZZ:tz,, d > 2, v is irreducible.

Let x1, y1, X2, ¥ € D be involutions where D = (x1, y1) = (x2, y2). Let
o € Aut(D) be given by o(x1) = x2 and o(y1) = y». Then

@ RotaMap(G, py, y1) = RotaMap(G, px,, y2) if and only if ) 2o 0.

@ Define RMg := {RotaMap(G, px,y) | (x,y) = D}. The mapping

wAut(Dz,) N RMG,
1 om — RotaMap(G, py(x), n(y1))

is a one-to-one correspondence.

=: Let f € Aut(G) be the isomorphism. Since x; and x are involutions, there
is

fa) = () = (%) = P, = .
So 0 := f|p € Aut(D). Straightforward checking shows that f|y serves as the
isomorphism between 1) o o and .
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The correspondence

< Denote ¢ the isomorphism between v and ¢ o 0.
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The correspondence

< Denote ¢ the isomorphism between v and 1) o 0. Define f : G — G by
vg — L(v)o(g). Then f € Aut(G) is such that f(x1) = x2 and f(y1) = y».
Statement i is proved.
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The correspondence

< Denote ¢ the isomorphism between v and 1) o 0. Define f : G — G by
vg — L(v)o(g). Then f € Aut(G) is such that f(x1) = x2 and f(y1) = y».
Statement i is proved.

Note that Aut(D) acts transitively on the set RMg. There is

|IRMg| = |Aut(D)|/|Aut(D)y| = [*"*P)|, which completes the proof.
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The correspondence

< Denote ¢ the isomorphism between v and 1) o 0. Define f : G — G by
vg — L(v)o(g). Then f € Aut(G) is such that f(x1) = x2 and f(y1) = y».
Statement i is proved.

Note that Aut(D) acts transitively on the set RMg. There is

|IRMg| = |Aut(D)|/|Aut(D)y| = [*"*P)|, which completes the proof.

We claim that the number of G-rotary augmented PX maps equals WJA‘“(D)L
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The correspondence

< Denote ¢ the isomorphism between v and 1) o 0. Define f : G — G by
vg — L(v)o(g). Then f € Aut(G) is such that f(x1) = x2 and f(y1) = y».
Statement i is proved.

Note that Aut(D) acts transitively on the set RMg. There is

|IRMg| = |Aut(D)|/|Aut(D)y| = [*"*P)|, which completes the proof.

We claim that the number of G-rotary augmented PX maps equals WJA‘“(D)L

r Irr(D2r) G r the count
ris odd V1,1 Zp % Doy C*(p, r,0) 1
Y-1,-1 D2P’ C*(p7 I’,O,—l) 1

¢ (d>2)  ZixyDx  C(pr,d—1) |phH®)]
r is even V1,1 Zp X Doy C*(p,r,0) 1
Y1,-1,7-1,1  ZLp X~y Dor C*(p, r,0) 1
Yo1,-1 Dopr C*(p,r,0,—1) 1

P (d>2) Zg Xy Doy C(p,r,d —1) WAut(Dz,)'

Table 1: Irreducible G-rotary PX maps
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The number of irreducible PX maps of length r

[2, Theorem 5.7]

The number of irreducible rotary augmented PX map of length r is
@ |Irr(Dy)| if r is odd;

@ |Irx(Dsr)| — 1 if ris even.
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The number of G-rotary PX maps

{G-rotary augmented PX maps} is in bijection with
{the Aut(G)-orbits on rotary pairs (p, ) of G where |p| = 2p}
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The number of G-rotary PX maps

{G-rotary augmented PX maps} is in bijection with
{the Aut(G)-orbits on rotary pairs (p, ) of G where |p| = 2p}
G =V:yD =7¢yDs, d > 2, 1) is irreducible.
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The number of G-rotary PX maps

{G-rotary augmented PX maps} is in bijection with
{the Aut(G)-orbits on rotary pairs (p, ) of G where |p| = 2p}
G =V:yD =7¢yDs, d > 2, 1) is irreducible.

