Finite linear groups with exactly 3 orbits

Hanyue Yi

Southern University of Science and Technology

2024.04.10

joint work with C.H. Li and Y.Z. Zhu

$V = \mathbb{F}_p^n$ and $G \leq \operatorname{GL}(V)$ is a **linear group** on V.

- $V = \mathbb{F}_p^n$ and $G \leq \operatorname{GL}(V)$ is a **linear group** on V.
 - GL(V) and SL(V) are transitive linear groups,
 i.e., transitive on V \ {0}.

- $V = \mathbb{F}_p^n$ and $G \leq \operatorname{GL}(V)$ is a **linear group** on V.
 - GL(V) and SL(V) are transitive linear groups, i.e., transitive on $V \setminus \{0\}$.
 - Sp(V) is also a transitive linear group.

 $V = \mathbb{F}_p^n$ and $G \leq \operatorname{GL}(V)$ is a **linear group** on V.

- GL(V) and SL(V) are transitive linear groups, i.e., transitive on $V \setminus \{0\}$.
- Sp(V) is also a transitive linear group.
- GU(V) and O(V) are generally not transitive.
 e.g. GU₃(5) has 6 orbits on F³₂₅.

• Classification of transitive linear groups Huppert, 1957 and Hering, 1985

Researches on linear groups

- Classification of transitive linear groups Huppert, 1957 and Hering, 1985
- Classification of ¹/₂-transitive linear groups
 Liebeck, Praeger and Saxl, 2018
- Linear groups transitive on "special" (totally isotropic, nondegenerate...) subspaces
 Giudici, Glasby and Praeger, 2023

Finite linear groups with exactly 3 orbits

Researches on linear groups

- Classification of transitive linear groups Huppert, 1957 and Hering, 1985
- Classification of ¹/₂-transitive linear groups
 Liebeck, Praeger and Saxl, 2018
- Linear groups transitive on "special" (totally isotropic, nondegenerate...) subspaces

Giudici, Glasby and Praeger, 2023

Remark:

```
G is a transitive linear group \iff G has 2 orbits: \{0\}, V \setminus \{0\}
```

```
What if G has 3 orbits on V?
```

Assume that G has 3 orbits on V. Then either

• G is irreducible (Liebeck, 1987); or

Assume that G has 3 orbits on V. Then either

- G is irreducible (Liebeck, 1987); or
- there is a subspace W < V such that the orbits are

 $\{0\}, W \setminus \{0\} \text{ and } V \setminus W.$

Assume that G has 3 orbits on V. Then either

- G is irreducible (Liebeck, 1987); or
- there is a subspace W < V such that the orbits are

 $\{0\}, W \setminus \{0\} \text{ and } V \setminus W.$

Parabolic subgroup

The maximal subgroup of GL(V) stabilizing a *d*-dimensional subspace (denoted by $\mathcal{P}_d(V)$) has exactly 3 orbits on *V*, and

$$\mathcal{P}_d(\mathbb{F}_p^n) \cong \mathbb{F}_p^{d(n-d)} : (\mathrm{GL}_d(p) \times \mathrm{GL}_{n-d}(p)).$$

Let $X = \mathcal{P}_d(\mathbb{F}_p^n)$. Then elements in X have matrix form

$$\begin{pmatrix} A & C \\ 0 & B \end{pmatrix} = \begin{pmatrix} I & CB^{-1} \\ 0 & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}.$$

Let $X = \mathcal{P}_d(\mathbb{F}_p^n)$. Then elements in X have matrix form

$$\begin{pmatrix} A & C \\ 0 & B \end{pmatrix} = \begin{pmatrix} I & CB^{-1} \\ 0 & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}.$$

Hence $X = Q: L \cong \mathbb{F}_p^{d(n-d)}: (\operatorname{GL}_d(p) \times \operatorname{GL}_{n-d}(p))$, where

•
$$Q = \left\{ \begin{pmatrix} I & C \\ & I \end{pmatrix} | C \in M_{d(n-d)}(\mathbb{F}_p) \right\}$$

• $L = \left\{ \begin{pmatrix} A \\ & B \end{pmatrix} | A \in GL_d(p), B \in GL_{n-d}(p) \right\}$

Let $X = \mathcal{P}_d(V) = Q:L$ stabilizing W.

