Finite linear groups with exactly 3 orbits

Hanyue Yi
Southern University of Science and Technology

2024.04.10
joint work with C.H. Li and Y.Z. Zhu

Actions of linear groups

$$
V=\mathbb{F}_{p}^{n} \text { and } G \leqslant \mathrm{GL}(V) \text { is a linear group on } V \text {. }
$$

Actions of linear groups

$V=\mathbb{F}_{p}^{n}$ and $G \leqslant \mathrm{GL}(V)$ is a linear group on V.

- GL (V) and $\mathrm{SL}(V)$ are transitive linear groups, i.e., transitive on $V \backslash\{0\}$.

Actions of linear groups

$V=\mathbb{F}_{p}^{n}$ and $G \leqslant \mathrm{GL}(V)$ is a linear group on V.

- GL(V) and $\mathrm{SL}(V)$ are transitive linear groups, i.e., transitive on $V \backslash\{0\}$.
- $\operatorname{Sp}(V)$ is also a transitive linear group.

Actions of linear groups

$V=\mathbb{F}_{p}^{n}$ and $G \leqslant \operatorname{GL}(V)$ is a linear group on V.

- GL(V) and $\mathrm{SL}(V)$ are transitive linear groups, i.e., transitive on $V \backslash\{0\}$.
- $\operatorname{Sp}(V)$ is also a transitive linear group.
- $\mathrm{GU}(V)$ and $\mathrm{O}(V)$ are generally not transitive. e.g. $\mathrm{GU}_{3}(5)$ has 6 orbits on \mathbb{F}_{25}^{3}.

Researches on linear groups

- Classification of transitive linear groups Huppert, 1957 and Hering, 1985

Researches on linear groups

- Classification of transitive linear groups Huppert, 1957 and Hering, 1985
- Classification of $\frac{1}{2}$-transitive linear groups Liebeck, Praeger and Saxl, 2018
- Linear groups transitive on "special" (totally isotropic, nondegenerate...) subspaces
Giudici, Glasby and Praeger, 2023

Researches on linear groups

- Classification of transitive linear groups Huppert, 1957 and Hering, 1985
- Classification of $\frac{1}{2}$-transitive linear groups Liebeck, Praeger and Saxl, 2018
- Linear groups transitive on "special" (totally isotropic, nondegenerate...) subspaces
Giudici, Glasby and Praeger, 2023
Remark:
G is a transitive linear group $\Longleftrightarrow G$ has 2 orbits: $\{0\}, V \backslash\{0\}$
What if G has 3 orbits on V ?

Linear groups with exactly 3 orbits

Assume that G has 3 orbits on V. Then either

- G is irreducible (Liebeck, 1987); or

Linear groups with exactly 3 orbits

Assume that G has 3 orbits on V. Then either

- G is irreducible (Liebeck, 1987); or
- there is a subspace $W<V$ such that the orbits are

$$
\{0\}, W \backslash\{0\} \text { and } V \backslash W .
$$

Linear groups with exactly 3 orbits

Assume that G has 3 orbits on V. Then either

- G is irreducible (Liebeck, 1987); or
- there is a subspace $W<V$ such that the orbits are

$$
\{0\}, W \backslash\{0\} \text { and } V \backslash W .
$$

Parabolic subgroup

The maximal subgroup of GL(V) stabilizing a d-dimensional subspace (denoted by $\mathcal{P}_{d}(V)$) has exactly 3 orbits on V, and

$$
\mathcal{P}_{d}\left(\mathbb{F}_{p}^{n}\right) \cong \mathbb{F}_{p}^{d(n-d)}:\left(\mathrm{GL}_{d}(p) \times \mathrm{GL}_{n-d}(p)\right)
$$

Parabolic subgroup

Let $X=\mathcal{P}_{d}\left(\mathbb{F}_{p}^{n}\right)$. Then elements in X have matrix form

$$
\left(\begin{array}{ll}
A & C \\
0 & B
\end{array}\right)=\left(\begin{array}{cc}
I & C B^{-1} \\
0 & I
\end{array}\right)\left(\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right)
$$

