Some progress on locally-primitive generalized polygons

Wendi Di

joint work with Caiheng Li, Peice Hua

Southern University of Science and Technology

June 5th, 2024

Wendi Di (SUSTech)

Locally-primitive GPs

▶ < 콜 ▶ < 콜 ▶ 콜 June 5th, 2024

A finite geometry (of rank 2) is a triple S = (P, L, I), where P, L are disjoint non-empty finite sets and $I \subset P \times L$ is a relation, the incidence relation.

< ∃ >

Image: A matrix and a matrix

A finite geometry (of rank 2) is a triple S = (P, L, I), where P, L are disjoint non-empty finite sets and $I \subset P \times L$ is a relation, the incidence relation.

Let S = (P, L, I) be a finite geometry. The **dual** of S is the geometry $S^D = (L, P, I^D)$, with $LI^DP \Leftrightarrow pIL$.

A finite geometry (of rank 2) is a triple S = (P, L, I), where P, L are disjoint non-empty finite sets and $I \subset P \times L$ is a relation, the incidence relation.

Let $S = (\mathcal{P}, \mathcal{L}, \mathbf{I})$ be a finite geometry. The **dual** of S is the geometry $S^D = (\mathcal{L}, \mathcal{P}, \mathbf{I}^D)$, with $L\mathbf{I}^D P \Leftrightarrow p\mathbf{I}L$. A **sub-geometry** of S is a geometry $S' = (\mathcal{P}', \mathcal{L}', \mathbf{I}')$ with $\mathcal{P}' \subset P, \mathcal{L}' \subset \mathcal{L}, \mathbf{I}' = \mathbf{I} \cap (\mathcal{P}' \times \mathcal{L}').$

A finite geometry (of rank 2) is a triple S = (P, L, I), where P, L are disjoint non-empty finite sets and $I \subset P \times L$ is a relation, the incidence relation.

Let $S = (\mathcal{P}, \mathcal{L}, \mathbf{I})$ be a finite geometry. The **dual** of S is the geometry $S^D = (\mathcal{L}, \mathcal{P}, \mathbf{I}^D)$, with $L\mathbf{I}^D P \Leftrightarrow p\mathbf{I}L$. A **sub-geometry** of S is a geometry $S' = (\mathcal{P}', \mathcal{L}', \mathbf{I}')$ with $\mathcal{P}' \subset P, \mathcal{L}' \subset \mathcal{L}, \mathbf{I}' = \mathbf{I} \cap (\mathcal{P}' \times \mathcal{L}')$. A **flag** of S is a pair $\{P, L\}$ with *P***I**L, and an **anti-flag** is a pair $\{P, L\}$ such that P, L are not incident.

A finite geometry (of rank 2) is a triple S = (P, L, I), where P, L are disjoint non-empty finite sets and $I \subset P \times L$ is a relation, the incidence relation.

Let $S = (\mathcal{P}, \mathcal{L}, \mathbf{I})$ be a finite geometry. The **dual** of S is the geometry $S^D = (\mathcal{L}, \mathcal{P}, \mathbf{I}^D)$, with $L\mathbf{I}^D P \Leftrightarrow p\mathbf{I}L$. A **sub-geometry** of S is a geometry $S' = (\mathcal{P}', \mathcal{L}', \mathbf{I}')$ with $\mathcal{P}' \subset P, \mathcal{L}' \subset \mathcal{L}, \mathbf{I}' = \mathbf{I} \cap (\mathcal{P}' \times \mathcal{L}')$. A **flag** of S is a pair $\{P, L\}$ with *P***I**L, and an **anti-flag** is a pair $\{P, L\}$ such that P, L are not incident.

Two points P, Q (lines L, M) are **collinear** (**concurrent**) if they are incident with at least one comment line (point), denoted by $P \sim Q$ (L $\sim M$).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A finite geometry (of rank 2) is a triple S = (P, L, I), where P, L are disjoint non-empty finite sets and $I \subset P \times L$ is a relation, the incidence relation.

Let $S = (\mathcal{P}, \mathcal{L}, \mathbf{I})$ be a finite geometry. The **dual** of S is the geometry $S^D = (\mathcal{L}, \mathcal{P}, \mathbf{I}^D)$, with $L\mathbf{I}^D P \Leftrightarrow p\mathbf{I}L$. A **sub-geometry** of S is a geometry $S' = (\mathcal{P}', \mathcal{L}', \mathbf{I}')$ with $\mathcal{P}' \subset P, \mathcal{L}' \subset \mathcal{L}, \mathbf{I}' = \mathbf{I} \cap (\mathcal{P}' \times \mathcal{L}')$. A **flag** of S is a pair $\{P, L\}$ with *P***I**L, and an **anti-flag** is a pair $\{P, L\}$ such that P, L are not incident.

Two points P, Q (lines L, M) are **collinear** (**concurrent**) if they are incident with at least one comment line (point), denoted by $P \sim Q$ (L $\sim M$).

 ${\cal S}$ is a **partial linear space** if any two collinear points are incident with a unique line.

$$P \sim Q \Rightarrow L := PQ, \ L \sim M \Rightarrow P' := L \cap M$$

Wendi Di (SUSTech)

Locally-primitive GPs

June 5th, 2024

Let $S = (\mathcal{P}, \mathcal{L}, I)$ be a finite geometry. The **incidence graph** Γ of S is the graph with the vertex set $\mathcal{P} \cup \mathcal{L}$ and flags of S as edges.

Definition

S is a **finite generalized** *n***-gon** if Γ is a connected graph of diameter *n* and girth 2n.

Let $S = (\mathcal{P}, \mathcal{L}, I)$ be a finite geometry. The **incidence graph** Γ of S is the graph with the vertex set $\mathcal{P} \cup \mathcal{L}$ and flags of S as edges.

Definition

S is a **finite generalized** *n***-gon** if Γ is a connected graph of diameter *n* and girth 2n.