Let $X = \mathcal{P}_d(V) = Q:L$ stabilizing W.

• $X^W \cong \operatorname{GL}(W) \implies \{0\}$ and $W \setminus \{0\}$ are 2 orbits of X.

Let $X = \mathcal{P}_d(V) = Q:L$ stabilizing W.

• $X^{W} \cong \operatorname{GL}(W) \implies \{0\}$ and $W \setminus \{0\}$ are 2 orbits of X.

• $X^{V/W} \cong \operatorname{GL}(V/W) \implies X$ is transitive on $V/W \setminus \{\overline{0}\}$.

Let $X = \mathcal{P}_d(V) = Q:L$ stabilizing W.

- $X^W \cong \operatorname{GL}(W) \implies \{0\}$ and $W \setminus \{0\}$ are 2 orbits of X.
- $X^{V/W} \cong \operatorname{GL}(V/W) \implies X$ is transitive on $V/W \setminus \{\overline{0}\}$.
- For any nonzero $\overline{v} \in V/W$, $Q \leq X_{\overline{v}}$ is transitive on $\overline{v} = \{w + v : w \in W\}.$

Let $X = \mathcal{P}_d(V) = Q:L$ stabilizing W.

• $X^{W} \cong \operatorname{GL}(W) \implies \{0\}$ and $W \setminus \{0\}$ are 2 orbits of X.

• $X^{V/W} \cong \operatorname{GL}(V/W) \implies X$ is transitive on $V/W \setminus \{\overline{0}\}$.

• For any nonzero
$$\overline{v} \in V/W$$
, $Q \leq X_{\overline{v}}$ is transitive on
 $\overline{v} = \{w + v : w \in W\}.$

Therefore, X has 3 orbits: $\{0\}, W \setminus \{0\}$ and $V \setminus W$.

Let $X = \mathcal{P}_d(V) = Q:L$ stabilizing W.

• $X^W \cong \operatorname{GL}(W) \implies \{0\}$ and $W \setminus \{0\}$ are 2 orbits of X.

• $X^{V/W} \cong \operatorname{GL}(V/W) \implies X$ is transitive on $V/W \setminus \{\overline{0}\}$.

• For any nonzero
$$\overline{v} \in V/W$$
, $Q \leq X_{\overline{v}}$ is transitive on
 $\overline{v} = \{w + v : w \in W\}.$

Therefore, X has 3 orbits: $\{0\}, W \setminus \{0\}$ and $V \setminus W$.

Lemma

Subgroup $G \leq X$ has exactly 3 orbits if and only if

- *G^W* and *G^{V/W}* are transitive on nonzero vectors of *W* and *V/W*, respectively.
- $G_{\overline{v}}$ acts on \overline{v} transitively.

Subgroup $G \leq X$ has exactly 3 orbits if and only if

- *G^W* and *G^{V/W}* are **transitive** on nonzero vectors of *W* and *V/W*, respectively.
- $G_{\overline{v}}$ acts on \overline{v} transitively.

Remarks:

• transitive linear groups are known (Huppert and Hering);

Subgroup $G \leq X$ has exactly 3 orbits if and only if

- *G^W* and *G^{V/W}* are **transitive** on nonzero vectors of *W* and *V/W*, respectively.
- $G_{\overline{v}}$ acts on \overline{v} transitively.

Remarks:

- transitive linear groups are known (Huppert and Hering);
- if $Q \leq G$, then $G_{\overline{v}}$ is transitive on \overline{v} .