Parabolic subgroup

Let $X=\mathcal{P}_{d}\left(\mathbb{F}_{p}^{n}\right)$. Then elements in X have matrix form

$$
\left(\begin{array}{ll}
A & C \\
0 & B
\end{array}\right)=\left(\begin{array}{cc}
I & C B^{-1} \\
0 & I
\end{array}\right)\left(\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right)
$$

Hence $X=Q: L \cong \mathbb{F}_{p}^{d(n-d)}:\left(\mathrm{GL}_{d}(p) \times \mathrm{GL}_{n-d}(p)\right)$, where

$$
\begin{aligned}
& Q=\left\{\left.\left(\begin{array}{ll}
l & C \\
& I
\end{array}\right) \right\rvert\, C \in \mathrm{M}_{d(n-d)}\left(\mathbb{F}_{p}\right)\right\} \\
& -L=\left\{\left.\left(\begin{array}{ll}
A & \\
& B
\end{array}\right) \right\rvert\, A \in \mathrm{GL}_{d}(p), B \in \mathrm{GL}_{n-d}(p)\right\}
\end{aligned}
$$

Orbits of parabolic subgroup

Let $X=\mathcal{P}_{d}(V)=Q: L$ stabilizing W.

Orbits of parabolic subgroup

Let $X=\mathcal{P}_{d}(V)=Q: L$ stabilizing W.

- $X^{W} \cong \mathrm{GL}(W) \Longrightarrow\{0\}$ and $W \backslash\{0\}$ are 2 orbits of X.

Orbits of parabolic subgroup

Let $X=\mathcal{P}_{d}(V)=Q: L$ stabilizing W.

- $X^{W} \cong \mathrm{GL}(W) \Longrightarrow\{0\}$ and $W \backslash\{0\}$ are 2 orbits of X.
- $X^{V / W} \cong \mathrm{GL}(V / W) \Longrightarrow X$ is transitive on $V / W \backslash\{\overline{0}\}$.

Orbits of parabolic subgroup

Let $X=\mathcal{P}_{d}(V)=Q: L$ stabilizing W.

- $X^{W} \cong \mathrm{GL}(W) \Longrightarrow\{0\}$ and $W \backslash\{0\}$ are 2 orbits of X.
- $X^{V / W} \cong \mathrm{GL}(V / W) \Longrightarrow X$ is transitive on $V / W \backslash\{\overline{0}\}$.
- For any nonzero $\bar{v} \in V / W, Q \leqslant X_{\bar{v}}$ is transitive on

$$
\bar{v}=\{w+v: w \in W\} .
$$

Orbits of parabolic subgroup

Let $X=\mathcal{P}_{d}(V)=Q: L$ stabilizing W.

- $X^{W} \cong \mathrm{GL}(W) \Longrightarrow\{0\}$ and $W \backslash\{0\}$ are 2 orbits of X.
- $X^{V / W} \cong \mathrm{GL}(V / W) \Longrightarrow X$ is transitive on $V / W \backslash\{\overline{0}\}$.
- For any nonzero $\bar{v} \in V / W, Q \leqslant X_{\bar{v}}$ is transitive on

$$
\bar{v}=\{w+v: w \in W\} .
$$

Therefore, X has 3 orbits: $\{0\}, W \backslash\{0\}$ and $V \backslash W$.

Orbits of parabolic subgroup

Let $X=\mathcal{P}_{d}(V)=Q: L$ stabilizing W.

- $X^{W} \cong \mathrm{GL}(W) \Longrightarrow\{0\}$ and $W \backslash\{0\}$ are 2 orbits of X.
- $X^{V / W} \cong \mathrm{GL}(V / W) \Longrightarrow X$ is transitive on $V / W \backslash\{\overline{0}\}$.
- For any nonzero $\bar{v} \in V / W, Q \leqslant X_{\bar{v}}$ is transitive on

$$
\bar{v}=\{w+v: w \in W\} .
$$

Therefore, X has 3 orbits: $\{0\}, W \backslash\{0\}$ and $V \backslash W$.