Definition

 $\mathcal S$ is a **finite generalized** *n*-gon if the following two axioms are satisfied:

- \mathcal{S} contains two ordinary k-gon as a sub-geometry, for $2 \leq k < n$.
- Any two elements $x, y \in \mathcal{P} \cup \mathcal{L}$ are contained in some ordinary *n*-gon as a sub-geometry in S.

3/41

イロト イヨト イヨト イヨト

Let S be a finite generalized *n*-gon.

S has order (s, t) if Γ is bi-regular of degree (s + 1, t + 1), where s + 1 is the degree of vertices in \mathcal{L} .

A finite generalized *n*-gon S is called **thick** if every vertex of Γ has degree at least 3.

→ Ξ →

Let S be a finite generalized *n*-gon.

S has order (s, t) if Γ is bi-regular of degree (s + 1, t + 1), where s + 1 is the degree of vertices in \mathcal{L} .

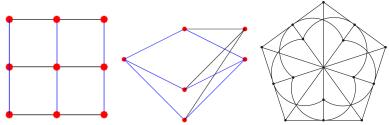
A finite generalized *n*-gon S is called **thick** if every vertex of Γ has degree at least 3.

Lemma

- (Feit-Higman, 1964) Finite thick generalized n-gons exist only for $n \in \{3, 4, 6, 8\}$.
- (V Maldeghem, Generalized Polygons) Every thick generalized n-gon has an order (s, t) with $s, t \ge 2$; if n = 3 then s = t, and if n = 8 then $s \ne t$.

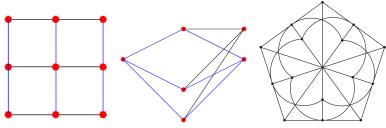
Examples of finite generalized *n*-gons

n = 4, examples of thin and thick generalized quadrangles.

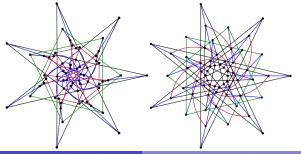


Examples of finite generalized *n*-gons

n = 4, examples of thin and thick generalized quadrangles.



n = 6, example of the smallest thick generalized hexagon.



Wendi Di (SUSTech)

5/41

Equivalent definitions on thick *n*-gons for $n \in \{4, 6, 8\}$

Let S = (P, L, I) be a finite partial linear space. Then S is a thick generalized *n*-gon of order (s, t) if the following two conditions hold:

- each point is incident with t + 1 lines and each line is incident with s + 1 points;
- (n = 4) given an anti-flag (P, L), there is a unique flag (P', L') such that PIL'IP'IL.

Equivalent definitions on thick *n*-gons for $n \in \{4, 6, 8\}$

Let S = (P, L, I) be a finite partial linear space. Then S is a thick generalized *n*-gon of order (s, t) if the following two conditions hold:

- each point is incident with t + 1 lines and each line is incident with s + 1 points;
- (n = 4) given an anti-flag (P, L), there is a unique flag (P', L') such that PIL'IP'IL.
 - (n = 6) 6 is the smallest positive integer k such that S has a circuit consisting of k points and k lines, and any two elements x, y ∈ P ∪ L are contained in some circuit.

イロト 不得 トイラト イラト 一日

Equivalent definitions on thick *n*-gons for $n \in \{4, 6, 8\}$

Let S = (P, L, I) be a finite partial linear space. Then S is a thick generalized *n*-gon of order (s, t) if the following two conditions hold:

- each point is incident with t + 1 lines and each line is incident with s + 1 points;
- (n = 4) given an anti-flag (P, L), there is a unique flag (P', L') such that PIL'IP'IL.
 - (n = 6) 6 is the smallest positive integer k such that S has a circuit consisting of k points and k lines, and any two elements x, y ∈ P ∪ L are contained in some circuit.
 - (n = 8) 8 is the smallest positive integer k such that S has a circuit consisting of k points and k lines, and any two elements x, y ∈ P ∪ L are contained in some circuit.

イロト 不得下 イヨト イヨト 二日

The classical GQs, embedded in PG(d, q), $3 \le d \le 5$.

Table: The classical GQs

\mathcal{Q}	Order	$Aut(\mathcal{Q})$	Symmetry
$W_3(q)$	(q,q)	$P\Gamma Sp_4(q)$	flag-trans., point-prim., line-prim.
$Q_4(q)$, q odd	(q,q)	$P\Gamma O_5(q)$	flag-trans., point-prim., line-prim.
$H_3(q^2)$	(q^2, q)	$P\Gamma U_4(q)$	flag-trans., point-prim., line-prim.
$Q_5^-(q)$	(q, q^2)	$P\Gamma O_6^-(q)$	flag-trans., point-prim., line-prim.
$H_{4}(q^{2})$	(q^2, q^3)	$P\Gamma U_5(q)$	flag-trans., point-prim., line-prim.
$H_4(q^2)^D$	(q^3, q^2)	$P\Gamma U_5(q)$	flag-trans., point-prim., line-prim.

Image: A matrix

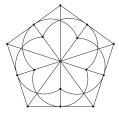
I ∃ ►

э

The smallest thick GQ: $GQ(2,2) \cong W_3(2)$ Let $V = \mathbb{F}_q^3$.

- Take $b(x, y) = x_1y_2 x_2y_1 + x_3y_4 x_4y_3$;
- \mathcal{P} : 1-dimensional isotropic subspace of $V_4(\mathbb{F}_q)$;
- \mathcal{L} : 2-dimensional isotropic subspace of $V_4(\mathbb{F}_q)$;
- each 2-dim. isotropic subspace contains q + 1 points.
- each 1-dim. isotropic subspace is contained in $\frac{\frac{q^3-1}{q-1}-1}{q} = q+1$ lines.
- $x \in \mathcal{P}, \ell \in \mathcal{L}, x \notin \ell. x^{\perp} \cap \ell$ is a 1-dimensional isotropic subspace.

The unique smallest thick GQ is $W_3(2)$.



• The GQs $T_2(O)$ arose from an oval O in PG(2,q) with order (q,q).

★ ∃ >

Image: A matrix

- The GQs $T_2(O)$ arose from an oval \mathcal{O} in PG(2,q) with order (q,q).
- The GQs $T_3(O)$ arose from an ovoid O in PG(3, q) with order (q, q^2) .

