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Map

A map M = (V ,E ,F ) is a 2-cell embedding of a graph Γ = (V ,E) into a
closed surface S.

The face set:

The open disks F := S \ Γ.

The flag set:

Φ := {(α, e, f ) : α ∈ V , e ∈ E , f ∈ F are mutually incident}.

Remark: |Φ| = 4|E |.
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Automorphisms of maps

Automorphisms of map

AutM := {σ ∈ Sym(Φ) : σ preserves incidences between flags}.
1 Aut(M)ϕ = 1, ∀ϕ ∈ Φ ⇒ |AutM| divides |Φ| = 4|E |.
2 Aut(M)ω is cyclic or dihedral, ω ∈ V ∪ E ∪ F . ⇒ Ge ⩽ D4.
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Rotary maps: a class of arc-regular map

(α, e, f ): a flag.

G -arc-transitive maps:

G ⩽ Aut(M) is transitive on arcs of M.

G -vertex (face)-rotary:

Gα (Gf ) induces a transitive cyclic subgroup on edges that incident with the
vertex α (the face f ).

G -rotary map:

A map which is both G -vertex-rotary and G -face-rotary.
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Constructions of rotary maps

G : a finite group.

RotaMap(G , ρ, τ)

A rotary pair (ρ, τ) ∈ G × G of a group G satisfies G = ⟨ρ, τ⟩ and |τ | = 2.
Define an incidence configuration RotaMap(G , ρ, τ) by

vertex set [G : ⟨ρ⟩], edge set [G : ⟨τ⟩] and face set [G : ⟨ρτ⟩],

where two objects are incident if and only if their set intersection is non-empty.

[15, Proposition 5.1]

A G -rotary map is isomorphic to RotaMap(G , ρ, τ) for some rotary pair (ρ, τ)
for G .

[15, Proposition 4.1]

Two maps RotaMap(G , ρ, τ) and RotaMap(H, ρ′, τ ′) are isomorphic if there is
a group isomorphism f : G → H such that f (ρ) = ρ′ and f (τ) = τ ′.

0[15] C. H. Li, C. E. Praeger, and S. J. Song. Locally finite vertex-rotary maps and coset graphs
with finite valency and finite edge multiplicity. Journal of Combinatorial Theory. Series B, 2024.
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Rotary map: quotient and direct product

M = RotaMap(G , ρ, τ).

M � G with ρ, τ /∈ M

Quotient rotary maps[1]

M/M := RotaMap(G/M, ρM, τM)

Mi = RotaMap(Gi , ρi , τi ) (i = 1, . . . , n).

H = ⟨(ρ1, . . . , ρn), (τ1, . . . , τn)⟩ ⩽
∏n

i=1 Gi .

Direct products∏n
i=1 Mi := RotaMap (H, (ρ1, . . . , ρn), (τ1, . . . , τn)).

0
[1] J. Chen, W. Fan, C. H. Li, and Y. Z. Zhu. Coverings of groups, regular dessins, and surfaces, 2024.
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Praeger-Xu graphs

Praeger-Xu graph

Let p, r , s be positive integers such that p ⩾ 2 and r ⩾ 3. Define a simple graph
C(p, r , s) = (V , E) as follows:

(i) the vertex set V is Zr × Zs
p ;

(ii) the edge set E is defined to be the set of all pairs of the form

{(i, x0, x1, . . . , xs−1), (i + 1, x1, . . . , xs−1, xs )}

for every i ∈ Zr and x0, x1, . . . , xs−1, xs ∈ Zp .

There are ps+1r edges.

Augmented PX-graphs

PX-graphs, multicycles C
(p)
r (denoted by C∗(p, r , 0, 1)), and cycles Cpr

(denoted by C∗(p, r , 0,−1)).
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Properties of Praeger-Xu graphs

[19, Theorem 2.10]

The graph C(p, r , s) is symmetric if and only if r ⩾ s + 1, and is vertex
transitive if and only if r ⩾ s.

[19, Theorem 2.13]

The full automorphism group of C(p, r , s) is equal to Sp wr D2r where
(r , s) ̸= (4, 1), r ⩾ max{s + 1, 3} and p is odd.

[19, Theorem 1]

Let Γ be a connected, simple, G -arc-transitive graph of valency 2p. If G
contains an abelian normal p-subgroup which is not semiregular on the vertices
of Γ, then Γ = C(p, r , s) for some r ⩾ max{3, s + 1} and s ⩾ 1.