Lemma

Subgroup $G \leqslant X$ has exactly 3 orbits if and only if

- G^{W} and $G^{V / W}$ are transitive on nonzero vectors of W and V / W, respectively.
- $G_{\bar{v}}$ acts on \bar{v} transitively.

$G \cap Q=1$

Lemma

Subgroup $G \leqslant X$ has exactly 3 orbits if and only if

- G^{W} and $G^{V / W}$ are transitive on nonzero vectors of W and V/W, respectively.
- G_{V} acts on \bar{v} transitively.

Remarks:

- transitive linear groups are known (Huppert and Hering);

$G \cap Q=1$

Lemma

Subgroup $G \leqslant X$ has exactly 3 orbits if and only if

- G^{W} and $G^{V / W}$ are transitive on nonzero vectors of W and V / W, respectively.
- G_{V} acts on \bar{v} transitively.

Remarks:

- transitive linear groups are known (Huppert and Hering);
- if $Q \leqslant G$, then $G_{\bar{v}}$ is transitive on \bar{v}.

$G \cap Q=1$

Lemma

Subgroup $G \leqslant X$ has exactly 3 orbits if and only if

- G^{W} and $G^{V / W}$ are transitive on nonzero vectors of W and V / W, respectively.
- $G_{\bar{v}}$ acts on \bar{v} transitively.

Remarks:

- transitive linear groups are known (Huppert and Hering);
- if $Q \leqslant G$, then $G_{\bar{v}}$ is transitive on \bar{v}.

Problem

Classifying $G \leqslant X$ with exactly 3 orbits and $G \cap Q=1$.

Orbits of Levi subgroups

$$
\text { Recall } L=\left\{\left.\left(\begin{array}{ll}
A & \\
& B
\end{array}\right) \right\rvert\, A \in \mathrm{GL}_{d}(p), B \in \mathrm{GL}_{n-d}(p)\right\}
$$

Orbits of Levi subgroups

$$
\text { Recall } L=\left\{\left.\left(\begin{array}{ll}
A & \\
& B
\end{array}\right) \right\rvert\, A \in \mathrm{GL}_{d}(p), B \in \mathrm{GL}_{n-d}(p)\right\}
$$

- L stabilizes a direct sum $V=W \oplus U$; and
- $L \cap Q=1$ and L has 4 orbits:
$\{0\}, W\{0\}, U \backslash\{0\}$ and $\{w+u \mid 0 \neq w \in W$ and $0 \neq u \in U\}$.

Orbits of Levi subgroups

$$
\text { Recall } L=\left\{\left.\left(\begin{array}{ll}
A & \\
& B
\end{array}\right) \right\rvert\, A \in \mathrm{GL}_{d}(p), B \in \mathrm{GL}_{n-d}(p)\right\}
$$

- L stabilizes a direct sum $V=W \oplus U$; and
- $L \cap Q=1$ and L has 4 orbits:

$$
\{0\}, W\{0\}, U \backslash\{0\} \text { and }\{w+u \mid 0 \neq w \in W \text { and } 0 \neq u \in U\}
$$

Observations

Assume that $G \cap Q=1$.

- If G is conjugate to a subgroup of L in $X=Q: L$, then G has more than 3 orbits.

Orbits of Levi subgroups

$$
\text { Recall } L=\left\{\left.\left(\begin{array}{ll}
A & \\
& B
\end{array}\right) \right\rvert\, A \in \mathrm{GL}_{d}(p), B \in \mathrm{GL}_{n-d}(p)\right\} .
$$

- L stabilizes a direct sum $V=W \oplus U$; and
- $L \cap Q=1$ and L has 4 orbits:

$$
\{0\}, W\{0\}, U \backslash\{0\} \text { and }\{w+u \mid 0 \neq w \in W \text { and } 0 \neq u \in U\}
$$

Observations

Assume that $G \cap Q=1$.