- The GQs $T_2(O)$ arose from an oval \mathcal{O} in PG(2,q) with order (q,q).
- The GQs $T_3(O)$ arose from an ovoid O in PG(3,q) with order (q,q^2) .
- The GQs $T_2^*(O)$ arose from a hyper-oval O in $PG(2, 2^h)$ with order $(2^h 1, 2^h + 1)$.

- The GQs $T_2(O)$ arose from an oval O in PG(2, q) with order (q, q).
- The GQs $T_3(O)$ arose from an ovoid O in PG(3, q) with order (q, q^2) .
- The GQs $T_2^*(O)$ arose from a hyper-oval O in $PG(2, 2^h)$ with order $(2^h 1, 2^h + 1)$.
- The GQs AS(q) arose from affine 3-space AG(3, q) with order (q-1, q+1), q is any odd prime power.

- The GQs $T_2(O)$ arose from an oval O in PG(2, q) with order (q, q).
- The GQs $T_3(O)$ arose from an ovoid O in PG(3, q) with order (q, q^2) .
- The GQs $T_2^*(O)$ arose from a hyper-oval O in $PG(2, 2^h)$ with order $(2^h 1, 2^h + 1)$.
- The GQs AS(q) arose from affine 3-space AG(3, q) with order (q-1, q+1), q is any odd prime power.
- To each regular point P of a GQ S of order s, there is associated a GQ of order (s 1, s + 1), the only examples where s is not a prime power.

For more details, see [S E Payne, J A Thas, Finite Generalized Quadrangles, Chap 3].

9/41

イロト イポト イヨト イヨト 二日

Known examples of finite thick GHs and GOs

Up to duality, the only known (two infinite families of) examples of **finite** generalised hexagons arose from the finite almost simple groups of Lie type G_2 and 3D_4 , and had orders (q, q) and (q^3, q) respectively.

Known examples of finite thick GHs and GOs

Up to duality, the only known (two infinite families of) examples of **finite** generalised hexagons arose from the finite almost simple groups of Lie type G_2 and 3D_4 , and had orders (q, q) and (q^3, q) respectively.

Up to duality, the only known (one infinite families of) examples of **finite octagons** arose from the finite almost simple groups of Lie type ${}^{2}F_{4}$, and had order $(2^{e}, 2^{2e})$ with *e* odd.

For more details, see [H V Maldeghem, Generalized Polygons, Chap 2].

Let S = (P, L, I) be a finite generalized *n*-gon. An automorphism of S is a permutation θ preserving P, L and incidence relation I.

Image: A matrix and a matrix

Let S = (P, L, I) be a finite generalized *n*-gon. An automorphism of S is a permutation θ preserving P, L and incidence relation I.

The **full automorphism group** Aut(S) is the group of all automorphisms of S.

Let S = (P, L, I) be a finite generalized *n*-gon.

An automorphism of S is a permutation θ preserving \mathcal{P}, \mathcal{L} and incidence relation **I**.

The **full automorphism group** Aut(S) is the group of all automorphisms of S.

S is **flag-transitive** (antiflag-transitive), if it has an automorphism group $G \leq Aut(S)$ such that G acts transitively on all flags (antiflags) of S. S is **point-primitive** (line-primitive), if it has an automorphism group $G \leq Aut(S)$ acting primitively on $\mathcal{P}(\mathcal{L})$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Let $\mathcal{S} = (\mathcal{P}, \mathcal{L}, \mathbf{I})$ be a finite generalized *n*-gon.

An automorphism of S is a permutation θ preserving \mathcal{P}, \mathcal{L} and incidence relation L

The **full automorphism group** Aut(S) is the group of all automorphisms of \mathcal{S} .

S is **flag-transitive** (antiflag-transitive), if it has an automorphism group $G \leq Aut(S)$ such that G acts transitively on all flags (antiflags) of S. S is **point-primitive** (line-primitive), if it has an automorphism group $G < \operatorname{Aut}(S)$ acting primitively on $\mathcal{P}(\mathcal{L})$.

All known GHs and GOs are flag-transitive, point-primitive, and line-primitive.

All known classical GQs are flag-transitive, point-primitive, and line primitive.

Open problem 1: Classify all flag-transitive finite generalized *n*-gons?

Conjecture:

• n = 4, (Kantor, 1991) up to duality, a finite flag-transitive GQ is classical, or $T_2^*(O)$ arise from hyper-oval O in $PG(2, 2^2)$ and $PG(2, 2^4)$ with order (3, 5) and (15, 17) respectively.

Open problem 1: Classify all flag-transitive finite generalized *n*-gons?

Conjecture:

- n = 4, (Kantor, 1991) up to duality, a finite flag-transitive GQ is classical, or $T_2^*(O)$ arise from hyper-oval O in $PG(2, 2^2)$ and $PG(2, 2^4)$ with order (3,5) and (15, 17) respectively.
- n = 6, all finite flag-transitive GHs are the known examples.

Open problem 1: Classify all flag-transitive finite generalized *n*-gons?

Conjecture:

- n = 4, (Kantor, 1991) up to duality, a finite flag-transitive GQ is classical, or $T_2^*(O)$ arise from hyper-oval O in $PG(2, 2^2)$ and $PG(2, 2^4)$ with order (3,5) and (15, 17) respectively.
- n = 6, all finite flag-transitive GHs are the known examples.
- n = 8, all finite flag-transitive GOs are the known examples. Furthermore. Are all finite GHs and GOs known?

글 에 에 글 에 다

Open problem 1: Classify all flag-transitive finite generalized *n*-gons?

Conjecture:

- n = 4, (Kantor, 1991) up to duality, a finite flag-transitive GQ is classical, or $T_2^*(O)$ arise from hyper-oval O in $PG(2, 2^2)$ and $PG(2, 2^4)$ with order (3,5) and (15, 17) respectively.
- n = 6, all finite flag-transitive GHs are the known examples.
- n = 8, all finite flag-transitive GOs are the known examples. Furthermore, Are all finite GHs and GOs known?

problem 2: Classify all point-primitive (and line-primitive) finite generalized *n*-gons?

