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Metaquestion

Which properties of a group G can we discern from knowing only
the orders of its elements?
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Definition

The average order of elements of a group G is defined as

ord(G) =1ql Zord(g

geaG
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Definition
The average order of elements of a group G is defined as

ord \G] Zord(g

geaG

Theorems A and C of Herzog et al. (2022)
If ord(G) < ord(S3) = 2 then G = G x ... x .

If ord(G) < ord(As) = 2L then G is solvable.
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Theorem?
Let 1/(G) = ord(G)/ ord(C g)).

!See Theorem 1.2 of Lazorec and T3rn3uceanu (2023) for the original
references.
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Th !
eorem
/
Let ¥'(G) = )/ ord(Cg))-

ord(G
e If ¢/(G) > & =¢/(C x &), then G is cyclic.

!See Theorem 1.2 of Lazorec and T3rn3uceanu (2023) for the original
references.
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Theorem' -
Let ¥/(G) := ord(G)/ or (C|G|)
° If '(G) > 177 ='(G x G,), then G is cyclic.
* If /(G) > £ = ¢/(S3), then G is nilpotent.

!See Theorem 1.2 of Lazorec and T3rn3uceanu (2023) for the original

references.
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Let ¥/(G) := ord(G)/ ord(C|G|)
e If ¢/(G) > & =¢/(C x &), then G is cyclic.
* If /(G) > £ = ¢/(S3), then G is nilpotent.
* If ¢/(G) > 3 = 4)/(A4), then G is super-solvable.

!See Theorem 1.2 of Lazorec and T3rn3uceanu (2023) for the original
references.
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Theorem?
Let ¥/(G) := ord(G)/ ord(Cig)).
° If '(G) > 11 P (G x Gy), then G is cyclic.
e If ¢/(G) > 3 1 = 1’(S3), then G is nilpotent.
* If ¢/(G) > 3 = 4)/(A4), then G is super-solvable.
° If '(G) > 211 = 19'(As), then G is solvable.

!See Theorem 1.2 of Lazorec and T3rn3uceanu (2023) for the original
references.
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Definitions
Let's denote by spectrum spec(G) of a group G the set of its
element orders.
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Definitions

Let's denote by spectrum spec(G) of a group G the set of its
element orders.

Example

spec(Cy) = spec(Ds) = spec(Qg) = {1,2,4}.
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Definitions
Let's denote by spectrum spec(G) of a group G the set of its
element orders.

Example
spec(Cy) = spec(Ds) = spec(Qg) = {1,2,4}.

Theorem of Shi (1984)
Let G be a finite group such that
® there are at least 3 primes in spec(G);

e every element of spec(G) is either a power of 2 or a prime
different from 5.

Then G = PSL(2,7).
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Definitions
Let's denote by spectrum spec(G) of a group G the set of its
element orders.

Example
spec(Cy) = spec(Ds) = spec(Qg) = {1,2,4}.

Theorem of Shi (1984)
Let G be a finite group such that
® there are at least 3 primes in spec(G);

e every element of spec(G) is either a power of 2 or a prime
different from 5.

Then G = PSL(2,7). In particular

spec(G) ={1,2,3,4,7} — G = PSL(2,7).
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Theorems of Shi (1986); Brandl and Shi (1991)

spec(G) = {1,2,3,5} = G = As.
spec(G) = {172a374757677} == G = A7-

Such groups are called recognisable.?

References

2Most of the finite simple groups are in fact recognisable; see Shi (2012) for

many more results.
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Theorems of Shi (1986); Brandl and Shi (1991)

spec(G) = {1,2,3,5} = G = As.
spec(G) = {17 2a 3a 4a 57 67 7} == G = A7-
Such groups are called recognisable.?

Problem 2.2 of Shi (2024)

Which types of sets of natural numbers can represent spec(G) for
a finite group G?

