Luca Sabatini (University of Warwick) Arithmetical properties of subgroup products Seminars on Groups and Graphs (2025)

<□▶ </₽▶ < ≧▶ < ≧▶

Э

Let G be a finite group, $x \in G$, and $H \leq G$. It is easy to see that

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

•
$$x^{|G|} = 1;$$

• if $H \lhd G$, then $x^{|G:H|} \in H$;

Let G be a finite group, $x \in G$, and $H \leq G$. It is easy to see that

- $x^{|G|} = 1;$
- if $H \lhd G$, then $x^{|G:H|} \in H$;
- if G = Sym(3), x = (12) and $H = \langle (13) \rangle$, then

$$x^{|G:H|} = x \notin H.$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Let G be a finite group, $x \in G$, and $H \leq G$. It is easy to see that

•
$$x^{|G|} = 1$$
;
• if $H \triangleleft G$, then $x^{|G:H|} \in H$;
• if $G = \text{Sym}(3)$, $x = (1 \ 2)$ and $H = \langle (1 \ 3) \rangle$, then
 $x^{|G:H|} = x \notin H$.

Three questions arise:

▶ (i) Understand better when $x^{|G:H|} \in H$ holds;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Let G be a finite group, $x \in G$, and $H \leq G$. It is easy to see that

•
$$x^{|G|} = 1$$
;
• if $H \triangleleft G$, then $x^{|G:H|} \in H$;
• if $G = \text{Sym}(3)$, $x = (12)$ and $H = \langle (13) \rangle$, then
 $x^{|G:H|} = x \notin H$.

Three questions arise:

- ▶ (i) Understand better when $x^{|G:H|} \in H$ holds;
- (ii) Describe the set $\{x \in G : x^{|G:H|} \in H \text{ for all } H \leq G\}$;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let G be a finite group, $x \in G$, and $H \leq G$. It is easy to see that

•
$$x^{|G|} = 1$$
;
• if $H \triangleleft G$, then $x^{|G:H|} \in H$;
• if $G = \text{Sym}(3)$, $x = (1 \ 2)$ and $H = \langle (1 \ 3) \rangle$, then
 $x^{|G:H|} = x \notin H$.

Three questions arise:

- ▶ (i) Understand better when $x^{|G:H|} \in H$ holds;
- ▶ (ii) Describe the set $\{x \in G : x^{|G:H|} \in H \text{ for all } H \leq G\}$;
- ▶ (iii) What are the subgroups H where $x^{|G:H|} \in H$ for all $x \in G$?

We start dealing with Question (i).

If $H \lhd M \lhd G$, then

$$x^{|G:H|} = (x^{|G:M|})^{|M:H|},$$

and for some $m \in M$,

$$x^{|G:H|} = m^{|M:H|} \in H.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We start dealing with Question (i).

If $H \lhd M \lhd G$, then

$$x^{|G:H|} = (x^{|G:M|})^{|M:H|},$$

and for some $m \in M$,

$$x^{|G:H|} = m^{|M:H|} \in H.$$

As a consequence, subnormal subgroups satisfy (iii).

However, this approach does not go far. In fact, even if both

$$x^{|G:H|} \in H$$
 and $y^{|G:H|} \in H$

hold for some fixed *H*, it might happen that $(xy)^{|G:H|} \notin H$. In contrast, we will see that the set in (ii) is closed under multiplication! A wider perspective is needed.

Definition

For $x \in G$ and $H \leq G$, the **relative order** of x with respect to H is defined as

 $o_H(x) := \min\{n \ge 1 : x^n \in H\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Moreover, we write $o(x) = o_1(x)$ for the genuine order.

A wider perspective is needed.

Definition

For $x \in G$ and $H \leq G$, the **relative order** of x with respect to H is defined as

$$o_H(x) := \min\{n \ge 1 : x^n \in H\}.$$

Moreover, we write $o(x) = o_1(x)$ for the genuine order.

