Regular Cayley Maps of Elementary abelian p-groups

Hao Yu Capital Normal University School of Mathematical Sciences

April 24, 2024

Hao Yu (CNU)

Regular Cayley Maps of \mathbb{Z}_{p}^{n}

April 24, 2024 <u>1 / 22</u>

Definition (Factorizations of groups)

- A group X is said to be properly factorizable if X = GH for two proper subgroups G and H of X.
- The expression X = GH for two proper subgroups G and H of X is called a factorization of X, and G, H are called its factors.
- We say that X has an exact factorization if $G \cap H = 1$.

Definition (Product groups)

- X is the product group of G and H.
- Given a group G, a group X is called a skew product group of G if X = GC where $G \cap C = 1$ and C is a cyclic group with trivial core in X.
- Given a group G, a group X is called a dihedral-skew product group of G if X = GD where $G \cap D = 1$ and D is a dihedral group with trivial core in X.
- Given a group G, a group X is called a dihedral-product group of G if X = GD where $G \cap D = 1$ and D is a dihedral group.

Image: A matrix

Factorizations of groups naturally arise from the well-known Frattini's argument, including its version in permutation groups.

Proposition (Frattini's argument)

Let X be a group acting transitively on a set Ω , G be a subgroup of X and X_{α} be a point stabilizer of X. If G acts transitively on Ω , then $X = GX_{\alpha}$.

G acts regularly on Ω if $G \cap X_{\alpha} = 1$. A (dihedral-)skew product group X of G acts faithfully on [X : C]([X : D]), and contains a regular subgroup G.

History

- Jones determined all primitive permutation groups containing a transitive cyclic subgroup in 2004.
- Li Caiheng and Praeger extended it to quasi-primitive groups, almost simple groups and innately simple groups in 2012.
- Li Caiheng determined all quasiprimitive permutation group containing a dihedral regular subgroup in 2006.
- Li Caiheng, Pan Jiangmin, and Xia Binzhou determined all quasiprimitive permutation groups with a metacyclic transitive subgroup in 2021.

Remark: A permutation group is called *quasiprimitive* if each of its non-trivial normal subgroups is transitive.

Unoriented Regular Cayley Maps

- A map on a surface is a cellular decomposition of a closed surface into 0-cells called vertices, 1-cells called edges and 2-cells called faces. The vertices and edges of a map form its underlying graph. A map is said to be orientable if the supporting surface is orientable, and nonorientable if the supporting surface is nonorientable.
- A map \mathcal{M} is said to be orientable regular or (unoriented) regular if its automorphism group Aut (\mathcal{M}) is regular on arcs or flags (in most cases, arcs are incident vertex-edge pairs and flags are incident vertex-edge-face triples).
- A orientable regular map \mathcal{M} is reflexible if it is also regular, and is chiral if it is not regular.

Definition (Regular maps)

For a given group X and three involutions t, r, ℓ in X, a quadruple $\mathcal{M} = \mathcal{M}(X; t, r, \ell)$ is called a regular map if they satisfy three conditions: (1) $t\ell = \ell t$; (2) $X = \langle t, r, \ell \rangle$; (3) $\langle t, r \rangle$ is core free in X.

A regular map \mathcal{M} is nonorientable if $X = \langle tr, t\ell \rangle$ and orientable if $|X : \langle tr, t\ell \rangle| = 2$.

Definition (Orientable regular maps)

For a given group Y, an involution τ in Y and $\rho \in Y$, a triple $\mathcal{M} = \mathcal{M}(Y; \tau, \rho)$ is called an orientable regular map if $Y = \langle \tau, \rho \rangle$ and $\langle \rho \rangle$ is core free in Y.

An orientable regular map $\mathcal{M} = \mathcal{M}(Y; \tau, \rho)$ is reflexible if there exists $X = \langle t, r, \ell \rangle$ such that $Y = \langle t\ell, \rho = tr \rangle$.

Richter et al. show that a map \mathcal{M} is a Cayley map of a group G if and only if the group Aut (\mathcal{M}) contains a regular subgroup that is isomorphic to G.

Proposition (Jajcay and Širáň, 2003)

Let \mathcal{M} be an orientable regular Cayley map of G. Then $\operatorname{Aut}(\mathcal{M})$ is a skew product group of G.

Proposition (Kwak and Kwon, 2006)

Let \mathcal{M} be a unoriented regular Cayley map of G. Then $\operatorname{Aut}(\mathcal{M})$ is a dihedral-skew product group of G.

History (Orientable regular Cayley maps)

- \mathbb{Z}_n : Conder and Tucker, 2014.
- D_{2n} : I. Kovács and Y.S. Kwon, 2021.
- nonabelian characteristically simple groups: Chen Jiyong, Du Shaofei and Li Caiheng, 2022.
- \mathbb{Z}_p^n : Du Shaofei, Yu Hao and Luo Wenjuan, 2023.