3

Local conditions on generalized *n*-gons

Let $S = (\mathcal{P}, \mathcal{L}, \mathbf{I})$ be a generalized *n*-gon and $G \leq Aut(S)$.

3

Image: A matrix and a matrix

Local conditions on generalized *n*-gons

Let $\mathcal{S} = (\mathcal{P}, \mathcal{L}, \mathbf{I})$ be a generalized *n*-gon and $G \leq \operatorname{Aut}(\mathcal{S})$.

S is called *G*-locally **P**, if for each vertex *u* in Γ, the stabilizer G_u has the property **P** in $\Gamma(u)$, where $\Gamma(u)$ is the neighbour of *u* in Γ.

3

Local conditions on generalized *n*-gons

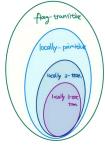
Let $\mathcal{S} = (\mathcal{P}, \mathcal{L}, \mathbf{I})$ be a generalized *n*-gon and $G \leq \operatorname{Aut}(\mathcal{S})$.

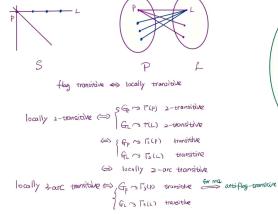
S is called *G*-locally **P**, if for each vertex *u* in Γ, the stabilizer G_u has the property **P** in $\Gamma(u)$, where $\Gamma(u)$ is the neighbour of *u* in Γ.

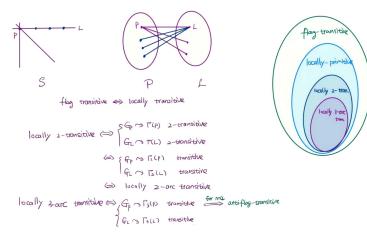
S is G-locally transitive if G_u acts transitively on $\Gamma(u)$ for each u in Γ . S is G-locally primitive if G_u acts primitively on $\Gamma(u)$ for each u in Γ . S is G-locally 2-transitive if G_u acts 2-transitively on $\Gamma(u)$ for each u in Γ .

S is G-locally 3-arc transitive if G_u acts 3-arc transitively on $\Gamma(u)$ for each u in Γ .

イロト イポト イヨト イヨト 二日

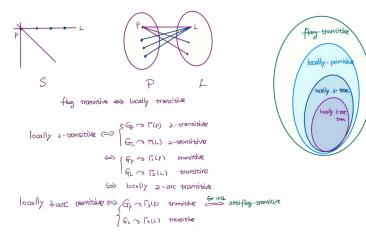




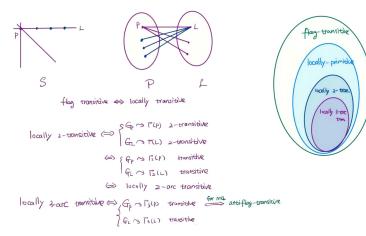


 \mathcal{S} is flag-transitive $\Leftrightarrow \mathcal{S}$ is locally transitive $\Leftrightarrow \Gamma$ is edge-transitive

Wendi Di (SUSTech)



S is flag-transitive $\Leftrightarrow S$ is locally transitive $\Leftrightarrow \Gamma$ is edge-transitive S is locally 2-transitive $\Leftrightarrow \Gamma$ is locally 2-arc transitive.



S is flag-transitive $\Leftrightarrow S$ is locally transitive $\Leftrightarrow \Gamma$ is edge-transitive S is locally 2-transitive $\Leftrightarrow \Gamma$ is locally 2-arc transitive. For n = 4, S is locally 3-arc transitive $\Leftrightarrow S$ is antiflag-transitive.

★ ∃ > ____

Progress on GQs with (integral) primitive conditions

For n = 4:

- Bamberg-Giudici-Morris-Poyle-Spiga, (*J.Combin. Theory Ser. A, 2012*), point-primitive+line-primitive ⇒ AS type;
- Bamberg-Glasby-Popiel-Praeger, (*J. Combin. Des., 2016*), classified GQs with condition point-primitive+line-transitive+HA type
- Bamgerg-Popiel-Praeger, (*J. Group Theory, 2017*), point-primitive+line-transitive ⇒ cannot be HS, HC type;
- Bamberg-Popiel-Praeger, (*Nagoya Math. J., 2019*), point-primitive ⇒ cannotbe HC type,
- Feng-Di, (*preprint, 2024+*), point-primitive ⇒ cannot be HS type
- Feng-Lu, (*preprint, 2024+*), classified GQs with condition point-primitive +line-primitive+ $Soc(G) = PSL_n(q)$

15/41

イロト 不得下 イヨト イヨト 二日

Progress on GQs with local conditions

- Bamberg-Li-Swartz (*Trans. Amer. Math. Soc., 2018*), classified antiflag-transitive (i.e. locally 3-arc transitive) and locally 2-transitive generalized quadrangles.
- Bamberg-Li-Swartz (*Trans. Amer. Math. Soc., 2021*), classified locally 2-transitive generalized quadrangles.

Is it possible to give a classification of locally-primitive GQs?

Progress on GHs and GOs with certain conditions

For n = 6 or 8:

- Schneider-Hendrik-Van Maldeghem (*J.Combin. Theory Ser. A, 2008*), *G*-point-primitive+flag-transitive ⇒ *G* must be an almost simple group of Lie type.
- Bamberg-Glasby-Popiel-Praeger-Schneider(*J.Combin. Theory Ser. A, 2017*), *G*-point-primitive ⇒ *G* must be an almost simple group of Lie type.

Is it possible to give a classification of locally 2-transitive (locally primitive) GHs or GOs ?

イロト イヨト イヨト ・

Suppose that *G* acts transitively on Ω .

A **block** of Ω is a nonempty proper subset B of Ω s.t. $B^g = B$ or $B^g \cap B = \emptyset, \forall g \in G$.

3

(日)

Suppose that *G* acts transitively on Ω .

A **block** of Ω is a nonempty proper subset B of Ω s.t. $B^g = B$ or $B^g \cap B = \emptyset, \forall g \in G$.