Subgroup $G \leq X$ has exactly 3 orbits if and only if

- *G^W* and *G^{V/W}* are **transitive** on nonzero vectors of *W* and *V/W*, respectively.
- $G_{\overline{v}}$ acts on \overline{v} transitively.

Remarks:

- transitive linear groups are known (Huppert and Hering);
- if $Q \leqslant G$, then $G_{\overline{\nu}}$ is transitive on $\overline{\nu}$.

Problem

Classifying $G \leq X$ with exactly 3 orbits and $G \cap Q = 1$.

Recall
$$L = \left\{ \begin{pmatrix} A \\ B \end{pmatrix} \middle| A \in \operatorname{GL}_d(p), B \in \operatorname{GL}_{n-d}(p) \right\}.$$

Recall
$$L = \left\{ \begin{pmatrix} A & \\ & B \end{pmatrix} \middle| A \in \operatorname{GL}_d(p), B \in \operatorname{GL}_{n-d}(p) \right\}.$$

- L stabilizes a direct sum $V = W \oplus U$; and
- $L \cap Q = 1$ and L has 4 orbits:

 $\{0\}, W \setminus \{0\}, U \setminus \{0\} \text{ and } \{w+u \mid 0 \neq w \in W \text{ and } 0 \neq u \in U\}.$

Recall
$$L = \left\{ \begin{pmatrix} A & \\ & B \end{pmatrix} \middle| A \in \operatorname{GL}_d(p), B \in \operatorname{GL}_{n-d}(p) \right\}.$$

- L stabilizes a direct sum $V = W \oplus U$; and
- $L \cap Q = 1$ and L has 4 orbits:

 $\{0\}, \ W \setminus \{0\}, \ U \setminus \{0\} \text{ and } \{w+u \mid 0 \neq w \in W \text{ and } 0 \neq u \in U\}.$

Observations

Assume that $G \cap Q = 1$.

 If G is conjugate to a subgroup of L in X = Q:L, then G has more than 3 orbits.

Recall
$$L = \left\{ \begin{pmatrix} A \\ B \end{pmatrix} \middle| A \in \operatorname{GL}_d(p), B \in \operatorname{GL}_{n-d}(p) \right\}.$$

- L stabilizes a direct sum $V = W \oplus U$; and
- $L \cap Q = 1$ and L has 4 orbits:

 $\{0\}, \ W \setminus \{0\}, \ U \setminus \{0\} \text{ and } \{w+u \mid 0 \neq w \in W \text{ and } 0 \neq u \in U\}.$

Observations

Assume that $G \cap Q = 1$.

- If G is conjugate to a subgroup of L in X = Q:L, then G has more than 3 orbits.
- If there is only one conjugacy class of complement of Q in Q:G, then G has more than 3 orbits.

Let
$$V = \mathbb{F}_2^4$$
. Then $\mathcal{P}_1(V) \cong \mathbb{F}_2^3$:GL₃(2) \cong AGL₃(2).

Then there exist subgroups G_1 and G_2 of $\mathcal{P}_1(V)$ such that

• $G_1 \cong G_2 \cong \operatorname{GL}_3(2);$

Let
$$V = \mathbb{F}_2^4$$
. Then $\mathcal{P}_1(V) \cong \mathbb{F}_2^3$:GL₃(2) \cong AGL₃(2).

Then there exist subgroups G_1 and G_2 of $\mathcal{P}_1(V)$ such that

•
$$G_1 \cong G_2 \cong \operatorname{GL}_3(2);$$

• G_1 has 4 orbits on V; and G_2 has 3 orbits on V.

Let
$$V = \mathbb{F}_2^4$$
. Then $\mathcal{P}_1(V) \cong \mathbb{F}_2^3$:GL₃(2) \cong AGL₃(2).