The group G has
P! (p?"* = 1)rep(r)

rotary pairs (p, 7) such that |p| = 2p.

\,

The element p equals vc for some ¢ € D and v not in the —1-eigenspace of c.
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The number of G-rotary PX maps

{G-rotary augmented PX maps} is in bijection with
{the Aut(G)-orbits on rotary pairs (p, ) of G where |p| = 2p}
G =V:yD =7¢yDs, d > 2, 1) is irreducible.

The group G has
P! (p?"* = 1)rep(r)

rotary pairs (p, 7) such that |p| = 2p.

\,

The element p equals vc for some ¢ € D and v not in the —1-eigenspace of c.
Since the —1-eigenspace of a none centering involution in D has dimension
d/2, there are (p? — p%/?)r choices of p.

Rotary embeddings of Praeger-Xu graphs Luyi Liu 17 / 23



The number of G-rotary PX maps

{G-rotary augmented PX maps} is in bijection with
{the Aut(G)-orbits on rotary pairs (p, ) of G where |p| = 2p}
G =V:yD =7¢yDs, d > 2, 1) is irreducible.

The group G has
P! (p?"* = 1)rep(r)

rotary pairs (p, 7) such that |p| = 2p.

\,

The element p equals vc for some ¢ € D and v not in the —1-eigenspace of c.
Since the —1-eigenspace of a none centering involution in D has dimension
d/2, there are (p? — p%/?)r choices of p.

The involution 7 equals wz for some z € D and w in the —1-eigenspace of z.
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The number of G-rotary PX maps

{G-rotary augmented PX maps} is in bijection with
{the Aut(G)-orbits on rotary pairs (p, ) of G where |p| = 2p}
G =V:yD =7¢yDs, d > 2, 1) is irreducible.

The group G has
P! (p?"* = 1)rep(r)

rotary pairs (p, 7) such that |p| = 2p.

\,

The element p equals vc for some ¢ € D and v not in the —1-eigenspace of c.
Since the —1-eigenspace of a none centering involution in D has dimension
d/2, there are (p? — p%/?)r choices of p.

The involution 7 equals wz for some z € D and w in the —1-eigenspace of z.
So there are p?/2p(r) choices of 7. O

V.
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The number of G-rotary augmented PX maps

G=VyD= ZZ:tz,, d > 2, v is irreducible.
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The number of G-rotary augmented PX maps

G=VyD= Zg:tz,, d > 2, v is irreducible.

A =Inng(V):Na(D).
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The number of G-rotary augmented PX maps

G=VyD= Zg:tz,, d > 2, v is irreducible.

A =Inng(V):Na(D).

The number of of G-rotary augmented PX maps equals
(p”* = 1)r(r)/[Na(D)|.
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The number of G-rotary augmented PX maps

G=VyD= Zg:tz,, d > 2, v is irreducible.

A =Inng(V):Na(D).

The number of of G-rotary augmented PX maps equals
(p”* = 1)r(r)/[Na(D)|.

Define a homomorphism & : Na(D) — Aut(D) by f — f|p. Then
ker(k) = Endp(V)* and

im(k) = Aut(D)y,
where Aut(D)y = {o € Aut(D) | Yoo X}
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The number of G-rotary augmented PX maps

G=VyD= Zg:tz,, d > 2, v is irreducible.

A =Inng(V):Na(D).

The number of of G-rotary augmented PX maps equals
(p”* = 1)r(r)/[Na(D)|.

Define a homomorphism & : Na(D) — Aut(D) by f — f|p. Then
ker(k) = Endp(V)* and
im(k) = Aut(D)y,

where Aut(D)y = {o € Aut(D) | Yoo X }.

.

Sketch of the proof
ker(k) ={c € N | o |p=idp}.

.
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The number of G-rotary augmented PX maps

G=VyD= Zg:tz,, d > 2, v is irreducible.

A =Inng(V):Na(D).