Remark: Using the subgroup structure of *H*, it is easy to see that

$$x^n \in H$$
 if and only if $o_H(x)$ divides n .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $o_H(x)$ and the product of two subgroups

Lemma

$$o_H(x) = \frac{o(x)}{|H \cap \langle x \rangle|}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Proof. Note that $o_H(x) = o_{H \cap \langle x \rangle}(x)$ and work in a cyclic group.

 $o_H(x)$ and the product of two subgroups

Lemma

$$o_H(x) = \frac{o(x)}{|H \cap \langle x \rangle|}.$$

Proof.

Note that $o_H(x) = o_{H \cap \langle x \rangle}(x)$ and work in a cyclic group.

Corollary

 $x^{|G:H|} \in H$ if and only if $|H\langle x \rangle|$ divides |G|.

Proof.

 $o(x) = |\langle x \rangle|$, so $o_H(x) = |H\langle x \rangle : H|$. Now use the remark.

Let $H, K \leq G$. It is well known that HK is a subgroup if and only if HK = KH. Moreover, H is called **permutable** if this holds for all K.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

In 1937, Ore proved that permutable subgroups are subnormal.

Let $H, K \leq G$. It is well known that HK is a subgroup if and only if HK = KH. Moreover, H is called **permutable** if this holds for all K.

In 1937, Ore proved that permutable subgroups are subnormal.

We observe the following:

Lemma

If HC = CH for every cyclic $C \leq G$ then H is permutable.

Proof.

Let $K \leq G$. Then $K = C_1 \cdots C_n$ for some cyclic subgroups C_1, \ldots, C_n .

If HK is a subgroup, then certainly |HK| divides |G|.

The latter is a much weaker condition: D_8 is generated by two subgroups H and K of order 2, so HK has order 4, but is **not** a subgroup.

If HK is a subgroup, then certainly |HK| divides |G|.

The latter is a much weaker condition: D_8 is generated by two subgroups H and K of order 2, so HK has order 4, but is **not** a subgroup.

In general,

$$|HK| = \frac{|H||K|}{|H \cap K|}$$

and there is no reason for this to be a divisor of |G|.

Remark: |HK|/|H| is the number of right cosets of H intersected by K.

(日) (日) (日) (日) (日) (日) (日) (日)

Subgroup products and Sylow subgroups (I)

As it can be expected, Sylow subgroups play a key role.

Lemma

Let $H \leq G$. If |HP| divides |G| for every Sylow $P \leq G$, then |HK| divides |G| for every $K \leq G$.

Proof.

Let $K \leq G$. We have to show that |HK : K| divides |G : K|. Let p^{α} divide $|H : H \cap K|$. Let $P_0 \in \operatorname{Syl}_p(K)$ and $P \in \operatorname{Syl}_p(G)$ such that $P \cap K = P_0$. Of course, p^{α} divides $|H : H \cap P_0|$. By hypothesis $|H : H \cap P| = |HP : P|$ divides |G : P|, and so is not divisible by p. Therefore, p^{α} divides $|H \cap P : H \cap P_0|$. This is equal to $|(H \cap P)P_0 : P_0|$ and divides $|P : P_0|$. So p^{α} divides $|P : P_0|$, and in particular divides $|G : P_0|$. Since $p \nmid |K : P_0|$, p^{α} divides |G : K| as desired.

Subgroup products and Sylow subgroups (II)

The following is a crucial observation.

Lemma

Let $H \leq G$ and let $P \in \operatorname{Syl}_p(G)$. Then

|HP| divides |G| if and only if $H \cap P$ is a *p*-Sylow of *H*.

Proof.

 $H \cap P \in \operatorname{Syl}_p(H)$ if and only if $|H : H \cap P| = |HP : P|$ is not divisible by p. Since $|H : H \cap P|$ is a divisor of |G|, the last condition is equivalent to |HP : P| dividing |G : P|, i.e. |HP| dividing |G|.