2Most of the finite simple groups are in fact recognisable; see Shi (2012) for
many more results.
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Definition
The graph, whose vertices are prime numbers in spec(G), with
vertices p, g connected when pqg € spec(G), is called the prime

graph or the Gruenberg—Kegel graph of a group G.3

3See Gruenberg and Roggenkamp (1975) for the original paper and
Cameron (2022) for a survey.
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Definition

The graph, whose vertices are prime numbers in spec(G), with
vertices p, g connected when pqg € spec(G), is called the prime
graph or the Gruenberg—Kegel graph of a group G.3

Theorem A of Gruenberg and Roggenkamp (1975)

Let G be a group whose prime graph is disconnected. If |G| is even
let 1 be the set of primes in the component of 2. Then G has one
of the following structures.

® Frobenius, or 2-Frobenius,

e (w1 group)-by-simple-by-(m group).

3See Gruenberg and Roggenkamp (1975) for the original paper and
Cameron (2022) for a survey.
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Shi's Conjecture
Let S be a simple group and G a group such that |G| = |S|. Then

spec(G) =spec(S) = G =S.
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Shi's Conjecture
Let S be a simple group and G a group such that |G| = |S|. Then

spec(G) = spec(S) = G = S.

UNIVERSITY OF CAMBRIDGE
DEPARTMENT OF PURE MATHEMATICS AND MATHEMATICAL STATISTICS
16 MILL LANE, CAMBRIDGE CB2 1B

Telephone
University Central Exchangs (©0223) 337733
Departmental Enquiries (0223337999

4th January, 1988 Direct Number (0223) 337.

Shi, Wujie,

Mathematics Department,
Southwest-China Teachers College,
Chonggqing, Shichuan,

People’s Republic of China.

Dear Shi Wujie,

Thank you for your card and for the information about A,. As you work in the future on
La(@). you will doubilessly leam some interesting properties of these groups, and it may well be

that you will finish by proving that if G and  are finite groups of the same order,

ple, and if, finally, for each integer #, G has an element of order n if and only if H has an element
of order , then G

re isomorphic. This

ould certainly be a nic:

Best wishes for the New Year.
Sincerely yours,

ok Frorpion

w

Figure: Redacted letter from John G. Thompson to Wujie Shi.
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Theorem
Let S be a simple group and G a group such that |G| = |S]|. Then

spec(G) =spec(S) = G =S.

The proof was finished in Vasil'ev et al. (2009).
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Theorem of Feit and Thompson (1963)
All finite groups of odd size are solvable.
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Thompson's Problem

UNIVERSITY OF CAMBRIDGE
pERARTM A

22na April, 1987

shi wujie,

Departent of Mathematics,

Southwest China Teachers
niversity,

chongqing,

CHINA:

Dear Shi Wujle,

Thank you for your letter of March 12, which has
arrived together with the abstract of the result you
wish to present in Singapore.

I_expect tho conjecture you mention is correct,

although I have no proof. But one idea which should
be helpful, and which you have probably already realized,
is that, if G is a finite simple group of Lie type
dofined over a field of characteristic p, then one can
attempt to determine p uniguely from the knowledge of
7To(G). This attempt will fail in a fow cases, e.g.,

G = L(4) 5 Ly(5) or G = Ly =Ly,
but it seems reasonable to think that if, in addition
to being of Lie type and characteristic p, IGI > 105,
then p can be recovered from m,(G).

A related problem to the one you have been
considering is the following one:
For cach finite group G and each integer d = 1,
Let G(a) = {x ¢ GIx
Definition. G, and G, are of the same order type iff
16, @1 = 16,@1, va=1,2, ... .
Here is an open problem. Suppose G, G, are finite

groups of the same order type. ~Suppose also That G, 15

solvable. Is it true that G, is also necessarily solvabls

T do not know the answer.
In order to give some indication that the above

problem 1s not too easy, let me mention that the Mathieu

group My, has two subgroups H, K, each of index 11.23,

H o My.2 = Ly(4).2, while K = 2%.A,. This example shows

that there are finite groups G,, G, of the same order

type which do not have the same set of composition factors.
I Have talked with several fans concerning

groups of the same order type. The problem arose

Initially in the study of algebraic numbor fiolds, and

I expect to meet you in Singapore.