G is a **primitive group** on Ω if Ω has no nontrivial block. *G* is a **primitive permutation group** if *G* acts faithfully and primitively on some set Ω .

Suppose that G acts transitively on Ω .

A **block** of Ω is a nonempty proper subset B of Ω s.t. $B^g = B$ or $B^g \cap B = \emptyset, \forall g \in G$.

G is a **primitive group** on Ω if Ω has no nontrivial block.

G is a **primitive permutation group** if *G* acts faithfully and primitively on some set Ω .

If G is a primitive permutation group, then

- each minimal normal subgroup is transitive;
- G has at most two minimal normal subgroups.

Suppose that G acts transitively on Ω .

A **block** of Ω is a nonempty proper subset B of Ω s.t. $B^g = B$ or $B^g \cap B = \emptyset, \forall g \in G$.

G is a **primitive group** on Ω if Ω has no nontrivial block.

G is a **primitive permutation group** if *G* acts faithfully and primitively on some set Ω .

If G is a primitive permutation group, then

- each minimal normal subgroup is transitive;
- G has at most two minimal normal subgroups.

G is a **quasiprimitive permutation group** on Ω if each minimal normal subgroup is transitive on Ω .

Each primitive permutation group is quasiprimitive.

18/41

O'Nan-Scott-Praeger type for (quasi-)primitive groups

Abbreviation	O'Nan-Scott type	Descriptions on minmal normal subgroups N		
HA	Affine	1; elementary abelian;regular		
HS	Holomorph simple	2; non-abelian simple; regular		
HC	Holomorph compound	2; both isomorphic to $T^k, k \ge 2$; regular		
AS (As)	Almost simple	1;non-abelian simple; non-regular		
TW (Tw)	Twisted wreath	1; $N \cong T^k$, $k \ge 6$; regular;		
		G acts transitively on the k simple direct factors of N		
SD(Sd)	Simple diagonal	1; $N \cong T^k$, $k \ge 2$; non-regular;		
		N_{lpha} is a full diagonal subgroup of N ;		
		G acts primitively on the k simple direct factors of N		
CD(Cd)	Compound diagonal	1; $N \cong T^{kr}$, $k, r \ge 2$; non-regular;		
		G acts transitively on the kr direct factors of N; $N_{\alpha} \cong T^r$ is a direct product of r pair-wise disjoint full strips of length k;		
		the support of any full strip forms a block with minimal size		
PA (Pa) Product action		1; $N \cong T^k, k \ge 2$; non-regular;		
		G acts transitively on the k simple direct factors of N ;		
		N_{lpha} is a subdirect subgroup of R^k , and $N_{lpha} \cong R^k$ for some		
		proper non-trivial subgroup R of T		

Table: 8 types of (quasi-)primitive permutation groups

Wendi E		

< ∃⇒

Parameter conditions on Generalized n-gons

Let S = (P, L, I) be a generalized *n*-gon of order (s, t) for $n \in \{4, 6, 8\}$ with incidence graph Γ .

Lemma (Payne-Thas, Finite Generalized Quadrangles) For n = 4, then (i) $|\mathcal{P}| = (s+1)(st+1)$, and $|\mathcal{L}| = (t+1)(st+1)$; (ii) $s \leq t^2$, and $t \leq s^2$; (iii) $|\Gamma_i(x)| = (t+1)s^{\lfloor \frac{i}{2} \rfloor}t^{\lfloor \frac{i-1}{2} \rfloor}$, $1 \leq i \leq 3$, and $|\Gamma_4(x)| = s^2t$. (iv) $s + t \mid st(s+1)(t+1)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma (Maldeghem, Generalized Polygons)

For n = 6, then (i) $|\mathcal{P}| = (s+1)(s^2t^2 + st + 1)$, and $|\mathcal{L}| = (t+1)(s^2t^2 + st + 1)$; (ii) st is a perfect square, and $t \leq s^3$; (iii) $|\Gamma_i(x)| = (t+1)s^{\lfloor \frac{i}{2} \rfloor}t^{\lfloor \frac{i-1}{2} \rfloor}$, $1 \leq i \leq 5$, and $|\Gamma_6(x)| = s^3t^2$; (iv) $|\mathcal{P}|_2 = (s+1)_2$, and $|\mathcal{L}|_2 = (t+1)_2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Lemma (Maldeghem, Generalized Polygons)

For n = 6, then (i) $|\mathcal{P}| = (s+1)(s^2t^2 + st + 1)$, and $|\mathcal{L}| = (t+1)(s^2t^2 + st + 1)$; (ii) st is a perfect square, and $t \leq s^3$; (iii) $|\Gamma_i(x)| = (t+1)s^{\lfloor \frac{i}{2} \rfloor}t^{\lfloor \frac{i-1}{2} \rfloor}, \ 1 \leq i \leq 5, \text{ and } |\Gamma_6(x)| = s^3t^2;$ (iv) $|\mathcal{P}|_2 = (s+1)_2$, and $|\mathcal{L}|_2 = (t+1)_2$. For n = 8 then (i) $|\mathcal{P}| = (s+1)(st+1)(s^2t^2+1)$, and $|\mathcal{L}| = (t+1)(st+1)(s^2t^2+1)$; (ii) 2st is a perfect square, and $t \leq s^2$; (iii) $|\Gamma_i(x)| = (t+1)s^{\lfloor \frac{i}{2} \rfloor}t^{\lfloor \frac{i-1}{2} \rfloor}, \ 1 \leq i \leq 7, \text{ and } |\Gamma_8(x)| = s^4t^3$:

(iv)
$$s \neq t$$
, and st is even. In addition, either $|\mathcal{P}|$ is odd and $|\mathcal{L}|_2 = (t+1)_2$, or $|\mathcal{L}|$ is odd and $|\mathcal{P}|_2 = (s+1)_2$.

Wendi Di (SUSTech)

Benson type argument

Let $S = (\mathcal{P}, \mathcal{L}, \mathbf{I})$ be a *n*-gon of order (s, t) for $n \in \{4, 6, 8\}$, with incidence graph Γ .