019. C. E. Praeger and M. Y. Xu. A Characterization of a Class of Symmetric Graphs of Twice
Prime Valency. European Journal of Combinatorics, 1989

Rotary embeddings of Praeger-Xu graphs Luyi Liu 8 / 23



Properties of Praeger-Xu graphs

[19, Theorem 2.10]

The graph C(p, r , s) is symmetric if and only if r ⩾ s + 1, and is vertex
transitive if and only if r ⩾ s.

[19, Theorem 2.13]

The full automorphism group of C(p, r , s) is equal to Sp wr D2r where
(r , s) ̸= (4, 1), r ⩾ max{s + 1, 3} and p is odd.

[19, Theorem 1]

Let Γ be a connected, simple, G -arc-transitive graph of valency 2p. If G
contains an abelian normal p-subgroup which is not semiregular on the vertices
of Γ, then Γ = C(p, r , s) for some r ⩾ max{3, s + 1} and s ⩾ 1.

019. C. E. Praeger and M. Y. Xu. A Characterization of a Class of Symmetric Graphs of Twice
Prime Valency. European Journal of Combinatorics, 1989

Rotary embeddings of Praeger-Xu graphs Luyi Liu 8 / 23



Properties of Praeger-Xu graphs

[19, Theorem 2.10]

The graph C(p, r , s) is symmetric if and only if r ⩾ s + 1, and is vertex
transitive if and only if r ⩾ s.

[19, Theorem 2.13]

The full automorphism group of C(p, r , s) is equal to Sp wr D2r where
(r , s) ̸= (4, 1), r ⩾ max{s + 1, 3} and p is odd.

[19, Theorem 1]

Let Γ be a connected, simple, G -arc-transitive graph of valency 2p. If G
contains an abelian normal p-subgroup which is not semiregular on the vertices
of Γ, then Γ = C(p, r , s) for some r ⩾ max{3, s + 1} and s ⩾ 1.

019. C. E. Praeger and M. Y. Xu. A Characterization of a Class of Symmetric Graphs of Twice
Prime Valency. European Journal of Combinatorics, 1989

Rotary embeddings of Praeger-Xu graphs Luyi Liu 8 / 23



Arc-regular automorphism groups of Praeger-Xu graphs C(p, r , s), p ∤ r
Case 1. (r , s) ̸= (4, 1)

Let s ⩾ 0, r ⩾ max{s + 1, 3} and (r , s) ̸= (4, 1).

[2, Lemma 4.5]

Suppose that G is an arc-regular subgroup of Aut(C(p, r , s)). Then

G ∼= Zs+1
p :D2r .

Proof

The order |G | = 2ps+1r which is the arc number of C(p, r , s).
Let Γ = C(p, r , s)Sr

p
which is isomorphic to Cr . Since G is transitive on arcs of

Γ ∼= Cr with the kernel G ∩ Sr
p, we have that

G/(G ∩ Sr
p) ∼= D2r and |G ∩ Sr

p| = ps+1.

It follows from (Sr
p)p = Zr

p that

G = Zs+1
p :D2r .
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Arc-regular automorphism groups of Praeger-Xu graphs
Case 2.(r , s) = (4, 1)

C(p, 4, 1) is the complete bipartite graph K2p,2p.

Aut(K2p,2p) = S2p wr Z2.

[2, Lemma 4.6]

Suppose that G is an arc-regular subgroup of Aut(K2p,2p). Then G ∼= Z2
p:D8.

Proof.

The order of G is 8p2. Let L is the subgroup which preserving the two parts of
K2p,2p, and so |L| = 4p2. Note that L = GαGβ , where α, β are two vertices in
the two parts, respectively. Since Gα ∼= Gβ ∼= D2p or Z2p, we have that
Lp

∼= Z2
p.

We claim that Lp � L, and so L ∼= Z2
p:Z2

2 implying

G ∼= (Z2
p:Z2

2):Z2
∼= Z2

p:D8.

Let p = 3. By Brodkey’s theorem, there are two Sylow 3-subgroups P and Q of
L such that P ∩ Q = O3(L) ∼= Z3. The quotient group L/O3(L) ∼= A4 since its
Sylow 3-subgroups are not normal. Note that L/O3(L) = (GαGβ)/O3(L).
Contradiction comes to that Gα ∼= Gβ ∼= Z2p or D2p.
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K2p,2p, and so |L| = 4p2. Note that L = GαGβ , where α, β are two vertices in
the two parts, respectively. Since Gα ∼= Gβ ∼= D2p or Z2p, we have that
Lp

∼= Z2
p.