sincerely yours,

John G. Thompson

DA
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Definition
For a group G we define its order type o : N — N U {0} by

o(n) = [{g € G | ord(g) = n}|
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Definition
For a group G we define its order type o : N — N U {0} by

o(n) = [{g € G | ord(g) = n}|

and its exponent type eg : N — N by

ec(n)={g € Glg"=1}
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Definition
For a group G we define its order type o : N — N U {0} by

o(n) = [{g € G | ord(g) = n}|

and its exponent type eg : N — N by

ec(n)={g € Glg"=1}

Thompson's Problem (1987)

Let G be a finite solvable group and H be any finite group such
that o = oy. Is H necessarily solvable?
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Definition
For a group G we define its order type o : N — N U {0} by

o(n) = [{g € G | ord(g) = n}|

and its exponent type eg : N — N by

ec(n)={g € Glg"=1}

Thompson's Problem (1987)
Let G be a finite solvable group and H be any finite group such
that o = oy. Is H necessarily solvable?

Theorem of Piwek (2024)
No.
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A positive result

Theorem 1.3 of Shen et al. (2023)

Let G; and G; be groups of the same order type whose prime
graphs are disconnected. Then if Gj is solvable, so is G,.
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Abelian

Proposition
If x> =1 for every element x € G, then G = G x G x ... x Gy,
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Abelian

Proposition
If x> =1 for every element x € G, then G = G x G x ... x Gy,

Proof.

[ yl=xy x Ty t=xy-x-y=(x)?=1 O
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Abelian

Proposition
If x> =1 for every element x € G, then G = G x G x ... x Gy,

Proof.

Ly l=xy-x-y=(xy) =1 O

[, y] =xy - x~
Example

The Heisenberg group H = H3(F3) = (G x G3) x C3 of 3-by-3
unit upper-triangular matrices.
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Abelian
Proposition

If x> =1 for every element x € G, then G = G x G x ... x Gy,

Proof.

Py Tt=xyxy = () =1

[x,y] =xy - x~
Example
The Heisenberg group H = H3(F3) = (G x G3) x C3 of 3-by-3
unit upper-triangular matrices.

It is non-abelian, yet A3 =/ for any A € H, so oy = o¢ for
G = C3 X C3 X C3.

References
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Nilpotent

Definition
A group G is nilpotent if for some n the n-th iterated commutator
G, =[G,[G,][...,[G,G]]...]] is trivial.

In other words, G, =1 where Gg = G and Gj11 =[G, Gj].
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Nilpotent

Theorem

A finite group G is nilpotent if and only if there exist groups
Gi,..., Gk and primes pi,..., pk such that G = G; X Gy X ... G
and ‘G,‘ = p?i.
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Nilpotent

Theorem
A finite group G is nilpotent if and only if there exist groups

Gi,..., Gk and primes pi,..., pk such that G = G; X Gy X ... G
and ‘G,‘ = p?i.

Proposition
A group G is nilpotent if and only if for each i

ec(pi)=|{g € G|gh =1} =p,

where |G| = p'ps? ... pk.
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Super-solvable

Definition
A group G is super-solvable if there is a series of normal subgroups
G; < G such that for some ordering of prime factors p; of |G|

1=G <G <...G,=G

a1 Q2

and |G;| = p{'p5? ... pi", where |G| = p{'p3? ... ppk.
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Super-solvable

Definition
A group G is super-solvable if there is a series of normal subgroups
G; < G such that for some ordering of prime factors p; of |G|

1=G <G <...G,=G

[CARNe ] a1 Q2

and |G;| = p{'p5? ... pi", where |G| = p{'p3? ... ppk.

Proposition
A group G is super-solvable if and only if, for some ordering of
prime factors p; of G, for each i

. a1 Qj .
ec(py'py? ... pi") =g € G|gh PoPi =1} = p"p3*...p;",

where |G| = p'p3? ... ppk.

For details see Shen (2012).
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Solvable

Definition
A group G is solvable if for some n the n-th term of derived series
G =1[...[[G,G],[G,G]].. ] is trivial.

In other words, G(") =1 where Gy = G and GU*1) = [G() G(].



Strategy

Main ideas

<O < Fr <=

«=»

Q>
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Strategy

Main ideas

® Orders of elements are ‘well-behaved’ under direct products.
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Strategy

Main ideas
® Orders of elements are ‘well-behaved’ under direct products.