- If G is conjugate to a subgroup of L in $X=Q: L$, then G has more than 3 orbits.
- If there is only one conjugacy class of complement of Q in $Q: G$, then G has more than 3 orbits.

Example: $G \cong \mathrm{GL}_{3}(2)$

Let $V=\mathbb{F}_{2}^{4}$. Then $\mathcal{P}_{1}(V) \cong \mathbb{F}_{2}^{3}: \mathrm{GL}_{3}(2) \cong \mathrm{AGL}_{3}(2)$.
Then there exist subgroups G_{1} and G_{2} of $\mathcal{P}_{1}(V)$ such that

- $G_{1} \cong G_{2} \cong \operatorname{GL}_{3}(2)$;

Example: $G \cong \mathrm{GL}_{3}(2)$

Let $V=\mathbb{F}_{2}^{4}$. Then $\mathcal{P}_{1}(V) \cong \mathbb{F}_{2}^{3}: \mathrm{GL}_{3}(2) \cong \mathrm{AGL}_{3}(2)$.
Then there exist subgroups G_{1} and G_{2} of $\mathcal{P}_{1}(V)$ such that

- $G_{1} \cong G_{2} \cong \operatorname{GL}_{3}(2)$;
- G_{1} has 4 orbits on V; and G_{2} has 3 orbits on V.

Example: $G \cong \mathrm{GL}_{3}(2)$

Let $V=\mathbb{F}_{2}^{4}$. Then $\mathcal{P}_{1}(V) \cong \mathbb{F}_{2}^{3}: \mathrm{GL}_{3}(2) \cong \mathrm{AGL}_{3}(2)$.
Then there exist subgroups G_{1} and G_{2} of $\mathcal{P}_{1}(V)$ such that

- $G_{1} \cong G_{2} \cong \operatorname{GL}_{3}(2)$;
- G_{1} has 4 orbits on V; and G_{2} has 3 orbits on V.
$G_{1}=\left\langle\left(\begin{array}{ll}1 & \\ & A\end{array}\right),\left(\begin{array}{ll}1 & \\ & B\end{array}\right)\right\rangle$ and $G_{2}=\left\langle\left(\begin{array}{ll}1 & e \\ & A\end{array}\right),\left(\begin{array}{ll}1 & \\ & B\end{array}\right)\right\rangle$,
where $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right), B=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$, and $e=(1,0,0)$.

Cohomology group

Let $T \leqslant \mathrm{GL}(V)$. To determine complements of V in $V: T$, we use cohomology group.

Cohomology group

Let $T \leqslant \mathrm{GL}(V)$. To determine complements of V in $V: T$, we use cohomology group.

Proposition

- $\mathrm{H}^{0}(T, V)=\operatorname{Fix}(T, V)$.
- $\left|H^{1}(T, V)\right|=\#\{$ conjugacy classes of complements of $V\}$.

Cohomology group

Let $T \leqslant \mathrm{GL}(V)$. To determine complements of V in $V: T$, we use cohomology group.

Proposition

- $\mathrm{H}^{0}(T, V)=\operatorname{Fix}(T, V)$.
- $\left|H^{1}(T, V)\right|=\#\{$ conjugacy classes of complements of $V\}$.

Recall that $G \leqslant \mathcal{P}_{d}(V)=Q: L$. Thus, we have that
if $G \cap Q=1$ and $\left|\mathrm{H}^{1}(G, Q)\right|=1$, then G has more than 3 orbits.

Action of L on Q

Recall that $\mathcal{P}_{d}(V)=Q: L$, where

- $Q \cong \mathbb{F}_{p}^{d \times(n-d)} \cong \mathbb{F}_{p}^{d} \otimes \mathbb{F}_{p}^{n-d}$;
- $L=L_{1} \times L_{2} \cong \mathrm{GL}_{d}(p) \times \mathrm{GL}_{n-d}(p)$.

Action of L on Q

Recall that $\mathcal{P}_{d}(V)=Q: L$, where

- $Q \cong \mathbb{F}_{p}^{d \times(n-d)} \cong \mathbb{F}_{p}^{d} \otimes \mathbb{F}_{p}^{n-d}$;
- $L=L_{1} \times L_{2} \cong \operatorname{GL}_{d}(p) \times \mathrm{GL}_{n-d}(p)$.