3

(日)

Benson type argument

Let S = (P, L, I) be a *n*-gon of order (s, t) for $n \in \{4, 6, 8\}$, with incidence graph Γ .

Let g be any automorphism of S, and let

 $f_i = |\{P \in \mathcal{P} : d(P, P^g) = 2i\}|, g_i = |\{L \in \mathcal{L} : d(L, L^g) = 2i\}|, i \leq n/2.$

イロト イポト イヨト イヨト 二日

Benson type argument

Let S = (P, L, I) be a *n*-gon of order (s, t) for $n \in \{4, 6, 8\}$, with incidence graph Γ .

Let g be any automorphism of \mathcal{S} , and let

 $f_i = |\{P \in \mathcal{P} : d(P, P^g) = 2i\}|, g_i = |\{L \in \mathcal{L} : d(L, L^g) = 2i\}|, i \leq n/2.$

Lemma (Temmermans-Thas-Van Maldeghem, Combinatorica, 2009) There is $(1 + t)f_0 + f_1 = (1 + s)g_0 + g_1$. Moreover, (i) for n = 4. $(1+t)f_0 + f_1 = k(s+t) + (1+s)(1+t)$ for some integer k; (ii) for n = 6. $(1+t)f_0 + f_1 = k_1(s+t+\sqrt{st}) + k_2(s+t-\sqrt{st}) + (1+s)(1+t)$ for some integer k_1 and k_2 ; (iii) for n = 8, $(1+t)f_0 + f_1 = k_1(s+t+\sqrt{2st}) + k_2(s+t-\sqrt{2st}) + k_3(s+t) + k_3(s+t)$ (1+s)(1+t) for some integer k_1 , k_2 and k_3 .

The fixed element structure S_g

Let S = (P, L, I) be a *n*-gon of order (s, t) for $n \in \{4, 6, 8\}$, with incidence graph Γ .

Let g be any automorphism of S.

Define the fixed element structure S_g of g to be the subgeometry with points fixed by g, lines fixed by g.

Lemma

Then S_g is in one of the following 4 cases:

(i) empty;

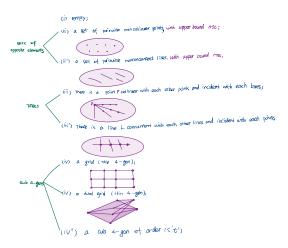
(ii) consists of a set of elements all opposite one another;

(iii) a tree of diameter at most n in the incidence graph Γ ;

(iv) a sub-n-gon, may be thin.

23/41

Example: S_g for n = 4



Wendi Di (SUSTech)

Normal quotient graphs

Let Γ be a graph with an automorphism group G, with $N \leq G$ acting intransitively on $V\Gamma$.

э

글 에 에 글 에 다

Normal quotient graphs

Let Γ be a graph with an automorphism group G, with $N \leq G$ acting intransitively on $V\Gamma$.

The normal quotient graph Γ_N of Γ has vertex set the *N*-orbits on $V\Gamma$, and two *N*-orbits O_1 and O_2 are adjacent in Γ_N if and only if there exist $x_i \in O_i$ such that x_1 and x_2 are adjacent in Γ .

크 에 프 어 프 어 프

Normal quotient graphs

Let Γ be a graph with an automorphism group G, with $N \leq G$ acting intransitively on $V\Gamma$.

The normal quotient graph Γ_N of Γ has vertex set the *N*-orbits on $V\Gamma$, and two *N*-orbits O_1 and O_2 are adjacent in Γ_N if and only if there exist $x_i \in O_i$ such that x_1 and x_2 are adjacent in Γ .

 Γ is a **cover** of Γ_N if $|\Gamma(x_1) \cap B_2| = 1$ for each edge $\{O_1, O_2\}$ in Γ_N and for each $x_1 \in O_1$.

Lemma (Giudici-Li-Praeger, Trans. Amer. Math. Soc., 2004)

Let Γ be a connected G-locally primitive bipartite graph. Let $N \leq G$, the maximal subject to being intransitive on the two parts. Then Γ is a cover of Γ_N and N acts semiregularly on the two parts. Moreover, Γ_N is a (G/N)-locally primitive bipartite graph satisfying at least one of the following:

- (i) $\Gamma_N \cong K_{m,m'}$;
- (ii) G/N acts faithfully and quasi-primitively on the two parts of on Γ_N ;
- (iii) G/N acts faithfully on the two parts of Γ_N but only acts quasi-primitively on one of them.

Lemma (Giudici-Li-Praeger, Trans. Amer. Math. Soc., 2004)

Let Γ be a connected G-locally primitive bipartite graph. Let $N \leq G$, the maximal subject to being intransitive on the two parts. Then Γ is a cover of Γ_N and N acts semiregularly on the two parts. Moreover, Γ_N is a (G/N)-locally primitive bipartite graph satisfying at least one of the following:

- (i) $\Gamma_N \cong K_{m,m'}$;
- (ii) G/N acts faithfully and quasi-primitively on the two parts of on Γ_N ;
- (iii) G/N acts faithfully on the two parts of Γ_N but only acts quasi-primitively on one of them.

Lemma (Giudici-Li-Praeger, Trans. Amer. Math. Soc., 2004)

Let Γ be a *G*-locally primitive connected bipartite graph such that *G* acts faithfully and quasiprimitively on both parts with type $\{X, Y\}$. Then either X = Y, or $\{X, Y\} = \{Sd, Pa\}$ or $\{Cd, Pa\}$.

イロト イポト イヨト イヨト

G-Locally primitive generalized n-gons

From now on, suppose that

- $n \in \{4, 6, 8\};$
- S = (P, L, I) be a generalized n-gon of order (s, t), with incidence graph Γ;
- S is G-locally primitive, where $G \leq Aut(S)$.