® Gy X ...Gg is solvable if and only if each of G; is solvable.
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Order type and direct products
For (g, h) € G x H we have: ord((g, h)) = lem{ord(g),ord(h)}.
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Order type and direct products
For (g, h) € G x H we have: ord((g, h)) = lem{ord(g),ord(h)}.
Thus

oGxH(m) = > o (k) - on(l).

k,I st.lem{k,/}=m
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Order type and direct products

For (g, h) € G x H we have: ord((g, h)) = lem{ord(g),ord(h)}.
Thus

oGxH(m) = Z oc (k) - ox()).

k,I st.lem{k,/}=m

Exponent type and direct products
For (g, h) € G x H we have: (g,h)"=(1,1) < g"=h"=1.
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Order type and direct products
For (g, h) € G x H we have: ord((g, h)) = lem{ord(g),ord(h)}.

Thus
0GxH(m) = > oG (k) - on(/).
k,I st.lem{k,/}=m

Exponent type and direct products
For (g, h) € G x H we have: (g, h)" =(1,1) < g"=h"=1.
Thus

ecxH(n) = eg(n) - ey(n).
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Proposition
For any groups G and H

OG = O < €G = €H.

Epilogue
00000

References
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Proposition
For any groups G and H

OG = O < €G = €H.

Proof.
Each element g € G such that g” = 1 has order dividing n, so

ec(n) = oc(d).
d|n
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Proposition
For any groups G and H

OG = O < €G = €H.

Proof.
Each element g € G such that g” = 1 has order dividing n, so

ec(n) = oc(d).
d|n

Applying Mobius inversion to this equation we get

oa(m = Y ec(n/d) - u(d). O
d|n



Example

<O B <

Q>
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Example
|1 2 3 4 5 6 7 8 9 10 11 12
G|1 1 0 0 0 0 0 0 0 0 0 0
SS/1 3 2 0o 0o 0o 0O 0O 0 0 0 0
Dy|1 7 2 o o 2 0o 0o 0 0 0 0

Table: Order types of groups C;, S3 and Dg.
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Example
o | 1 2 3 4 5 6 7 8 9 10 11 12
G |1 1 0 0 0 0 0 0 0 0 0 0
S3 1 3 2 0 0 0 0 0 0 0 0 0
Ds | 1 7 2 0 0 2 0 0 0 0 0 0
Table: Order types of groups ¢, S3 and Dg.
ec | 1 2 3 4 5 6 7 8 9 10 11 12
G 1 2 1 2 1 2 1 2 1 2 1 2
S3 1 4 3 4 1 6 1 4 3 4 1 6
D | 1 8 3 8 1 2 1 8 3 8 1 12

Table: Exponent types of groups C;, S3 and Dg.
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Example
oG 1 2 3 4 5 6 7 8 9 10 11 12
C 1 1 0 0 0 0 0 0 0 0 0 0
S3 1 3 2 0 0 0 0 0 0 0 0 0
De | 1 7 2 0 0 2 0 0 0 0 0 0
Table: Order types of groups C,, S5 and Dg.
eG ‘ 1 2 3 4 5 6 7 8 9 10 11 12
G 1 2 1 2 1 2 1 2 1 2 1 2
S3 1 4 3 4 1 6 1 4 3 4 1 6
De | 1 8 3 8 1 12 1 8 3 8 1 12

Table: Exponent types of groups C;, S3 and De.

Revolved exponent type
Define
re(n) = [ ec(n/d)".

d|n
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Example
oc | 1 2 3 4 5 6 7 8 9 10 11 12
C 1 1 0 0 0 0 0 0 0 0 0 0
S3 |1 3 2 0 0 0 0 0 0 0 0 0
De | 1 7 2 0 0 2 0 0 0 0 0 0
Table: Order types of groups C,, S5 and Dg.
eG 1 2 3 4 5 6 7 8 9 10 11 12
G 1 2 1 2 1 2 1 2 1 2 1 2
S3 |1 4 3 4 1 6 1 4 3 4 1 6
De | 1 8 3 8 1 12 1 8 3 8 1 12
Table: Exponent types of groups C;, S3 and De.
rg |1 2 3 4 5 6 7 8 9 10 11 12
G |1 2 1 1 1 1 1 1 1 1 1 1
Ss |1 4 3 1 1 1/2 1 1 1 1 1 1
Ds | 1 8 3 1 1 1/2 1 1 1 1 1 1