Then there exist subgroups G_1 and G_2 of $\mathcal{P}_1(V)$ such that

•
$$G_1 \cong G_2 \cong \operatorname{GL}_3(2);$$

• G_1 has 4 orbits on V; and G_2 has 3 orbits on V.

$$G_{1} = \left\langle \begin{pmatrix} 1 \\ A \end{pmatrix}, \begin{pmatrix} 1 \\ B \end{pmatrix} \right\rangle \text{ and } G_{2} = \left\langle \begin{pmatrix} 1 & e \\ A \end{pmatrix}, \begin{pmatrix} 1 \\ B \end{pmatrix} \right\rangle,$$

where $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, and $e = (1, 0, 0)$.

Let $T \leq GL(V)$. To determine complements of V in V:T, we use **cohomology group**.

Let $T \leq GL(V)$. To determine complements of V in V:T, we use **cohomology group**.

Proposition

•
$$\mathrm{H}^{0}(T, V) = \mathrm{Fix}(T, V).$$

• $|H^1(T, V)| = #\{$ conjugacy classes of complements of $V\}.$

Let $T \leq GL(V)$. To determine complements of V in V:T, we use **cohomology group**.

Proposition

•
$$\mathrm{H}^{0}(T, V) = \mathrm{Fix}(T, V).$$

• $|H^1(T, V)| = #\{$ conjugacy classes of complements of $V\}.$

Recall that $G \leq \mathcal{P}_d(V) = Q:L$. Thus, we have that

if $G \cap Q = 1$ and $|H^1(G, Q)| = 1$, then G has more than 3 orbits.

Recall that $\mathcal{P}_d(V) = Q:L$, where

- $Q \cong \mathbb{F}_p^{d \times (n-d)} \cong \mathbb{F}_p^d \otimes \mathbb{F}_p^{n-d};$
- $L = L_1 \times L_2 \cong \operatorname{GL}_d(p) \times \operatorname{GL}_{n-d}(p)$.

Recall that $\mathcal{P}_d(V) = Q:L$, where

•
$$Q \cong \mathbb{F}_p^{d \times (n-d)} \cong \mathbb{F}_p^d \otimes \mathbb{F}_p^{n-d};$$

• $L = L_1 \times L_2 \cong \operatorname{GL}_d(p) \times \operatorname{GL}_{n-d}(p)$.

Lemma

There is a natural \mathbb{F}_p L-module structure of Q such that $Q \cong W \otimes V/W$ with

$$(w \otimes \overline{v})^{\ell_1 \ell_2} = w^{\ell_1} \otimes \overline{v}^{\ell_2}$$
 for $\ell_i \in L_i$ with $i = 1, 2$

Suppose that $G = H_1 \times H_2 \cong SL_5(5) \times SL_3(5)$ with $G \cap Q = 1$.

•
$$H_1 := \left\{ \begin{pmatrix} A & * \\ & I \end{pmatrix} : A \in \mathrm{SL}_5(5) \right\}, \ H_2 := \left\{ \begin{pmatrix} I & * \\ & B \end{pmatrix} : B \in \mathrm{SL}_3(5) \right\}$$

Suppose that $G = H_1 \times H_2 \cong SL_5(5) \times SL_3(5)$ with $G \cap Q = 1$.

•
$$H_1 := \left\{ \begin{pmatrix} A & * \\ & I \end{pmatrix} : A \in \mathrm{SL}_5(5) \right\}, \ H_2 := \left\{ \begin{pmatrix} I & * \\ & B \end{pmatrix} : B \in \mathrm{SL}_3(5) \right\}$$

Lemma (Kunneth formula)

 $\mathrm{H}^1(A\times B, \mathcal{W}\otimes \mathit{U})\cong \left(\mathrm{H}^1(A, \mathcal{W})\otimes \mathrm{H}^0(B, \mathit{U})\right)\oplus \left(\mathrm{H}^0(A, \mathcal{W})\otimes \mathrm{H}^1(B, \mathit{U})\right).$

Hence, we have

$$|\mathrm{H}^{1}(G, Q)| = |\mathrm{H}^{1}(H_{1} \times H_{2}, W \otimes V/W)| = 1.$$

Suppose that $G = H_1 \times H_2 \cong SL_5(5) \times SL_3(5)$ with $G \cap Q = 1$.