Outline

$$\left(\begin{array}{c} \text{Case 1. Gr is neither quaditions, on P nor 1} \\ \text{Case 1. Gr is neither quaditions, on P nor 1} \\ \text{Case 1.2 Gr is neither quaditions, on P nor 1} \\ \text{Case 1.2 Gr is neither quaditions, on P nor 1} \\ \text{Case 1.2 Gr is neither quaditions, on P nor 1} \\ \text{Case 1.2 Gr is neither quaditions, on P nor 1} \\ \text{Case 1.2 Gr is neither quaditions, on P nor 1} \\ \text{Case 1.2 Gr is neither quaditions, on P nor 1} \\ \text{Case 1.2 Gr is neither quaditions, on P nor 1} \\ \text{Case 1.2 Gr is neither quaditions, on P nor 1} \\ \text{Case 1.2 Gr is neither quaditions, on P nor 1} \\ \text{Case 1.2 Gr is neither quaditions, on P nor 1} \\ \text{Case 1.2 Gr is Qr is (Pr. 2n) faithful, quasitions, of type (x, x), (Sd, R), or (Cd, R) \\ \text{In ormal quatitions quaditions, of the quaditions of type (x, -), (As, As), (B, R) \\ \text{Case 1.3 Gr is Qr is (Pr. 2n) faithful, quaditions of type (x, -), (As, As), (B, R) \\ \text{Case 1.3 Gr is Qr is (Pr. 2n) faithful, quaditions of type (x, -), (As, -),$$

æ

・ロト ・四ト ・ヨト ・ヨト

Case 1. *G* is neither quasi-primitive on \mathcal{P} nor \mathcal{L}

There is $N \trianglelefteq G$ intransitive on both \mathcal{P} and \mathcal{L} , and we get the normal quotient graph Γ_N , with Γ a cover.

 Γ_N is a biregular bipartite graph, with valency $\{s+1, t+1\}$. N is semiregular on both \mathcal{P} and \mathcal{N} .

Case 1. *G* is neither quasi-primitive on \mathcal{P} nor \mathcal{L}

There is $N \trianglelefteq G$ intransitive on both \mathcal{P} and \mathcal{L} , and we get the normal quotient graph Γ_N , with Γ a cover.

 Γ_N is a biregular bipartite graph, with valency $\{s+1, t+1\}$. N is semiregular on both \mathcal{P} and \mathcal{N} .

Lemma (Li-Hua-Di)

We have gcd(s, t) = 1. Furthermore,

- for n = 4, $s + t \mid st + 1$, and $s + t \leq \gcd(t + 1, s 1) \cdot \gcd(t 1, s + 1)$;
- for n = 6 or 8, $4 \nmid 1 + s$ and $4 \nmid 1 + t$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Case 1. G is neither quasi-primitive on \mathcal{P} nor \mathcal{L}

There is $N \trianglelefteq G$ intransitive on both \mathcal{P} and \mathcal{L} , and we get the normal quotient graph Γ_N , with Γ a cover.

 Γ_N is a biregular bipartite graph, with valency $\{s+1, t+1\}$. N is semiregular on both \mathcal{P} and \mathcal{N} .

Lemma (Li-Hua-Di)

We have gcd(s, t) = 1. Furthermore,

- for n = 4, $s + t \mid st + 1$, and $s + t \leq gcd(t + 1, s 1) \cdot gcd(t 1, s + 1)$;
- for n = 6 or 8, $4 \nmid 1 + s$ and $4 \nmid 1 + t$.

Proof.

For any $g \in N$, g is fixed-point-free and fixed-line-free since N is semiregular.

For any line $L \in \mathcal{L}$, the *N*-orbit L^N is a set of pairwise non-concurrent lines. $g_1 = 0, f_1 = 0.$

By Benson type argument, we have gcd(s, t) = 1.

Case 1.1 $\Gamma_N \cong K_{1+s,1+t}$

Lemma (Fan-Li-Pan, J. Group Theory, 2014)

For a complete bipartite graph $K = K_{m,n}$ with $m, n \ge 3$, a group $H \le Aut(K)$ acts on K locally primitively iff H is primitive on both parts, and one of the following three cases holds:

- *H* acts faithfully on both parts, and all possible pairs of {*m*, *n*} are given.
- *H* acts faithfully on one of the two parts, and $K \cong Cos(H, L, R)$, where *L*, *R* are two maximal subgroups such that *L* is core-free, $L \cap R$ is maximal in *R*, and *R* contains a nontrivial normal subgroup of *H*.
- *H* acts unfaithfully on both parts, and *X* = (*M* × *N*).*P* such that *M*.*P* and *N*.*P* are primitive permutation groups of degree n and M, respectively.

3

Case 1.1 $\Gamma_N \cong K_{1+s,1+t}$

In this case, G/N acts primitively on both parts (may be unfaithful).

3

イロト 不得 トイヨト イヨト

Case 1.1 $\Gamma_N \cong K_{1+s,1+t}$

In this case, G/N acts primitively on both parts (may be unfaithful).

We first exclude the subcase where G/N acts faithfully on both parts by using parameter conditions induced by gcd(s, t) = 1.

→ < Ξ → </p>

In this case, G/N acts primitively on both parts (may be unfaithful).

We first exclude the subcase where G/N acts faithfully on both parts by using parameter conditions induced by gcd(s, t) = 1.

Suppose that G/N acts unfaithly on \mathcal{L}_N . Then consider the O'Nan-Scott type X induced by G_N on \mathcal{P}_N case by case. In this case, G/N acts primitively on both parts (may be unfaithful).

We first exclude the subcase where G/N acts faithfully on both parts by using parameter conditions induced by gcd(s, t) = 1.

Suppose that G/N acts unfaithly on \mathcal{L}_N . Then consider the O'Nan-Scott type X induced by G_N on \mathcal{P}_N case by case. For n = 6 or 8, $4 \nmid 1 + s \Rightarrow X \in \{PA, HA, AS\}$.

Lemma (Li-Hua-Di)

Suppose that G_P acts on $\Gamma(P)$ unfaithfully, and denote by $G_P^{[1]}$ this kernel. Then for any $g \in G_P^{[1]}$, the following holds:

(1) if $n \in \{4, 6\}$, the fixed element structure S_g of g is either a star with t + 1 lines or a sub-n-gon with order (s', t), where $s' \ge 1$, and s't < s;

(2) if n = 8, the fixed element structure S_g of g is a star with t + 1 lines.