The number of of G-rotary augmented PX maps equals
(p”* = 1)r(r)/[Na(D)|.

Define a homomorphism & : Na(D) — Aut(D) by f — f|p. Then
ker(k) = Endp(V)* and
im(k) = Aut(D)y,

where Aut(D)y = {o € Aut(D) | Yoo X }.

.

Sketch of the proof

ker(k) ={c € N | o |p=idp}.For each £ € Endp(V)*, defineo,: G — G
by vb — £(v)b.

.
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The number of G-rotary augmented PX maps

G=VyD= Zg:tz,, d > 2, v is irreducible.

A =Inng(V):Na(D).

The number of of G-rotary augmented PX maps equals
(p”* = 1)r(r)/[Na(D)|.

Define a homomorphism & : Na(D) — Aut(D) by f — f|p. Then
ker(k) = Endp(V)* and
im(k) = Aut(D)y,

where Aut(D)y = {o € Aut(D) | Yoo X }.

.

Sketch of the proof

ker(k) ={c € N | o |p=idp}.For each £ € Endp(V)*, defineo,: G — G
by vb s £(v)b.Then ker(k) D {0, | £ € Endp(V)*}.

.
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The number of G-rotary augmented PX maps

G=VyD= Zg:tz,, d > 2, v is irreducible.

A =Inng(V):Na(D).

The number of of G-rotary augmented PX maps equals
(p”* = 1)r(r)/[Na(D)|.

Define a homomorphism & : Na(D) — Aut(D) by f — f|p. Then
ker(k) = Endp(V)* and
im(k) = Aut(D)y,

where Aut(D)y = {o € Aut(D) | Yoo X }.

.

Sketch of the proof

ker(k) ={c € N | o |p=idp}.For each £ € Endp(V)*, defineo,: G — G
by vb — £(v)b.Then ker(x) 2 {o; | £ € Endp(V)* }.One the other hand, the
function N — Endp(V)*, o — o |v, is injective since o |p= idp.

.
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The number of G-rotary PX maps

Sketch of the proof

For each § € Aut(D)y, there exists o € Aut(G) such that o |[p= 4.
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The number of G-rotary PX maps

Sketch of the proof

For each § € Aut(D)y, there exists o € Aut(G) such that o |p= d.Fix such an
automorphism § of D, then there exists an F,D-module isomorphism dy such
that v (¥(b)(v)) = ¢ o §(b)dv(v) for each b € D and v € V. Define

o:G— G, vb— dy(v)i(b),

which is an automorphism of G.

Luyi Liu 19 / 23
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The number of G-rotary PX maps

Sketch of the proof

For each § € Aut(D)y, there exists o € Aut(G) such that o |p= d.Fix such an
automorphism § of D, then there exists an F,D-module isomorphism dy such
that v (¥(b)(v)) = ¢ o §(b)dv(v) for each b € D and v € V. Define

o:G— G, vb— dy(v)i(b),

which is an automorphism of G.Thus im(x) = Aut(D)y.

Luyi Liu 19 / 23
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The number of G-rotary PX maps

Sketch of the proof

For each § € Aut(D)y, there exists o € Aut(G) such that o |p= d.Fix such an
automorphism § of D, then there exists an F,D-module isomorphism dy such
that v (¥(b)(v)) = ¢ o §(b)dv(v) for each b € D and v € V. Define

o:G— G, vb— dy(v)i(b),

which is an automorphism of G.Thus im(x) = Aut(D)y.

Luyi Liu 19 / 23
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The number of G-rotary PX maps

Sketch of the proof

For each § € Aut(D)y, there exists o € Aut(G) such that o |p= d.Fix such an
automorphism § of D, then there exists an F,D-module isomorphism dy such
that v (¥(b)(v)) = ¢ o §(b)dv(v) for each b € D and v € V. Define

o:G— G, vb— dy(v)i(b),

which is an automorphism of G.Thus im(x) = Aut(D)y.