•
$$H_1 := \left\{ \begin{pmatrix} A & * \\ & I \end{pmatrix} : A \in \mathrm{SL}_5(5) \right\}, \ H_2 := \left\{ \begin{pmatrix} I & * \\ & B \end{pmatrix} : B \in \mathrm{SL}_3(5) \right\}$$

Lemma (Kunneth formula)

 $\mathrm{H}^1(A\times B, \mathcal{W}\otimes \mathit{U})\cong \left(\mathrm{H}^1(A, \mathcal{W})\otimes \mathrm{H}^0(B, \mathit{U})\right)\oplus \left(\mathrm{H}^0(A, \mathcal{W})\otimes \mathrm{H}^1(B, \mathit{U})\right).$

Hence, we have

$$|\mathrm{H}^{1}(G, Q)| = |\mathrm{H}^{1}(H_{1} \times H_{2}, W \otimes V/W)| = 1.$$

In particular, G stabilizes a direct sum $V = W \oplus U \cong \mathbb{F}_5^5 \oplus \mathbb{F}_3^5$.

Note that

- $G_{(W)}$ is the kernel of G acting on W;
- $G_{(V/W)}$ is the kernel of G acting on V/W;

•
$$G \cap Q = G_{(W)} \cap G_{(V/W)}$$
.

Note that

- $G_{(W)}$ is the kernel of G acting on W;
- $G_{(V/W)}$ is the kernel of G acting on V/W;

•
$$G \cap Q = G_{(W)} \cap G_{(V/W)}$$
.

Lemma

If $G \cap Q = 1$ and G has exactly 3 orbits, then at least one of $G_{(W)}$ and $G_{(V/W)}$ is trivial.

Hint: $|H^1(G_{(W)} \times G_{(V/W)}, Q)| = 1.$

If $G \cap Q = 1$ and G has exactly 3 orbits, then at least one of $G_{(W)}$ and $G_{(V/W)}$ is trivial.

•
$$G_{(W)} = 1, \ G_{(V/W)} \neq 1;$$

•
$$G_{(W)} = G_{(V/W)} = 1;$$

•
$$G_{(W)} \neq 1$$
, $G_{(V/W)} = 1$.

If $G \cap Q = 1$ and G has exactly 3 orbits, then at least one of $G_{(W)}$ and $G_{(V/W)}$ is trivial.

• $G_{(W)} = 1, \ G_{(V/W)} \neq 1;$

•
$$G_{(V)} = G_{(V/V)} = 1;$$

•
$$G_{(W)} \neq 1$$
, $G_{(V/W)} = 1$.

- One group appears
- No group appears
- One group appears

Theorem (Li, Zhu and Y, 2024+)

If G is a reducible linear group with exactly 3 orbits and $O_p(G) = 1$, then $V \cong \mathbb{F}_2^4$ and $G \cong GL_3(2)$ is conjugate to G_1 or G_2 , where

$$G_{1} = \left\langle \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \right\rangle, \\G_{2} = \left\langle \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\rangle.$$

For
$$V = \mathbb{F}_p^{2n}$$
, define

$$P := \left\langle \begin{pmatrix} I & k \cdot I \\ & I \end{pmatrix} : k \in \mathbb{F}_p \right\rangle, \ H := \left\langle \begin{pmatrix} A \\ & A \end{pmatrix} : A \in \mathrm{GL}_n(p) \right\rangle.$$

Set $G := \langle P, H \rangle = P \times H$. We have $G^W \cong G^{V/W} \cong \operatorname{GL}_n(p)$.