Table: Revolved exponent types of groups C,, S3 and Dg.
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Example
e | 1 2 3 4 5 6 7 8 9 10 11 12
G |1 2 1 2 1 2 1 2 1 2 1 2
S3 1 4 3 4 1 6 1 4 3 4 1 6
Ds | 1 8 3 8 1 12 1 8 3 8 1 12
Table: Exponent types of groups C;, S3 and Dg.
rg 1 2 3 4 5 6 7 8 9 10 11 12
C 1 2 1 1 1 1 1 1 1 1 1 1
S3 1 4 3 1 1 1/2 1 1 1 1 1 1
De 1 8 3 1 1 1/2 1 1 1 1 1 1

Factorised revolved exponent type

Define

Table: Revolved exponent types of groups C,, S3 and De.

vg(n, p) = vp(re(n)).
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Example

ec | 1 2 3 4 5 6 7 8 9 10 11 12

G |1 2 1 2 1 2 1 2 1 2 1 2

S3 1 4 3 4 1 6 1 4 3 4 1 6

D | 1 8 3 8 1 12 1 8 3 8 1 12

Table: Exponent types of groups C;, S3 and Dg.

r 1 2 3 4 5 6 7 8 9 10 11 12

G |1 2 1 1 1 1 1 1 1 1 1 1

S3 |1 4 3 1 1 1/2 1 1 1 1 1 1

Ds | 1 8 3 1 1 1/2 1 1 1 1 1 1
Table: Revolved exponent types of groups C;, S3 and Dg.

ve | (22) (23 (25) ... (3.2) (3.3) ... (6, 2)

G 1 0 0 . 0 0 S 0

S3 2 0 0 .. 0 1 o -1

D | 3 0 0 0 1 -1

Table: Factorised revolved exponent types of groups C,,S; and Dg.
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Summary
Denoting by IP the set of all primes, we proved as follows.

o6 :N—=>NU{0}, e:N—=N, rc:N—>Q, vg:NxP—Z.

OG =04 <= €G—=€H <= IG=IH < VG = VH.

€GxH = €G *€H, IGxH =1G" IH, VGxH = VGt VH-
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More abstract statement
The assignment

V:GH(VGZNXP—}Z)

defines a homomorphism of monoids

V : (FiniteGroups, x) — (Z™F, +).

Epilogue
00000

References
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More abstract statement
The assignment

V:G»—>(VG:N><IF’—>Z)
defines a homomorphism of monoids

V : (FiniteGroups, x) — (ZNXP, +).

Theorem of Remak (1911)

If finite groups Gy, ..., G, and Hy,..., Hy, don’t decompose
non-trivially as direct products and G; X ... x G, = Hy X ... X Hp,
then n = m and for some permutation o : {1,...,n} — {1,...,n}
we have G; = H,(;) fori=1,...,n.
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More abstract statement
The assignment

V:%H(VGZNX]P)%Z)

extends to a homomorphism of free abelian groups

FiniteGroups
v (EniGrouws |y gy
FiniteGroups % ( +)

Theorem of Remak (1911)

If finite groups Gi,..., G, and Hy,..., H,, don't decompose
non-trivially as direct products and Gy X ... x G, = Hy X ... X Hp,
then n = m and for some permutation o : {1,...,n} = {1,...,n}
we have G; = H,;) fori=1,...,n.