Since Endp(V) = F2/?, we have that the number of G-rotary augmented PX
maps equals ¢(r)/|Na(D)| = |Aut(D)|/|Aut(D), = [P,
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The number of G-rotary PX maps

Sketch of the proof

For each § € Aut(D)y, there exists o € Aut(G) such that o |p= d.Fix such an
automorphism § of D, then there exists an F,D-module isomorphism dy such
that v (¥(b)(v)) = ¢ o §(b)dv(v) for each b € D and v € V. Define

o:G— G, vb— dy(v)i(b),

which is an automorphism of G.Thus im(x) = Aut(D)y.

\,

Since Endp(V) = F2/?, we have that the number of G-rotary augmented PX
maps equals ¢(r)/|Na(D)| = |Aut(D)|/|Aut(D), = [P,

For i € {1,2}, let G; = Z3 -y, D;, where p 1 |D1||Dz|. Then the following are
equivalent:

Q@ G =Gy

@ there exists an isomorphism o : D; — D, such that ¥, o o = ;.

Moreover, if (ii) holds, there exists an isomorphism f : Gi — G such that
f(D1) = D; and flp, = 0.

\,
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[2, Theorem 6.2] (the existence of decompositions)

Let M be a rotary augmented PX map of length r. Then M is isomorphic to a
direct product of irreducible rotary augmented PX maps of length r.
Conversely, every direct product of irreducible rotary augmented PX maps of
length r is a rotary augmented PX map whose underlying graph is of length r.
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[2, Theorem 6.2] (the existence of decompositions)

Let M be a rotary augmented PX map of length r. Then M is isomorphic to a
direct product of irreducible rotary augmented PX maps of length r.
Conversely, every direct product of irreducible rotary augmented PX maps of
length r is a rotary augmented PX map whose underlying graph is of length r.

By definition, for every rotary map M, we have M x M = M.
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[2, Theorem 6.2] (the existence of decompositions)

Let M be a rotary augmented PX map of length r. Then M is isomorphic to a
direct product of irreducible rotary augmented PX maps of length r.
Conversely, every direct product of irreducible rotary augmented PX maps of
length r is a rotary augmented PX map whose underlying graph is of length r.

By definition, for every rotary map M, we have M x M = M. Therefore, if
there exists a decomposition M = N7 x --- x N, for an arc-regular map M,
then we can pick i1, b, ..., ik such that M = N x --- x N, and ./\f,-j1 & ./\f,-j2 if

nF .

Luyi Liu 20 / 23

Rotary embeddings of Praeger-Xu graphs



[2, Theorem 6.2] (the existence of decompositions)

Let M be a rotary augmented PX map of length r. Then M is isomorphic to a
direct product of irreducible rotary augmented PX maps of length r.
Conversely, every direct product of irreducible rotary augmented PX maps of
length r is a rotary augmented PX map whose underlying graph is of length r.

By definition, for every rotary map M, we have M x M = M. Therefore, if
there exists a decomposition M = N7 x --- x N, for an arc-regular map M,
then we can pick i1, b, ..., ik such that M = N x --- x N, and ./\f,-j1 & ./\f,-j2 if
i F# o

[2, Lemma 6.4]

Let Vi =Z% and let Vo = Z2. Let G = (V4 X V2)i(4;,4) D2r where
i : Doy = GL(V;) is irreducible for every i € {1,2}. If G has a rotary pair
(p,7) such that |p| = 2p and |7] = 2, then 1)1 2 5.

Rotary embeddings of Praeger-Xu graphs Luyi Liu 20 / 23



Sketch of the proof

Suppose the contradiction. There are v € V4 x V5, 71 € D, such that p = vry.
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Sketch of the proof

Suppose the contradiction. There are v € V4 x V5, 71 € D, such that p = vry.
Let v/ = p?, and 7/ = pP which is an involution. Let D = (7, 71).
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Sketch of the proof

Suppose the contradiction. There are v € V4 x V5, 71 € D, such that p = vry.
Let v/ = pz, and 7/ = p® which is an involution. Let D = (7, 71). Then
G = (V1 x V2)D implying that D 22 Dy or Do,.
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Sketch of the proof

Suppose the contradiction. There are v € V4 x V5, 71 € D, such that p = vry.
Let v/ = p?, and 7/ = pP which is an involution. Let D = (7, 71). Then

G = (V1 x V2)D implying that D 22 Dy or Do,.