History (unoriented regular Cayley maps)

• \mathbb{Z}_n : Hu Kan and Y.S. Kwon, 2024+.

Hao Yu (CNU)

Regular Cayley Maps of \mathbb{Z}_n^n

April 24, 2024

10 /

Let CM be an unoriented regular Cayley map of $G = \mathbb{Z}_p^n$. Then X = Aut(CM) is a dihedral-skew product group of G.

$$CM = (X; t, r, \ell), t\ell = \ell t$$

$$X = \langle t, r, \ell \rangle = G \langle t, r \rangle, \ G \cap \langle t, r \rangle = 1, \ \langle t, r \rangle_X = 1.$$

Set $D = \langle t, r \rangle \cong D_{2m}$, $P \in Syl_p(X)$ and $\sigma := rt$ with order of m. A regular map \mathcal{M} is called a *regular* p-map if the number of vertices is p^k , where p is prime and $k \ge 1$. Moreover, a regular p-map \mathcal{M} is *normal* if the Sylow p-subgroup of Aut (\mathcal{M}) is normal. Unoriented regular Cayley maps of \mathbb{Z}_p^n are regular p-maps,

Hao Yu (CNU)

11 / 22

$$\mathbb{Z}_p^n$$

Proposition (Du Shaofei, Tian Yao and Li Xiaogang, 2023)

Let $\mathcal{M} = \mathcal{M}(X; t, r, \ell)$ be a regular p-map and P a Sylow p-subgroup of Aut (\mathcal{M}) . Then \mathcal{M} is normal, except for the following two cases:

(1) $p = 2, X/O_2(X) \cong \mathbb{Z}_m \rtimes \mathbb{Z}_2 \text{ or } \mathbb{Z}_m \rtimes D_4$, where $m \ge 3$ is odd. Moreover, if \mathcal{M} is nonoriented, then $X/O_2(X) \cong \mathbb{Z}_m \rtimes \mathbb{Z}_2$ and $\ell \in O_2(X)$.

(2)
$$p = 3, X/O_3(X) \cong S_4.$$

Let CM be an unoriented regular Cayley map of $G = \mathbb{Z}_p^n$. Normal: If p = 2, then X is a 2-group. If p is odd, then $G \leq P$ and $X = (P\langle \sigma \rangle) \rtimes \langle t \rangle = (G\langle \sigma \rangle) \rtimes \langle t \rangle$. $(\sigma = rt)$

Hao Yu (CNU)

12 / 22

Lemma

Let H = AD be a dihedral-skew product group of a 2-group A. Let t, r, ℓ be different involutions in H such that $t\ell = \ell t$, $D = \langle t, r \rangle$ and $H = \langle t, r, \ell \rangle$. Set $\sigma = rt$ and $\ell = g\sigma^i t^j$ with $g \in A$ and some integers i, j. Suppose that g is an involution in A and $H = \langle gt^{j+1}, \sigma \rangle$. Then His not a 2-group.

There is no exists any nonorientable normal regular Cayley map of \mathbb{Z}_2^n .

Proof For the contrary, assume that H is a 2-group. Then H = ADis not a dihedral group. H can not be generated by two involutions, which implies $q, t, r \notin \Phi(H)$. Consider $\overline{H} = H/\Phi(H)$. Then \overline{H} is either $\langle \overline{q}, \overline{\sigma} \rangle$ or $\langle \overline{qt}, \overline{\sigma} \rangle$. Suppose that $\overline{H} = \langle \overline{q}, \overline{\sigma} \rangle$. Then the element \overline{t} is $\overline{g}, \overline{\sigma}$ or $\overline{g\sigma}$. If $\overline{t} = \overline{g}, \overline{\sigma}$ then $qt \in \Phi(H)$ and so $H = \langle q, t, r \rangle = \langle qt, t, r \rangle = \langle t, r \rangle$ is a dihedral group, a contradiction. If $\overline{t} = \overline{\sigma}$, then $r = \sigma t \in \Phi(H)$, a contradiction. If $\overline{t} = \overline{g\sigma}$, then $tg\sigma \in \Phi(H)$, which implies $H = \langle tg\sigma, t, r \rangle = \langle t, r \rangle$ is a dihedral group, a contradiction again. Suppose that $\overline{H} = \langle \overline{qt}, \overline{\sigma} \rangle$. Then the element \overline{q} is $\overline{qt}, \overline{\sigma}$ or $\overline{qt\sigma}$. With the same argument as the above, we get also a contradiction. Therefore, H is not a 2-group.

14 / 22

イロト イヨト イヨト

For a map $\mathcal{M} = \mathcal{M}(X; t, r, \ell)$, its Petrie dual $P(\mathcal{M})$ is $\mathcal{M}(X; t, r, \ell t)$.

Lemma

Let \mathcal{M} be a normal regular p-map. If \mathcal{M} is nonorientable(orientable), then its Petrie dual $P(\mathcal{M})$ is orientable(nonorientable), separately.