. ..

For
$$V = \mathbb{F}_p^{2n}$$
, define

$$P := \left\langle \begin{pmatrix} I & k \cdot I \\ I \end{pmatrix} : k \in \mathbb{F}_p \right\rangle, \ H := \left\langle \begin{pmatrix} A \\ A \end{pmatrix} : A \in \mathrm{GL}_n(p) \right\rangle.$$
Set $G := \langle P, H \rangle = P \times H$. We have $G^W \cong G^{V/W} \cong \mathrm{GL}_n(p)$.
Let $w = e_1$ and $v = e_{n+1}$. Then $G_{\overline{v}} = P \times H_{\overline{v}}$.

For
$$V = \mathbb{F}_p^{2n}$$
, define

$$P := \left\langle \begin{pmatrix} I & k \cdot I \\ I \end{pmatrix} : k \in \mathbb{F}_p \right\rangle, \ H := \left\langle \begin{pmatrix} A \\ A \end{pmatrix} : A \in \mathrm{GL}_n(p) \right\rangle.$$
Set $G := \langle P, H \rangle = P \times H$. We have $G^W \cong G^{V/W} \cong \mathrm{GL}_n(p)$.

Let $w = e_1$ and $v = e_{n+1}$. Then $G_{\overline{v}} = P \times H_{\overline{v}}$.

• $H_{\overline{v}}$ fixes w and v.

• *P* stabilizes $\{kw + v : k \in \mathbb{F}_p\}$.

For
$$V = \mathbb{F}_p^{2n}$$
, define

$$P := \left\langle \begin{pmatrix} I & k \cdot I \\ I \end{pmatrix} : k \in \mathbb{F}_p \right\rangle, \ H := \left\langle \begin{pmatrix} A \\ A \end{pmatrix} : A \in \mathrm{GL}_n(p) \right\rangle.$$
Set $G := \langle P, H \rangle = P \times H$. We have $G^W \cong G^{V/W} \cong \mathrm{GL}_n(p)$.

Let $w = e_1$ and $v = e_{n+1}$. Then $G_{\overline{v}} = P \times H_{\overline{v}}$.

- $H_{\overline{v}}$ fixes w and v.
- *P* stabilizes $\{kw + v : k \in \mathbb{F}_p\}$.
- $\implies G_{\overline{v}} \text{ stabilizes } \{kw + v : k \in \mathbb{F}_p\} \subsetneq \overline{v}$
- \implies G has more than 3 orbits.

For
$$V = \mathbb{F}_p^{2n}$$
, set $G = \langle P, H \rangle = P$:*H*, where
• $P := \left\langle \begin{pmatrix} I & M \\ I \end{pmatrix} : M^T = -M \text{ for } M \in M_{n \times n}(\mathbb{F}_p) \right\rangle$, and
• $H := \left\langle \begin{pmatrix} A \\ (A^T)^{-1} \end{pmatrix} : A \in GL_n(p) \right\rangle$.

Then G has more than 3 orbits and $G \cap Q = P \cong \mathbb{F}_p^{n(n-1)/2}$.

Assume that $G \leq \mathcal{P}_d(V)$ is non-solvable such that both G^W and $G^{V/W}$ are transitive linear groups and $O_p(G) \neq 1$.

Assume that $G \leq \mathcal{P}_d(V)$ is non-solvable such that both G^W and $G^{V/W}$ are transitive linear groups and $O_p(G) \neq 1$.

If G has more than 3 orbits, then

• dim $V = 2 \dim W$ and $H^{V/W} \cong H^W$, where $H = G^{(\infty)}$.

Assume that $G \leq \mathcal{P}_d(V)$ is non-solvable such that both G^W and $G^{V/W}$ are transitive linear groups and $O_p(G) \neq 1$.