Lemma

There is a natural $\mathbb{F}_{p} L$-module structure of Q such that $Q \cong W \otimes V / W$ with

$$
(w \otimes \bar{v})^{\ell_{1} \ell_{2}}=w^{\ell_{1}} \otimes \bar{v}^{\ell_{2}} \text { for } \ell_{i} \in L_{i} \text { with } i=1,2
$$

Analyzation: direct product

Suppose that $G=H_{1} \times H_{2} \cong \operatorname{SL}_{5}(5) \times \operatorname{SL}_{3}(5)$ with $G \cap Q=1$.

$$
\text { - } H_{1}:=\left\{\left(\begin{array}{cc}
A & * \\
& I
\end{array}\right): A \in \mathrm{SL}_{5}(5)\right\}, H_{2}:=\left\{\left(\begin{array}{ll}
l & * \\
& B
\end{array}\right): B \in \mathrm{SL}_{3}(5)\right\}
$$

Analyzation: direct product

Suppose that $G=H_{1} \times H_{2} \cong \operatorname{SL}_{5}(5) \times \mathrm{SL}_{3}(5)$ with $G \cap Q=1$.

$$
\text { - } H_{1}:=\left\{\left(\begin{array}{ll}
A & * \\
& I
\end{array}\right): A \in \mathrm{SL}_{5}(5)\right\}, H_{2}:=\left\{\left(\begin{array}{ll}
l & * \\
& B
\end{array}\right): B \in \mathrm{SL}_{3}(5)\right\}
$$

Lemma (Kunneth formula)

$\mathrm{H}^{1}(A \times B, W \otimes U) \cong\left(\mathrm{H}^{1}(A, W) \otimes \mathrm{H}^{0}(B, U)\right) \oplus\left(\mathrm{H}^{0}(A, W) \otimes \mathrm{H}^{1}(B, U)\right)$.

Hence, we have

$$
\left|H^{1}(G, Q)\right|=\left|H^{1}\left(H_{1} \times H_{2}, W \otimes V / W\right)\right|=1
$$

Analyzation: direct product

Suppose that $G=H_{1} \times H_{2} \cong \operatorname{SL}_{5}(5) \times \operatorname{SL}_{3}(5)$ with $G \cap Q=1$.

$$
\text { - } H_{1}:=\left\{\left(\begin{array}{ll}
A & * \\
& I
\end{array}\right): A \in \mathrm{SL}_{5}(5)\right\}, H_{2}:=\left\{\left(\begin{array}{ll}
l & * \\
& B
\end{array}\right): B \in \mathrm{SL}_{3}(5)\right\}
$$

Lemma (Kunneth formula)

$\mathrm{H}^{1}(A \times B, W \otimes U) \cong\left(\mathrm{H}^{1}(A, W) \otimes \mathrm{H}^{0}(B, U)\right) \oplus\left(\mathrm{H}^{0}(A, W) \otimes \mathrm{H}^{1}(B, U)\right)$.
Hence, we have

$$
\left|H^{1}(G, Q)\right|=\left|H^{1}\left(H_{1} \times H_{2}, W \otimes V / W\right)\right|=1
$$

In particular, G stabilizes a direct sum $V=W \oplus U \cong \mathbb{F}_{5}^{5} \oplus \mathbb{F}_{3}^{5}$.

Actions on W and V / W

Note that

- $G_{(W)}$ is the kernel of G acting on W;
- $G_{(V / W)}$ is the kernel of G acting on V / W;
- $G \cap Q=G_{(W)} \cap G_{(V / W)}$.

Actions on W and V / W

Note that

- $G_{(W)}$ is the kernel of G acting on W;
- $G_{(V / W)}$ is the kernel of G acting on V / W;
- $G \cap Q=G_{(W)} \cap G_{(V / W)}$.