The point is that the subgroups H with the property that

 $P \text{ is a Sylow of } G \implies H \cap P \text{ is a Sylow of } H$

have been studied in depth. In particular, Kegel and Wielandt independently conjectured that this should be equivalent to subnormality.

The point is that the subgroups H with the property that

 $P \text{ is a Sylow of } G \implies H \cap P \text{ is a Sylow of } H$

have been studied in depth. In particular, Kegel and Wielandt independently conjectured that this should be equivalent to subnormality.

In 1991, Kleidman proved that this is actually true.

Theorem (Kleidman)

 $H \lhd \lhd G$ if and only if $H \cap P$ is a Sylow of H for all Sylow P of G.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The point is that the subgroups H with the property that

 $P \text{ is a Sylow of } G \implies H \cap P \text{ is a Sylow of } H$

have been studied in depth. In particular, Kegel and Wielandt independently conjectured that this should be equivalent to subnormality.

In 1991, Kleidman proved that this is actually true.

```
Theorem (Kleidman)
```

 $H \lhd \lhd G$ if and only if $H \cap P$ is a Sylow of H for all Sylow P of G.

From the discussion above, we have

Theorem (Kleidman's theorem revisited) $H \lhd \lhd G$ if and only if |HK| divides |G| for all $K \leq G$. The following lemma proves one direction of the revisited conjecture:

Lemma

```
Let H \triangleleft M \leqslant G, and K \leqslant G. Then |HK| divide |MK|.
```

Proof.

With some computations we have

$$\frac{|MK|}{|HK|} = \frac{|M|}{|H(M \cap K)|}.$$

The proof follows because $H(M \cap K)$ is a subgroup of M.

The following lemma proves one direction of the revisited conjecture:

Lemma

```
Let H \triangleleft M \leqslant G, and K \leqslant G. Then |HK| divide |MK|.
```

Proof.

With some computations we have

$$\frac{|MK|}{|HK|} = \frac{|M|}{|H(M \cap K)|}.$$

The proof follows because $H(M \cap K)$ is a subgroup of M.

To prove the easy direction, let $H \lhd \lhd G$ and $K \leq G$. Then start with M = G and iterate the lemma on the subnormal series.

Now we deal with the opposite (hard) direction.

We first observe that a very short argument exists when H is nilpotent.

Theorem

```
Let H \leq G be nilpotent and let |HK| divide |G| for all K \leq G.
Then H \lhd \lhd G.
```

Proof.

Suppose that *H* is not subnormal, so that in particular $H \nsubseteq F(G)$. Then there exists a *p*-element $x \in H \setminus O_p(G)$, i.e. there exists $P \in \operatorname{Syl}_p(G)$ such that $x \notin P$. By cardinality reasons, $|\langle x \rangle P|$ cannot divide |G|. Since *H* is nilpotent we have $\langle x \rangle \lhd \lhd H$. From the discussion above |HP| is a multiple of $|\langle x \rangle P|$. This implies that |HP| cannot divide |G|, which gives a contradiction. The problem with the general case is that |HP| is not always a multiple of $|\langle x \rangle P|$. In fact it is possible that $|\langle x \rangle P|$ does not divide |G| while |HP| does.

The problem with the general case is that |HP| is not always a multiple of $|\langle x \rangle P|$. In fact it is possible that $|\langle x \rangle P|$ does not divide |G| while |HP| does.

The proof of Kleidman is much more ingenious. Here we give a sketch. With some work, he reduces to the situation where both G and H are simple. Now, if $x \in G$ is a *p*-element and $P \in Syl_p(G)$, he defines the **fixed point ratio**

$$\Theta_G(x) := \frac{|x^G \cap P|}{|x^G|}.$$

The problem with the general case is that |HP| is not always a multiple of $|\langle x \rangle P|$. In fact it is possible that $|\langle x \rangle P|$ does not divide |G| while |HP| does.