Using the above lemma, we can get that for any nonorientable regular Cayley map CM of $G \cong \mathbb{Z}_p^n$, if p is odd and CM is normal, then $P(\mathcal{M})$ is orientable. Since P(CM) is also a regular Cayley map of $G \cong \mathbb{Z}_p^n$, it is a reflexible Cayley map of $G \cong \mathbb{Z}_p^n$. With the help of results about orientable regular Cayley maps, we shall classify nonorientable regular Cayley maps of $G \cong \mathbb{Z}_p^n$ with odd prime p.

15 / 22

・ロト ・回ト ・ヨト ・ヨー

Proposition (Du, Yu, Luo, 2023)

Every orientable regular Cayley map of $G \cong \mathbb{Z}_p^n$ is isomorphic to $\mathcal{M}(Y; \sigma, g(-I))$, where Y, σ and g meet the following:

- (1) $Y = T \rtimes \langle \sigma \rangle \leq \operatorname{AGL}(n, p)$, where $T \cong \mathbb{Z}_p^n$, $|T \cap G| \geq p^{n-1}$; and T = G if p = 2;
- (2) $\sigma \in \mathbf{M}(n,p);$

(3) g may be taken from T such that $T = \langle g, g^{\sigma}, \dots, g^{\sigma^{n-1}} \rangle$. Moreover, given p and n, different σ in $\mathbf{M}(n, p)$ give nonisomorphic maps.

Lemma

Let $CM = \mathcal{M}(X : t, r, \ell)$ be a nonorientable regular Cayley map of $G \cong \mathbb{Z}_p^n$. If p is odd and CM is normal, then the following holds: (1) $n \ge 2$;

- (2) $X = \operatorname{Aut}(\operatorname{CM}) = T \rtimes \langle t, r \rangle \leq \operatorname{AGL}(n, p), \text{ where } T \cong \mathbb{Z}_p^n \text{ and } |T \cap G| \geq p^{n-1};$
- (3) $\ell = g(-I), \sigma := rt \in \mathbb{M}(n, p), g^t = g \text{ and } \sigma^t = \sigma^{-1}, \text{ where if we identify } T \text{ with } V(n, p), \text{ then } g \text{ may be taken from } T \text{ such that } \{\sigma^i(t) \mid 0 \le i \le n-1\} \text{ is a base for } T.$

17 / 22

Let $CM = \mathcal{M}(X; t, r, \ell)$ be a nonorientable regular Cayley map of $G \cong \mathbb{Z}_2^n$.

Lemma

P(CM) is a reflexible Cayley map.

Lemma

There is no exists a nonorientable regular Cayley map $CM = \mathcal{M}(X; t, r, \ell) \text{ of } \mathbb{Z}_3^n \text{ such that } X/O_3(X) \cong S_4.$

Hao Yu (CNU)

A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

표 문 문

Theorem (Yu Hao, 2024+)

Let CM be a nonorientable regular Cayley map of $G \cong \mathbb{Z}_p^n$. Then $n \ge 2$, CM = $\mathcal{M}(T \rtimes \langle t, \sigma t \rangle; t, \sigma t, g(-I))$, where $\sigma \in \mathbb{M}(n, p)$, $T = \langle g, g^{\sigma}, \cdots, g^{\sigma^{n-1}} \rangle$, $g^t = g$ and $\sigma^t = \sigma^{-1}$. Moreover, given p and n, different σ in $\mathbf{M}(n, p)$ give nonisomorphic maps.

Hao Yu (CNU)

Regular Cayley Maps of \mathbb{Z}_n^n

April 24, 2024 19 / 22

Theorem (Yu Hao, 2024+)

Let X = GD be a dihedral-skew product group of a nonabelian simple group G. Then either $G \triangleleft X$ or the triple (X, G, D) is given in Table 1.

Row	X	G	D
1	AGL(3,2)	GL(3, 2)	D_8
2	M_{12}	M_{11}	D_{12}
3	M_{24}	M_{23}	D_{24}
4	$A_{4m}, m \ge 2$	A_{4m-1}	D_{4m}
5	PGL(2, 11)	A_5	D_{22}
6	$A_{2m+3} \rtimes \mathbb{Z}_2, m \ge 2$	A_{2m+2}	$D_{2(2m+3)}$
7	$\operatorname{Aut}\left(M_{12}\right)$	M_{11}	D_{24}
8	$A_{4m} \rtimes \mathbb{Z}_2, m \ge 2$	A_{4m-1}	D_{8m}
		4.0.1	

Table: Dihedral-skew product groups of G

Determine dihedral-skew product group of all finite nonabelian characteristically simple groups and classify regular Cayley maps of finite nonabelian characteristically simple groups.

Thanks!

Hao Yu (CNU)

Regular Cayley Maps of \mathbb{Z}_p^n

April 24, 2024 22 / 22

E • 9 < (~

・ロト ・四ト ・ヨト ・ヨト