If D = Dy, then DN (Vi X Vo) 2 Zp is a Dy-submodule. Thus

Vi 2 Vb, 2 Z,. Contradiction comes.
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Sketch of the proof

Suppose the contradiction. There are v € V4 x V5, 71 € D, such that p = vry.
Let v/ = p?, and 7/ = pP which is an involution. Let D = (7, 71). Then

G = (V1 x V2)D implying that D 22 Dy or Do,.

If D = Dy, then DN (Vi X Vo) 2 Zp is a Dy-submodule. Thus

Vi 2 Vb, 2 Z,. Contradiction comes.

We therefore have that D = D,,. So

G = (Vi x V2)i(ny,my) D-
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Sketch of the proof

Suppose the contradiction. There are v € V4 x V5, 71 € D, such that p = vry.
Let v/ = p?, and 7/ = pP which is an involution. Let D = (7, 71). Then

G = (V1 x V2)D implying that D 22 Dy or Do,.

If D = Dy, then DN (Vi X Vo) 2 Zp is a Dy-submodule. Thus

Vi 2 Vb, 2 Z,. Contradiction comes.

We therefore have that D = D,,. So

G = (Vi x V2)i(ny,my) D-

By Corollary19, there exists o € Aut(D>,) such that n1 = 41 o o and
2 o wQ o C0.
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Sketch of the proof

Suppose the contradiction. There are v € V4 x V5, 71 € D, such that p = vry.
Let v/ = p?, and 7/ = pP which is an involution. Let D = (7, 71). Then

G = (V1 x V2)D implying that D 22 Dy or Do,.

If D = Dy, then DN (Vi X Vo) 2 Zp is a Dy-submodule. Thus

Vi 2 Vb, 2 Z,. Contradiction comes.

We therefore have that D = D,,. So

G = (Vi x V2)i(ny,my) D-

By Corollary19, there exists o € Aut(D>,) such that n1 = 41 o o and
12 2 by 00, So m = 1np, denote by f this D-module isomorphism. Let
v = (x,y) € Vi x Vo. Then x € Cy,(7') and y € Cy, (7).
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Sketch of the proof

Suppose the contradiction. There are v € V4 x V5, 71 € D, such that p = vry.
Let v/ = p?, and 7/ = pP which is an involution. Let D = (7, 71). Then

G = (V1 x V2)D implying that D 22 Dy or Do,.

If D = Dy, then DN (Vi X Vo) 2 Zp is a Dy-submodule. Thus

Vi 2 Vb, 2 Z,. Contradiction comes.

We therefore have that D = D,,. So

G = (Vi x V2)i(ny,my) D-

By Corollary19, there exists o € Aut(D>,) such that n1 = 41 o o and

12 2 by 00, So m = 1np, denote by f this D-module isomorphism. Let
v =(x,y) € Vi x Vo. Then x € Cy,(7') and y € Cy,(7'). By Lemma|2,
Lemma 2.10], there exists 6’ € Endp(V4) and y' € V4 such that

§'(x) =y =f ().
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Sketch of the proof

Suppose the contradiction. There are v € V4 x V5, 71 € D, such that p = vry.
Let v/ = p?, and 7/ = pP which is an involution. Let D = (7, 71). Then

G = (V1 x V2)D implying that D 22 Dy or Do,.

If D = Dy, then DN (Vi X Vo) 2 Zp is a Dy-submodule. Thus

Vi 2 Vb, 2 Z,. Contradiction comes.