We claim that Lp � L, and so L ∼= Z2
p:Z2

2 implying

G ∼= (Z2
p:Z2

2):Z2
∼= Z2

p:D8.

Let p = 3. By Brodkey’s theorem, there are two Sylow 3-subgroups P and Q of
L such that P ∩ Q = O3(L) ∼= Z3. The quotient group L/O3(L) ∼= A4 since its
Sylow 3-subgroups are not normal. Note that L/O3(L) = (GαGβ)/O3(L).
Contradiction comes to that Gα ∼= Gβ ∼= Z2p or D2p.
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Arc-regular automorphism groups of Praeger-Xu graphs

Aut(Cpr = C∗(p, r , 0,−1)) = D2pr , Aut(C
(p)
r = C∗(p, r , 0, 1)) = Zp:D2r .

Theorem

Let s ⩾ 0 be an integer, let δ ∈ {1,−1} and let r be an integer such that
r ⩾ max{3, s + 1}. Let G be an arc-regular group of automorphisms of
C∗(p, r , s, δ). Then G ∼= Zs+1

p : D2r .

Corollary

Let M be a G -rotary map with underlying graph isomorphic to C∗(p, r , s, δ).
Then G is isomorphic to Zs+1

p : D2r .

Lemma

Let G = Zs+1
p : D2r with s ⩾ 0, and let M be a G -arc-regular map. If

|Gα| = 2p, then the underlying graph Γ is isomorphic to C∗(p, r , s).

|Gαβ | =


2 ⇒ r = 2;

p ⇒ the underlying graph is the multi-cycle C∗(p, r , 0, 1)

2p ⇒ r = 2;
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Irreducible G -rotary PX maps

A PX map is a map with the underlying graph is a augmented Praeger-Xu
graph C∗(p, r , s, δ), the length of this map is defined as r .

Let M be a G -rotary embedding of C∗(p, r , s, δ) with p ∤ r . By Lemma 11,
G ∼= Zs+1

p :ψD2r .

Irreducible G -rotary PX maps

The G -rotary PX map is irreducible if ψ is irreducible.

G = V :ψD = Zd
p :ψD2r , d ⩾ 2, ψ is irreducible.

D2r = ⟨c⟩:⟨b⟩ = Zr :Z2.

vb−1

= ψ(b)(v), v ∈ V and b ∈ D.

Note that the degree d is even, and CV (x) ∼= Zd/2
p for each involution

x ∈ D \ Z(D)[2, Lemma 2.9].

Proposition

Let x , y ∈ D be involutions such that D = ⟨x , y⟩, and let v ̸= v ′ ∈ CV (x)\{1}.
Then RotaMap(G , vx , y) ∼= RotaMap(G , v ′x , y) are rotary PX maps
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Proof

Since ⟨vx⟩ ∩V ∼= Zp, the map RotaMap(G , vx , y) has underlying graph being a
PX graph by Theorem 11.

Note that there exists an σ ∈ (EndD(V ))× such
that σ(v) = v ′[2, Lemma 2.10]. Define f : G → G , f (wg) := σ(w)g for every
w ∈ V , g ∈ D. The function f is one-to-one, and is a group homomorphism
as: for w1g1,w2g2 ∈ G ,

f (w1g1w2g2) = f (w1w
g−1
1

2 g1g2)

= σ(w1)σ(w
g−1
1

2 )g1g2

= σ(w1)(σ(w2))
g−1
1 g1g2

= σ(w1)g1σ(w2)g2

= f (w1g1)f (w2g2).

By definition, RotaMap(G , vx , y) ∼= RotaMap(G , v ′x , y).

ρx

For any x ∈ D ⩽ G = V :ψD, let ρx denote an element in the set

{vx | 1 ̸= v ∈ CV (x)}.
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The correspondence

G = V :ψD = Zd
p :ψD2r , d ⩾ 2, ψ is irreducible.

Proposition

Let x1, y1, x2, y2 ∈ D be involutions where D = ⟨x1, y1⟩ = ⟨x2, y2⟩. Let
σ ∈ Aut(D) be given by σ(x1) = x2 and σ(y1) = y2. Then

i RotaMap(G , ρx1 , y1)
∼= RotaMap(G , ρx2 , y2) if and only if ψ ∼= ψ ◦ σ.

ii Define RMG := {RotaMap(G , ρx , y) | ⟨x , y⟩ = D}. The mapping

ψAut(D2r ) → RMG ,

ψ ◦ η 7→ RotaMap(G , ρη(x1), η(y1))

is a one-to-one correspondence.