Lemma

If $G \cap Q=1$ and G has exactly 3 orbits, then at least one of $G_{(W)}$ and $G_{(V / W)}$ is trivial.

Hint: $\left|H^{1}\left(G_{(W)} \times G_{(V / W)}, Q\right)\right|=1$.

Actions on W and V / W

Lemma

If $G \cap Q=1$ and G has exactly 3 orbits, then at least one of $G_{(M)}$ and $G_{(V / W)}$ is trivial.

- $G_{(m)}=1, G_{(v / m)} \neq 1$;
- $G_{(m)}=G_{(v / m)}=1$;
- $G_{(m)} \neq 1, G_{(v / m)}=1$.

Actions on W and V / W

Lemma

If $G \cap Q=1$ and G has exactly 3 orbits, then at least one of $G_{(M)}$ and $G_{(V / W)}$ is trivial.

- $G_{(M)}=1, G_{(V / W)} \neq 1 ; \quad$ One group appears
- $G_{(M)}=G_{(V / W)}=1 ; \quad$ No group appears
- $G_{(m)} \neq 1, G_{(V / m)}=1$. One group appears

Theorem (Li, Zhu and Y, 2024+)

If G is a reducible linear group with exactly 3 orbits and $O_{p}(G)=1$, then $V \cong \mathbb{F}_{2}^{4}$ and $G \cong \operatorname{GL}_{3}(2)$ is conjugate to G_{1} or G_{2}, where

$$
\begin{aligned}
& G_{1}=\left\langle\left(\begin{array}{c:ccc}
1 & 1 & 0 & 0 \\
\hdashline 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{c:ccc}
1 & 0 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)\right\rangle, \\
& G_{2}=\left\langle\left(\begin{array}{lll:l}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
\hdashline 0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll:l}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 1
\end{array}\right)\right\rangle .
\end{aligned}
$$

Case: $G \cap Q \neq 1$

For $V=\mathbb{F}_{p}^{2 n}$, define

$$
P:=\left\langle\left(\begin{array}{cc}
l & k \cdot l \\
& I
\end{array}\right): k \in \mathbb{F}_{p}\right\rangle, H:=\left\langle\left(\begin{array}{ll}
A & \\
& A
\end{array}\right): A \in \mathrm{GL}_{n}(p)\right\rangle .
$$

Set $G:=\langle P, H\rangle=P \times H$. We have $G^{W} \cong G^{V / W} \cong \operatorname{GL}_{n}(p)$.

Case: $G \cap Q \neq 1$

For $V=\mathbb{F}_{p}^{2 n}$, define

$$
P:=\left\langle\left(\begin{array}{cc}
l & k \cdot l \\
& l
\end{array}\right): k \in \mathbb{F}_{p}\right\rangle, H:=\left\langle\left(\begin{array}{cc}
A & \\
& A
\end{array}\right): A \in \mathrm{GL}_{n}(p)\right\rangle .
$$

Set $G:=\langle P, H\rangle=P \times H$. We have $G^{W} \cong G^{V / W} \cong \operatorname{GL}_{n}(p)$.
Let $w=e_{1}$ and $v=e_{n+1}$. Then $G_{\bar{v}}=P \times H_{\bar{v}}$.

Case: $G \cap Q \neq 1$

For $V=\mathbb{F}_{p}^{2 n}$, define

$$
P:=\left\langle\left(\begin{array}{cc}
l & k \cdot l \\
& l
\end{array}\right): k \in \mathbb{F}_{p}\right\rangle, H:=\left\langle\left(\begin{array}{cc}
A & \\
& A
\end{array}\right): A \in \mathrm{GL}_{n}(p)\right\rangle .
$$

Set $G:=\langle P, H\rangle=P \times H$. We have $G^{W} \cong G^{V / W} \cong \operatorname{GL}_{n}(p)$.
Let $w=e_{1}$ and $v=e_{n+1}$. Then $G_{\bar{v}}=P \times H_{\bar{v}}$.

- H_{v} fixes w and v.
- P stabilizes $\left\{k w+v: k \in \mathbb{F}_{p}\right\}$.