We therefore have that D = D,,. So

G = (Vi x V2)i(ny,my) D-

By Corollary19, there exists o € Aut(D>,) such that n1 = 41 o o and

12 2 by 00, So m = 1np, denote by f this D-module isomorphism. Let
v =(x,y) € Vi x Vo. Then x € Cy,(7') and y € Cy,(7'). By Lemma|2,
Lemma 2.10], there exists 6’ € Endp(V4) and y' € V4 such that

§'(x) =y =f ().

Define §' = § o f, which is a D-module isomorphism such that §(x) = y.
Therefore, v/ € {(w,{(w)) | w € Vi}.
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Sketch of the proof

Suppose the contradiction. There are v € V4 x V5, 71 € D, such that p = vry.
Let v/ = p?, and 7/ = pP which is an involution. Let D = (7, 71). Then

G = (V1 x V2)D implying that D 22 Dy or Do,.

If D = Dy, then DN (Vi X Vo) 2 Zp is a Dy-submodule. Thus

Vi 2 Vb, 2 Z,. Contradiction comes.

We therefore have that D = D,,. So

G = (Vi x V2)i(ny,my) D-

By Corollary19, there exists o € Aut(D>,) such that n1 = 41 o o and

12 2 by 00, So m = 1np, denote by f this D-module isomorphism. Let
v =(x,y) € Vi x Vo. Then x € Cy,(7') and y € Cy,(7'). By Lemma|2,
Lemma 2.10], there exists 6’ € Endp(V4) and y' € V4 such that

§'(x) =y =f ().

Define §' = § o f, which is a D-module isomorphism such that §(x) = y.
Therefore, v/ € {(w,{(w)) | w € V4}. Note that {(w,{(w)) |w € W1} = Z&
is normal in G. We have that ((v/)?) < {(w,¢(w)) | w € V1}.

Rotary embeddings of Praeger-Xu graphs Luyi Liu 21 / 23



Sketch of the proof

Suppose the contradiction. There are v € V4 x V5, 71 € D, such that p = vry.
Let v/ = p?, and 7/ = pP which is an involution. Let D = (7, 71). Then

G = (V1 x V2)D implying that D 22 Dy or Do,.

If D = Dy, then DN (Vi X Vo) 2 Zp is a Dy-submodule. Thus

Vi 2 Vb, 2 Z,. Contradiction comes.

We therefore have that D = D,,. So

G = (Vi x V2)i(ny,my) D-

By Corollary19, there exists o € Aut(D>,) such that n1 = 41 o o and

12 2 by 00, So m = 1np, denote by f this D-module isomorphism. Let

v =(x,y) € Vi x Vo. Then x € Cy,(7') and y € Cy,(7'). By Lemma|2,
Lemma 2.10], there exists 6’ € Endp(V4) and y' € V4 such that

S(x)=y =f"(y).
Define §' = § o f, which is a D-module isomorphism such that §(x) = y.
Therefore, v/ € {(w,{(w)) | w € V4}. Note that {(w,{(w)) |w € W1} = Z&

is normal in G. We have that ((v/)?) < {(w,{(w)) | w € V41}. However, this is
impossible because {(w,{(w)) | w € Vi} # Vi x V,b. Therefore, we have that

1 2 .
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Let My,..., M, N1,..., N, be irreducible rotary augmented PX maps whose
underlying graph is of length r. Let M; % M; for i # j and let N; % N for
i#j. Then My x -+ X Mpu 2Ny X --- x N, if and only if m = n and there is
a permutation o of {1,..., n} such that M; = N, for all /.

Luyi Liu 22 / 23
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Q Map

© Rotary Praeger-Xu maps (PX maps)
@ Praeger-Xu graphs
@ The characterization of arc-regular automorphism groups of Praeger-Xu
graphs

© Irreducible rotary PX maps
@ Construction of a class of irreducible rotary PX maps of length r
@ The correspondence between irreducible rotary PX maps of length r and
irreducible representations of Da,
@ The count of VDo -rotary PX maps

© The decomposition of rotary PX maps
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