Proof

⇒: Let f ∈ Aut(G) be the isomorphism. Since x1 and x2 are involutions, there
is

f (x1) = f (xp
1 ) = f (ρpx1) = ρpx2 = x2.

So σ := f |D ∈ Aut(D). Straightforward checking shows that f |V serves as the
isomorphism between ψ ◦ σ and ψ.
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The correspondence

Proof

⇐: Denote ℓ the isomorphism between ψ and ψ ◦ σ.

Define f : G → G by
vg 7→ ℓ(v)σ(g). Then f ∈ Aut(G) is such that f (x1) = x2 and f (y1) = y2.
Statement i is proved.
Note that Aut(D) acts transitively on the set RMG . There is
|RMG | = |Aut(D)|/|Aut(D)ψ| = |ψAut(D)|, which completes the proof.

We claim that the number of G -rotary augmented PX maps equals |ψAut(D)|.

r Irr(D2r ) G Γ the count

r is odd γ1,1 Zp × D2r C∗(p, r , 0) 1
γ−1,−1 D2pr C∗(p, r , 0,−1) 1

ψ (d ⩾ 2) Zd
p ⋊ψ D2r C(p, r , d − 1) |ψAut(D2r )|

r is even γ1,1 Zp × D2r C∗(p, r , 0) 1
γ1,−1, γ−1,1 Zp ⋊γ1,−1 D2r C∗(p, r , 0) 1
γ−1,−1 D2pr C∗(p, r , 0,−1) 1

ψ (d ⩾ 2) Zd
p ⋊ψ D2r C(p, r , d − 1) |ψAut(D2r )|

Table 1: Irreducible G -rotary PX maps
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The number of irreducible PX maps of length r

[2, Theorem 5.7]

The number of irreducible rotary augmented PX map of length r is

(i) |Irr(D2r )| if r is odd;

(ii) |Irr(D2r )| − 1 if r is even.
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The number of G -rotary PX maps

{G -rotary augmented PX maps} is in bijection with
{the Aut(G)-orbits on rotary pairs (ρ, τ) of G where |ρ| = 2p}

G = V :ψD = Zd
p :ψD2r , d ⩾ 2, ψ is irreducible.

[2, Lemma 5.4]

The group G has
pd(pd/2 − 1)rφ(r)

rotary pairs (ρ, τ) such that |ρ| = 2p.

Proof.

The element ρ equals vc for some c ∈ D and v not in the −1-eigenspace of c.
Since the −1-eigenspace of a none centering involution in D has dimension
d/2, there are (pd − pd/2)r choices of ρ.
The involution τ equals wz for some z ∈ D and w in the −1-eigenspace of z .
So there are pd/2φ(r) choices of τ .
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The number of G -rotary augmented PX maps

G = V :ψD = Zd
p :ψD2r , d ⩾ 2, ψ is irreducible.

A := Aut(G)

A = InnG (V ):NA(D).

The number of of G -rotary augmented PX maps equals

(pd/2 − 1)rφ(r)/|NA(D)|.

[2, Lemma 5.2]

Define a homomorphism κ : NA(D) → Aut(D) by f 7→ f |D . Then
ker(κ) ∼= EndD(V )× and

im(κ) = Aut(D)ψ,

where Aut(D)ψ = {σ ∈ Aut(D) | ψ ◦ σ ∼= ψ}.

Sketch of the proof

ker(κ) = {σ ∈ N | σ |D= idD}.For each ℓ ∈ EndD(V )×, define σℓ : G → G
by vb 7→ ℓ(v)b.Then ker(κ) ⊇ {σℓ | ℓ ∈ EndD(V )×}.One the other hand, the
function N → EndD(V )×, σ 7→ σ |V , is injective since σ |D= idD .
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The number of G -rotary PX maps

Sketch of the proof

For each δ ∈ Aut(D)ψ, there exists σ ∈ Aut(G) such that σ |D= δ.

Fix such an
automorphism δ of D, then there exists an FpD-module isomorphism δV such
that δV (ψ(b)(v)) = ψ ◦ δ(b)δV (v) for each b ∈ D and v ∈ V . Define

σ : G → G , vb 7→ δV (v)δ(b),

which is an automorphism of G .Thus im(κ) = Aut(D)ψ.