If G has more than 3 orbits, then

- dim $V = 2 \dim W$ and $H^{V/W} \cong H^W$, where $H = G^{(\infty)}$.
- there exists a basis of V and φ ∈ Out(H^W) such that each h ∈ H has matrix form

$$\mathcal{M}(h) = egin{pmatrix} A & * \ 0 & A^arphi \end{pmatrix},$$

Assume that $G \leq \mathcal{P}_d(V)$ is non-solvable such that both G^W and $G^{V/W}$ are transitive linear groups and $O_p(G) \neq 1$.

If G has more than 3 orbits, then

- dim $V = 2 \dim W$ and $H^{V/W} \cong H^W$, where $H = G^{(\infty)}$.
- there exists a basis of V and φ ∈ Out(H^W) such that each h ∈ H has matrix form

$$\mathcal{M}(h) = egin{pmatrix} \mathsf{A} & * \ \mathsf{0} & \mathsf{A}^arphi \end{pmatrix},$$

where $\varphi = 1$; or

- H^W ≃ SL_m(p^f) (m ≥ 3) or A₇ (dim V = 8 and p = 2), and φ is the transpose inverse; or
- $H^W \cong \operatorname{Sp}_4(2^f)$ with $\varphi = \gamma$ (graph automorphism).

Example

If $G \leq \operatorname{GL}(V)$ has exactly 3 orbits on V, then $\overline{V}: G \leq \operatorname{AGL}(V)$ is a rank 3 permutation group on V.

Example

If $G \leq GL(V)$ has exactly 3 orbits on V, then $\overline{V}: G \leq AGL(V)$ is a rank 3 permutation group on V.

• Primitive rank 3 groups were classified by Bannai, Foulser, Kantor, Liebeck, Liebler, and Saxl (1969 - 1986).

Example

If $G \leq GL(V)$ has exactly 3 orbits on V, then $\overline{V}: G \leq AGL(V)$ is a rank 3 permutation group on V.

- Primitive rank 3 groups were classified by Bannai, Foulser, Kantor, Liebeck, Liebler, and Saxl (1969 1986).
- Many researches on imprimitive rank 3:
 - Quasiprimitive: Devillers, Giudici, Li, Pearce, and Praeger (2011)
 - Innately transitive: Baykalov, Devillers, and Praeger (2023)
 - "Some" semiprimitive: Huang, Li, and Zhu (2024+)

Let G be an imprimitive rank 3 group.

Lemma

- G has a unique non-trivial block system \mathcal{B} ; and
- both $G^{\mathcal{B}}$ and $G^{\mathcal{B}}_{\mathcal{B}}$ are 2-transitive groups.

Let G be an imprimitive rank 3 group.

Lemma

- G has a unique non-trivial block system \mathcal{B} ; and
- both $G^{\mathcal{B}}$ and $G^{\mathcal{B}}_{\mathcal{B}}$ are 2-transitive groups.

• G_B^B is almost simple

Devillers, Giudici, Li, Pearce and Praeger (2011).

Let G be an imprimitive rank 3 group.

Lemma

- G has a unique non-trivial block system \mathcal{B} ; and
- both $G^{\mathcal{B}}$ and $G^{\mathcal{B}}_{\mathcal{B}}$ are 2-transitive groups.

• G_B^B is almost simple

Devillers, Giudici, Li, Pearce and Praeger (2011).

• G_B^B is affine

Huang, Li and Zhu (2024+) divide them into 4 sections.

G_B^B is affine: divided into 4 cases (Huang, Li and Zhu, 2024+)

 G_B^B is affine: divided into 4 cases (Huang, Li and Zhu, 2024+) A particular case:

 $N \lhd G \leq N$:Aut(N), where Aut(N) has most 3 orbits on N.

- Aut(N) has 3 orbits on N, and (N, Aut(N)) is classified by Li and Zhu (2024+);
- N ≃ Zⁿ_p and G_α ≤ GL_n(p) is a reducible group with exactly 3 orbits on N.