Proof.

- For any point Q fixed by g, g fixes each lines through it.
- For any line fixed by g, there is a constant number of points fixed by g on it.
- S_g is either a star with t + 1 lines or a sub-n-gon with order (s', t).
 In particular, for n = 8, there is no sub 8-gon of order (s, t') or (s', t).

イロト イポト イヨト イヨト 二日

Lemma (Li-Hua-Di)

The primitive action induced by G/N on \mathcal{P}_N cannot be of type PA.

Proof.

Suppose for a contrary that the primitive permutation action induced by G/N on \mathcal{P}_N is of type PA. Then $soc(G/N^{\mathcal{P}_N}) = T^k$, $k \ge 2$. Set K to be the kernel of G/N on \mathcal{L}_N .

- Identify \mathcal{P}_N as Δ^k , and T acts on Δ irregularly with point stabilizer T_{δ} . Take $u = (\delta, \dots, \delta) \in \Delta^k$.
- $T^k \leqslant K$, and $T^k_{\delta} \leqslant K_u$.
- Take $t \in T_{\delta}$ such that $|fix_{\Delta}(t)| > 1$. For each $1 \le i \le k$, let $\theta_i \in T_{\delta}^k$ with the first *i* entries *t* and the last k i entries 1.
- The fixed elements substructure S_i of the pre-image of θ_i in G is a sub-n-gon with order (s_i, t) , and $n \in \{4, 6\}$.
- Since $S_2 \subset S_1 \subset S$, s is equal to a power of t, which contradicts with gcd(s,t) = 1.

Lemma (Li-Hua-Di)

The primitive action induced by G/N on \mathcal{P}_N cannot be of type HA for $n \in \{6, 8\}$.

Proof.

Suppose for a contrary that the primitive permutation action induced by G/N on \mathcal{P}_N is of type HA. Then $soc(G/N^{\mathcal{P}_N}) = Z_p^d$, p odd, $d \ge 1$. Set K to be the kernel of G/N on \mathcal{L}_N .

- s is even, t is odd, and $1 + t \equiv 2 \pmod{4}$.
- X := G/N on \mathcal{L}_N is of AS type.
- $X = (Z_p^d \times T).P$ or $X \leq Z_p^d.(T.Out(T))$ according to G/N acts unfaithfully on \mathcal{P}_N or not.
- If $X = (Z_p^d \times T).P$, choose $t_1, t_2 \in T_{\delta}$, where $Cos(T : T_{\delta}) \cong \mathcal{L}_N$. Then $(S_{\hat{t}_1} \cap S_{\hat{t}_2}) \subset S_{\hat{t}_1} \subset S$, a contradiction.
- If $X \leq Z_p^d.(T.Out(T))$, then $T \leq GL_d(p)$, an irreducible subgroup. So d > 1.

Proof.

- For n = 6, and s is a square. By the Catalan's Conjecture, $1 + s = p^d$ has a unique pair of solution: $2^3 + 1 = 3^2$. Excluded.
- For n = 8, t is a square, so |T|_p = |T_δ|_p for any prime p ≡ 3 (mod 4).

Lemma

The primitive action induced by G/N on \mathcal{P}_N cannot be of type AS.

Proof.

Suppose that the primitive permutation action induced by G/N on \mathcal{P}_N is of type AS. Then $(G/N^{\mathcal{P}_N}) = T$, with point stabilizer T_u , where $u \in \mathcal{P}_N$.

- T acts trivially on \mathcal{L}_N .
- Chose t such that $|fix_{\mathcal{P}_N}(t)| > 1$. Then the fixed element substructure $S_{\hat{t}}$ is a sub-n-gon with order (s', t), where $t \leq s't < s$ and $n \in \{4, 6\}$.
- G/N on \mathcal{L}_N is also of type AS.
- If the action of G/N on \mathcal{P}_N is unfaithful, we can deduce s < t, which cannot occur. So, G/N acts faithfully on \mathcal{P}_N .
- T has a transitive permutation representation of degree t + 1. So we have $t + 1 \ge p(T)$, where p(T) denotes the least permutation representation of T. Out(T) induced a primitive action of degree s + 1. So, $s + 1 \mid |Out(T)|$.

•
$$(s+1)^2 \leq |Out(T)|^2 \leq p(T) \leq t+1$$
 except for 5 possibilities.

Case 1.1. $G_N \cong K_{1+s,1+t}$

Conclusion:

- For *n* = 6 or 8, **excluded**;
- For n = 4, up to duality, it must be that G/N acts unfaithly on \mathcal{L}_N , and induced a primitive action on \mathcal{P}_N of one of type HA, HS, HC, TW, AS.

< ∃⇒

Case 1.2. G/N acts faithfully and quasiprimitively on both parts

Conclusion:

- For *n* = 6 or 8, the remaining quasiprimitive type is (As, As), or (Pa,Pa);
- For *n* = 4, up to duality, the remaining quasiprimitive type is one of (Sd,Pa), (Cd, Pa), (As, As) and (Pa,Pa).

Case 1.3. G/N acts faithfully on both parts, but quasiprimitively on one of them

Conclusion:

- For *n* = 6 or 8, **excluded**;
- For n = 4, up to duality, the remaining quasiprimitive type is one of (HA,-), (HS,-), (HC,-), (TW,-), (As,-).

Case 2. G acts quasiprimitively on \mathcal{P} up to duality

In this case, G acts faithfully on both \mathcal{P} and \mathcal{L} . Conclusion:

- For n = 6 or 8, the remaining quasiprimitive type is (As,As), (Pa,Sd), or (Pa,Cd);
- For n = 4, up to duality, the remaining quasiprimitive type is one of (Tw,-), (Tw,Tw), (Pa,Pa), (Pa,Sd), (Pa,Cd), (As,As).

글 에 에 글 어

Thanks for your attention!

Wendi Di (SUSTech)

ヨト イヨト June 5th, 2024 41 / 41

< 47 ▶

э