Since EndD(V ) ∼= Fd/2
p , we have that the number of G -rotary augmented PX

maps equals φ(r)/|NA(D)| = |Aut(D)|/|Aut(D)ψ = |ψAut(D)|.

[2, Lemma 5.2]

For i ∈ {1, 2}, let Gi = Zdi
p :ψiDi , where p ∤ |D1||D2|. Then the following are

equivalent:

(i) G1
∼= G2;

(ii) there exists an isomorphism σ : D1 → D2 such that ψ2 ◦ σ ∼= ψ1.

Moreover, if (ii) holds, there exists an isomorphism f : G1 → G2 such that
f (D1) = D2 and f |D1 = σ.
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[2, Theorem 6.2] (the existence of decompositions)

Let M be a rotary augmented PX map of length r . Then M is isomorphic to a
direct product of irreducible rotary augmented PX maps of length r .
Conversely, every direct product of irreducible rotary augmented PX maps of
length r is a rotary augmented PX map whose underlying graph is of length r .

By definition, for every rotary map M, we have M×M ∼= M. Therefore, if
there exists a decomposition M ∼= N1 × · · · × Nn for an arc-regular map M,
then we can pick i1, i2, . . . , ik such that M ∼= Ni1 × · · · × Nik and Nij1

̸∼= Nij2
if

j1 ̸= j2.

[2, Lemma 6.4]

Let V1 = Zd1
p and let V2 = Zd2

p . Let G = (V1 × V2):(ψ1,ψ2) D2r where
ψi : D2r → GL(Vi ) is irreducible for every i ∈ {1, 2}. If G has a rotary pair
(ρ, τ) such that |ρ| = 2p and |τ | = 2, then ψ1 ̸∼= ψ2.
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Sketch of the proof

Suppose the contradiction. There are v ∈ V1 × V2, τ1 ∈ Dr such that ρ = vτ1.

Let v ′ = ρ2, and τ ′ = ρp which is an involution. Let D = ⟨τ, τ1⟩. Then
G = (V1 × V2)D implying that D ∼= D2pr or D2r .
If D ∼= D2pr , then D ∩ (V1 × V2) ∼= Zp is a D2r -submodule. Thus
V1

∼= V2
∼= Zp. Contradiction comes.

We therefore have that D ∼= D2r . So

G = (V1 × V2):(η1,η2)D.

By Corollary19, there exists σ ∈ Aut(D2r ) such that η1 = ψ1 ◦ σ and
η2 ∼= ψ2 ◦ σ. So η1 ∼= η2, denote by f this D-module isomorphism. Let
v ′ = (x , y) ∈ V1 × V2. Then x ∈ CV1(τ

′) and y ∈ CV2(τ
′). By Lemma[2,

Lemma 2.10], there exists δ′ ∈ EndD(V1) and y ′ ∈ V1 such that

δ′(x) = y ′ = f −1(y).

Define δ′ = δ ◦ f , which is a D-module isomorphism such that δ(x) = y .
Therefore, v ′ ∈ {(w , ζ(w)) | w ∈ V1}. Note that {(w , ζ(w)) | w ∈ V1} ∼= Zd1

p

is normal in G . We have that ⟨(v ′)D⟩ ⩽ {(w , ζ(w)) | w ∈ V1}. However, this is
impossible because {(w , ζ(w)) | w ∈ V1} ̸= V1 × V2. Therefore, we have that
ψ1 ̸∼= ψ2.
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δ′(x) = y ′ = f −1(y).

Define δ′ = δ ◦ f , which is a D-module isomorphism such that δ(x) = y .
Therefore, v ′ ∈ {(w , ζ(w)) | w ∈ V1}. Note that {(w , ζ(w)) | w ∈ V1} ∼= Zd1

p

is normal in G . We have that ⟨(v ′)D⟩ ⩽ {(w , ζ(w)) | w ∈ V1}.

However, this is
impossible because {(w , ζ(w)) | w ∈ V1} ̸= V1 × V2. Therefore, we have that
ψ1 ̸∼= ψ2.
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Theorem

Let M1, . . . ,Mm,N1, . . . ,Nn be irreducible rotary augmented PX maps whose
underlying graph is of length r . Let Mi ̸∼= Mj for i ̸= j and let Ni ̸∼= Nj for
i ̸= j . Then M1 × · · · ×Mm

∼= N1 × · · · ×Nn if and only if m = n and there is
a permutation σ of {1, . . . , n} such that Mi

∼= Nσ(i) for all i .
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