References

's Problem Strategy
> 0000000

More abstract statement
The assignment

G
V:TH(VGZNXP%Z)
extends to a homomorphism of free abelian groups

FiniteGroups NxP
N, x) > (Z :
(FiniteGroups7 ) ( : )

Furthermore

G
ﬁekerv<:> Vg = vy <= 0g = Oj.
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Thompson's Problem reformulated

Do there exist groups S and N such that S is solvable, N is
non-solvable and % € ker V7

References
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Thompson's Problem reformulated
Do there exist groups S and N such that S is solvable, N is
non-solvable and % € ker V7

Equivalently, does there exist a non-solvable group N such that

N

V( 1) € {V(;)‘Sl and S, are soIvabIe}?
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Thompson's Problem reformulated

Do there exist groups S and N such that S is solvable, N is
non-solvable and % € ker V7

Equivalently, does there exist a non-solvable group N such that

N

V(l

) € {V(%)‘Sl and S, are soIvabIe}?
2

STRATEGY
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Thompson's Problem reformulated
Do there exist groups S and N such that S is solvable, N is
non-solvable and % € ker V7

Equivalently, does there exist a non-solvable group N such that

N

V(l

) € {V(%)‘Sl and S, are soIvabIe}?
2

STRATEGY
1. Compute many V(S) and V(N). Arrange V(S;) into matrix V.
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Thompson's Problem reformulated

Do there exist groups S and N such that S is solvable, N is
non-solvable and % € ker V7

Equivalently, does there exist a non-solvable group N such that

N

V(3

) € {V(%)‘Sl and S, are soIvabIe}?
2

STRATEGY

1. Compute many V(S) and V(N). Arrange V(S;) into matrix V.
2. For each j solve the matrix equation

V x =y,

where y; = V(N;) and x has rational entries.
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Groups and properties

Steps 1

Use MAGMA to access the SmallGroups database, loop through all
groups G of size at most 2000 excluding those of size divisible by
128 and compute the following.

® |s G solvable?
® |s G a direct product?
® [ts order type og.

“See the database Besche et al. and the paper detailing the construction
Besche et al. (2002).
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Parsing and rephrasing

Steps 2-4

Parse the results into a .csv file for ease of use with Python.
For non-decomposable groups G compute the factorised revolved
exponent types V(G), thereby getting the matrix V' and the
candidates for vectors y;.
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Parsing and rephrasing

Steps 2-4

Parse the results into a .csv file for ease of use with Python.
For non-decomposable groups G compute the factorised revolved
exponent types V(G), thereby getting the matrix V' and the
candidates for vectors y;.

V is of size 9945 x 100972.
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Numerical and exact solutions

Step 5
Attempt to solve Vx = y; numerically using Sparse Least Squares
method of SciPy library.
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Numerical and exact solutions

Step 5
Attempt to solve Vx = y; numerically using Sparse Least Squares
method of SciPy library.

This fails for most groups (e.g. As), but works for about 15 of
them (e.g. GL(3,2)).
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Numerical and exact solutions

Step 5
Attempt to solve Vx = y; numerically using Sparse Least Squares
method of SciPy library.

This fails for most groups (e.g. As), but works for about 15 of
them (e.g. GL(3,2)).

Step 6
Attempt to solve V' x = V(N) exactly for N = GL(3,2) using
symbolic computation library SymPy.
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Numerical and exact solutions

Step 5
Attempt to solve Vx = y; numerically using Sparse Least Squares
method of SciPy library.

This fails for most groups (e.g. As), but works for about 15 of
them (e.g. GL(3,2)).

Step 6

Attempt to solve V' x = V(N) exactly for N = GL(3,2) using
symbolic computation library SymPy.

Step 7
Check, check, check again. Cross-reference. Compute it in a
different way...
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Theorem A of Piwek (2024)

Let G; and H; be the collections of finite groups described in tables
(a) and (b), and let m; and n; be the associated natural numbers
from the tables. Let G and H be the direct products

G=[[G"™ H=]]H"

Then og = oy, G is solvable, and H is not solvable.



i G,' Id m;
1 G @ 1) 9
2 Ds (6, 1) 6
3 G (7, 1) 1
4 D, (8, 3) 9
5 Dy (14, 1) 18
6 SL(2,3) (24, 3) 21
7 (é4 Dl Cé (48,6) 3
8 C} X EM (56,7) 3
9 (} X C&g (84,1) 6
10  Dicy (84, 5) 6
11 GxAs (84, 11) 21
12 GxD; (98 4) 2
13 G xF (168, 9) 21
14 GCuxDs (168 15) 9
15 G xDpp (168 17) 6
16 Fg x Cé (168,43) 3
17  Dg x Dy (224, 106) 3
18 G x Dy (336,31) 3

(a) Groups G; and numbers m;.