Case: $G \cap Q \neq 1$

For $V=\mathbb{F}_{p}^{2 n}$, define

$$
P:=\left\langle\left(\begin{array}{cc}
l & k \cdot l \\
& l
\end{array}\right): k \in \mathbb{F}_{p}\right\rangle, H:=\left\langle\left(\begin{array}{cc}
A & \\
& A
\end{array}\right): A \in \mathrm{GL}_{n}(p)\right\rangle .
$$

Set $G:=\langle P, H\rangle=P \times H$. We have $G^{W} \cong G^{V / W} \cong \operatorname{GL}_{n}(p)$.
Let $w=e_{1}$ and $v=e_{n+1}$. Then $G_{\bar{v}}=P \times H_{\bar{v}}$.

- H_{v} fixes w and v.
- P stabilizes $\left\{k w+v: k \in \mathbb{F}_{p}\right\}$.
$\Longrightarrow G_{v}$ stabilizes $\left\{k w+v: k \in \mathbb{F}_{p}\right\} \subsetneq \bar{v}$
$\Longrightarrow G$ has more than 3 orbits.

Case: $G \cap Q \neq 1$

For $V=\mathbb{F}_{p}^{2 n}$, set $G=\langle P, H\rangle=P: H$, where

- $P:=\left\langle\left(\begin{array}{cc}I & M \\ & I\end{array}\right): M^{T}=-M\right.$ for $\left.M \in \mathrm{M}_{n \times n}\left(\mathbb{F}_{p}\right)\right\rangle$, and
- $H:=\left\langle\left(\begin{array}{ll}A & \\ & \left(A^{T}\right)^{-1}\end{array}\right): A \in \operatorname{GL}_{n}(p)\right\rangle$.

Then G has more than 3 orbits and $G \cap Q=P \cong \mathbb{F}_{p}^{n(n-1) / 2}$.

Theorem

Assume that $G \leqslant \mathcal{P}_{d}(V)$ is non-solvable such that both G^{W} and $G^{V / W}$ are transitive linear groups and $O_{p}(G) \neq 1$.

Theorem

Assume that $G \leqslant \mathcal{P}_{d}(V)$ is non-solvable such that both G^{W} and $G^{V / W}$ are transitive linear groups and $O_{p}(G) \neq 1$.

If G has more than 3 orbits, then

- $\operatorname{dim} V=2 \operatorname{dim} W$ and $H^{V / W} \cong H^{W}$, where $H=G^{(\infty)}$.

Theorem

Assume that $G \leqslant \mathcal{P}_{d}(V)$ is non-solvable such that both G^{W} and $G^{V / W}$ are transitive linear groups and $O_{p}(G) \neq 1$.

If G has more than 3 orbits, then

- $\operatorname{dim} V=2 \operatorname{dim} W$ and $H^{V / W} \cong H^{W}$, where $H=G^{(\infty)}$.
- there exists a basis of V and $\varphi \in \operatorname{Out}\left(H^{W}\right)$ such that each $h \in H$ has matrix form

$$
\mathcal{M}(h)=\left(\begin{array}{cc}
A & * \\
0 & A^{\varphi}
\end{array}\right)
$$

Theorem

Assume that $G \leqslant \mathcal{P}_{d}(V)$ is non-solvable such that both G^{W} and $G^{V / W}$ are transitive linear groups and $O_{p}(G) \neq 1$.

If G has more than 3 orbits, then

- $\operatorname{dim} V=2 \operatorname{dim} W$ and $H^{V / W} \cong H^{W}$, where $H=G^{(\infty)}$.
- there exists a basis of V and $\varphi \in \operatorname{Out}\left(H^{W}\right)$ such that each $h \in H$ has matrix form

$$
\mathcal{M}(h)=\left(\begin{array}{cc}
A & * \\
0 & A^{\varphi}
\end{array}\right)
$$

where $\varphi=1$; or

- $H^{W} \cong \mathrm{SL}_{m}\left(p^{f}\right)(m \geqslant 3)$ or $A_{7}(\operatorname{dim} V=8$ and $p=2)$, and φ is the transpose inverse; or
- $H^{W} \cong \operatorname{Sp}_{4}\left(2^{f}\right)$ with $\varphi=\gamma$ (graph automorphism).