The proof of Kleidman is much more ingenious. Here we give a sketch. With some work, he reduces to the situation where both G and H are simple. Now, if $x \in G$ is a *p*-element and $P \in Syl_p(G)$, he defines the **fixed point ratio**

$$\Theta_G(x) := \frac{|x^G \cap P|}{|x^G|}.$$

For $h \in H$, the condition $H \cap P \in \operatorname{Syl}_p(H)$ implies that $\Theta_G(h) = \Theta_H(h)$. On the other hand, he proves using CFSG that $\Theta_G(h) < \Theta_H(h)$ except in a few cases where H is a "large" subgroup. These cases are handled separately. The set S(G)

We come to Question (ii).

Definition

$$S(G) := \{ x \in G : x^{|G:H|} \in H \text{ for all } H \leq G \}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The set S(G)

We come to Question (ii).

Definition

$$S(G) := \{ x \in G : x^{|G:H|} \in H \text{ for all } H \leqslant G \}.$$

Theorem

S(G)=F(G).

Proof.

From the discussion above we have

 $S(G) = \{x \in G : |H\langle x \rangle | \text{ divides } |G| \text{ for all } H \leqslant G \}.$

Since G is finite, F(G) can be described as the set of $x \in G$ such that $\langle x \rangle \lhd \lhd G$. So, if $x \in F(G)$, then $x \in S(G)$ by the easy direction of the K-W conjecture. Viceversa, let $x \in S(G)$. Being $\langle x \rangle$ nilpotent, we can conclude with an elementary argument that $\langle x \rangle \lhd \lhd G$, and so that $x \in F(G)$.

Infinite groups

We dedicate just one slide to infinite groups. In fact, S(G) can still be defined as

 $S(G) := \{x \in G : x^{|G:H|} \in H \text{ for all } H \leq G \text{ of finite index}\}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Here we have to distinguish between

•
$$F(G) = \{x \in G : \langle x \rangle^G \text{ is nilpotent}\};$$

• $B(G) = \{x \in G : \langle x \rangle \text{ is subnormal}\}, \text{ the Baer radical.}$

The argument above shows that $F(G) \subseteq B(G) \subseteq S(G)$.

Infinite groups

We dedicate just one slide to infinite groups. In fact, S(G) can still be defined as

 $S(G) := \{x \in G : x^{|G:H|} \in H \text{ for all } H \leq G \text{ of finite index}\}.$

Here we have to distinguish between

•
$$F(G) = \{x \in G : \langle x \rangle^G \text{ is nilpotent}\};$$

• $B(G) = \{x \in G : \langle x \rangle \text{ is subnormal}\}, \text{ the Baer radical.}$

The argument above shows that $F(G) \subseteq B(G) \subseteq S(G)$.

Some attention is needed with subgroups of infinite index: **Example:** Let G be a *just-infinite p*-group. Then G = S(G), but B(G) = 1 (Wilson '71). Infinite groups

We dedicate just one slide to infinite groups. In fact, S(G) can still be defined as

 $S(G) := \{x \in G : x^{|G:H|} \in H \text{ for all } H \leq G \text{ of finite index}\}.$

Here we have to distinguish between

•
$$F(G) = \{x \in G : \langle x \rangle^G \text{ is nilpotent}\};$$

• $B(G) = \{x \in G : \langle x \rangle \text{ is subnormal}\}, \text{ the Baer radical.}$

The argument above shows that $F(G) \subseteq B(G) \subseteq S(G)$.

Some attention is needed with subgroups of infinite index:

Example: Let G be a *just-infinite* p-group. Then G = S(G), but B(G) = 1 (Wilson '71). Moreover, let H be a nilpotent subgroup. Then H is not subnormal in G, but |HK : K| divides |G : K| for all $K \leq G$ of finite index. We go back to the finite world, to address Question (iii).