Table: The groups G; and H; and their multiplicities m; and n;. The

Epilogue
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i H,' Id n;
1 G 21 21
2 G (3, 1) 3
3 Dics (12, 1) 6
4 A (12, 3) 21
5 SD1s (16, 8) 3
6 CH X Cé (21,1) 4
7  Dn (24, 6) 6
8 GixDy (24, 8) 6
9  Dig (28, 1) 15
10 F (42, 1) 18
11 Dy (42, 5) 6
12 Dy (48, 7) 3
13 Dug (56, 5) 27
14 Dic;xCs (168, 11) 3
15 Cig.Aq (168, 23) 21
16 GL(3,2) (168, 42) 3
17 G xF  (294,10) 2
18 Dyp.D; (336, 36) 3

(b) Groups H; and numbers n;.

column labelled ‘Id" contains the SmallGroups isomorphism type

identifier (see Besche et al.).
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Smaller examples
The examples of Piwek (2024) are of size

2365 . 3105 X 7104 ~73- 10247.



's Problem

Computations Epilogue
000 00@00

Smaller examples
The examples of Piwek (2024) are of size

2365 . 3105 X 7104 ~73- 10247'
Miiller (2024) constructed much smaller examples of size

213 .34 .73 = 227598336.

References
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Theorem 1 of Miiller (2024)

Let G; and H; be finite groups in the tables with
G:G1><G2><G3and H:H1XH2><H3XH4. ThenoG:oH
and G is solvable, while H isn't solvable.

i G; Id i H; Id

1 (G x G x Q) x (G xG) (168, 43) 1 [T (21, 1)

2 G x (G x (G % Qig)) (1008, 289) 2 Qs x Cp (96, 166)

3 G % (((Cs x Dg) % Co) % C3) (1344, 6967) 3 G« (G xAs) (336, 136)
4 PGL(2,7) (336, 208)

(a) Groups G; (b) Groups H;
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Theorem 1 of Miiller (2024)

Let G; and H; be finite groups in the tables with
G:G1><G2><G3and H:H1XH2><H3XH4. ThenoG:oH
and G is solvable, while H isn't solvable.

i G Id i H Id
1 (G x G x Q) x (G xG) (168, 43) 1 [T (21, 1)
2 G (G x (G % Qip)) (1008, 289) 2 Qg x Cp (96, 166)
3 G x(((Co x Dg) x Go) x C3) (1344, 6967) 3 G (G xA) (336, 136)
4 PGL(2,7) (336, 208)
(a) Groups G; (b) Groups H;

Mystery / Question

All of the examples we know of have PSL(2,7) = GL(3,2) as a
composition factor... Is that necessary?
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Metaquestion
Let G be a group and T¢ : N x N x N — N be defined by

Te(k,,m) = |{(x,y,2) € Gx Gx G| x" =y =2zM=xyz=1}|.

Which properties of G does this invariant discern?
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Metaquestion
Let G be a group and Tg : N X N x N — N be defined by

Te(k,,m) = |{(x,y,2) € Gx Gx G| x" =y =2zM=xyz=1}|.
Which properties of G does this invariant discern?

Digression?

Tc(k, I, m) equals the number of distinct homomorphisms to G
from a triangle group

Ak, l,m) = {x,y,z | x* = y! = 2" = xyz = 1}.
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Metaquestion
Let G be a group and Tg : N X N x N — N be defined by

Te(k,,m) = |{(x,y,2) € Gx Gx G| x" =y =2zM=xyz=1}|.
Which properties of G does this invariant discern?

Digression?
Tc(k, I, m) equals the number of distinct homomorphisms to G
from a triangle group

Ak, l,m) = {x,y,z | x* = y! = 2" = xyz = 1}.

As a consequence of a difficult theorem of Bridson et al. (2016) for
any triples (ki, h, m1) and (ka, b, my) which aren't permutations
of each other there exists a finite group G which is a quotient of
exactly one of A(ky, h, my) and A(ka, kb, my).
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