Rank 3 groups

The rank of transitive group $X \leqslant \operatorname{Sym}(\Omega)$ is the number of orbits of X_{α} for $\alpha \in \Omega$.

Rank 3 groups

The rank of transitive group $X \leqslant \operatorname{Sym}(\Omega)$ is the number of orbits of X_{α} for $\alpha \in \Omega$.

Example

If $G \leqslant \mathrm{GL}(V)$ has exactly 3 orbits on V, then $\bar{V}: G \leqslant \operatorname{AGL}(V)$ is a rank 3 permutation group on V.

Rank 3 groups

The rank of transitive group $X \leqslant \operatorname{Sym}(\Omega)$ is the number of orbits of X_{α} for $\alpha \in \Omega$.

Example

If $G \leqslant \mathrm{GL}(V)$ has exactly 3 orbits on V, then $\bar{V}: G \leqslant \operatorname{AGL}(V)$ is a rank 3 permutation group on V.

- Primitive rank 3 groups were classified by Bannai, Foulser, Kantor, Liebeck, Liebler, and Saxl (1969-1986).

Rank 3 groups

The rank of transitive group $X \leqslant \operatorname{Sym}(\Omega)$ is the number of orbits of X_{α} for $\alpha \in \Omega$.

Example

If $G \leqslant \mathrm{GL}(V)$ has exactly 3 orbits on V, then $\bar{V}: G \leqslant \operatorname{AGL}(V)$ is a rank 3 permutation group on V.

- Primitive rank 3 groups were classified by Bannai, Foulser, Kantor, Liebeck, Liebler, and Saxl (1969-1986).
- Many researches on imprimitive rank 3:
- Quasiprimitive: Devillers, Giudici, Li, Pearce, and Praeger (2011)
- Innately transitive: Baykalov, Devillers, and Praeger (2023)
- "Some" semiprimitive: Huang, Li, and Zhu (2024+)

Imprimitive rank 3 groups

Let G be an imprimitive rank 3 group.

Lemma

- G has a unique non-trivial block system \mathcal{B}; and
- both $G^{\mathcal{B}}$ and G_{B}^{B} are 2-transitive groups.

Imprimitive rank 3 groups

Let G be an imprimitive rank 3 group.

Lemma

- G has a unique non-trivial block system \mathcal{B}; and
- both $G^{\mathcal{B}}$ and G_{B}^{B} are 2-transitive groups.
- G_{B}^{B} is almost simple

Devillers, Giudici, Li, Pearce and Praeger (2011).

Imprimitive rank 3 groups

Let G be an imprimitive rank 3 group.

Lemma

- G has a unique non-trivial block system \mathcal{B}; and
- both $G^{\mathcal{B}}$ and G_{B}^{B} are 2-transitive groups.
- G_{B}^{B} is almost simple

Devillers, Giudici, Li, Pearce and Praeger (2011).

- G_{B}^{B} is affine

Huang, Li and Zhu (2024+) divide them into 4 sections.

Imprimitive rank 3 groups

G_{B}^{B} is affine: divided into 4 cases (Huang, Li and $\mathrm{Zhu}, 2024+$)

Imprimitive rank 3 groups

G_{B}^{B} is affine: divided into 4 cases (Huang, Li and Zhu, 2024+)
A particular case:
$N \triangleleft G \leqslant N$: $\operatorname{Aut}(N)$, where $\operatorname{Aut}(N)$ has most 3 orbits on N.

- $\operatorname{Aut}(N)$ has 3 orbits on N, and $(N, \operatorname{Aut}(N))$ is classified by Li and Zhu (2024+);
- $N \cong \mathbb{Z}_{p}^{n}$ and $G_{\alpha} \leqslant \operatorname{GL}_{n}(p)$ is a reducible group with exactly 3 orbits on N.