Definition $H \leq G$ is **exponential** if $x^{|G:H|} \in H$ for all $x \in G$.

Equivalently,

 $H \leq_{exp} G$ if and only if |HC| divides |G| for all cyclic $C \leq G$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The subnormal subgroups are exponential;
- *H* is exponential if |*G* : *H*| is a multiple of exp(*G*);

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- The subnormal subgroups are exponential;
- *H* is exponential if |*G* : *H*| is a multiple of exp(*G*);

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

being exponential is a transitive relation;

- The subnormal subgroups are exponential;
- *H* is exponential if |*G* : *H*| is a multiple of exp(*G*);
- being exponential is a transitive relation;
- the intersection of exponential subgroups is exponential.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The subnormal subgroups are exponential;
- *H* is exponential if |*G* : *H*| is a multiple of exp(*G*);
- being exponential is a transitive relation;
- the intersection of exponential subgroups is exponential.

The following is the key property of exponential subgroups:

Lemma

Let $H \leq_{exp} G$ be core-free. Then |G : H| is a multiple of exp(G).

Proof.

Let n = |G: H|. Then H contains the subgroup G^n generated by the n-th powers. But H is core-free and so $G^n = 1$.

Sometimes the notion of being exponential collapses to that of being normal:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lemma

• If $H \leq_{exp} G$ is a Hall subgroup, then $H \lhd G$;

Sometimes the notion of being exponential collapses to that of being normal:

Lemma

- If $H \leq_{exp} G$ is a Hall subgroup, then $H \lhd G$;
- If G is solvable, and H is exponential and maximal, then $H \lhd G$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sometimes the notion of being exponential collapses to that of being normal:

Lemma

- If $H \leq_{exp} G$ is a Hall subgroup, then $H \lhd G$;
- If G is solvable, and H is exponential and maximal, then $H \lhd G$.

Remark: We cannot drop the hypothesis of solvability in the second part: G = Alt(10) has a conjugacy class of maximal subgroups H of size 720. Since exp(G) = 2520 = |G:H|, it happens that H is an exponential maximal subgroup which is not (sub)normal.

Recently, E. Swartz and N. Werner introduced the following:

Definition

G is **exp-simple** if its only proper exponential subgroups are those whose index is a multiple of exp(G).

Since all subgroups of a simple group are core-free, it is clear from above that the finite simple groups are exp-simple.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recently, E. Swartz and N. Werner introduced the following:

Definition

G is **exp-simple** if its only proper exponential subgroups are those whose index is a multiple of exp(G).

Since all subgroups of a simple group are core-free, it is clear from above that the finite simple groups are exp-simple.

They proved the following:

Theorem (Swartz, Werner '25)

G is exp-simple if and only if $\exp(G) = \exp(G/N)$ for all proper $N \lhd G$.

Future work

The dream would be to find an elementary proof of the Kegel-Wielandt conjecture, in particular of

|HK| divides |G| for all $K \leq G \implies H \lhd \lhd G$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Future work

The dream would be to find an elementary proof of the Kegel-Wielandt conjecture, in particular of

|HK| divides |G| for all $K \leq G \implies H \lhd \lhd G$.

More realistically, it would be interesting to know the exponential maximal subgroups of the finite simple groups. (These are the maximal subgroups whose index is a multiple of the exponent.)

Computer experiments suggest they are rare:

G	exp(G)	exponential maximal subgroups	
M ₁₂	1320	$Alt(4) \times Sym(3)$	
HJ	840	Alt(5), Alt(5) \times Alt(4)	
Alt(10)	2520	Alt(6). <i>C</i> ₂	
Alt(15)	360360	Alt(8), Alt(8)	
Alt(16)	360360	$(C_2)^4$. Alt(8), $(C_2)^4$. Alt(8)	
		↓ □ ▶	

Thank you for your attention