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Guessing Games

Imagine that in a game, n players each wears a hat with m possible colours,
numbered by 1, . . . ,m. They can’t see their own hat but can see the
remaining players. The players have to guess simultaneously what colour
of their own hats and are allowed to discuss what strategy they will take.

Random Strategy: All players randomly guess, then the probability
of all players correctly guess the colour of their own hat is 1

mn .

“≡ 0 (mod m)” Strategy: All players guess by assuming the sum of
all the colours is congruent to 0 modulo m, then the probability of all
players correctly guess the colour of their own hat is 1

m .
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Storage Codes on Graphs

Another formulation of guessing games is to consider the storage codes on
graphs. (Independently introduced by Mazumdar [Maz14; Maz15], and K.
Shanmugam and A. G. Dimakis [SD14])

Definition 1.

Let Γ be a simple connected graph on n vertices and C a code of length n
whose coordinates are indexed by the vertices of Γ. We call C a
storage code on Γ if, for any codeword c ∈ C , one can recover the
information at each coordinate of c by accessing its neighbors in Γ.

Example

The linear code Cn = {(c1, . . . , cn) ∈ Fn
q|
∑n

i=1 ci = 0} is a storage code
on the complete graph Kn.
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Construction of Storage Codes on Graphs

Given a graph Γ on n vertices, we can construct a linear code C on it
using H := A(Γ) + I as its parity-check matrix, i.e.,

C = {c ∈ Fn
q|HcT = 0}.

Then C is a storage code on Γ since for a codeword c = (c1, . . . , cn) ∈ C ,
the recovery of any i-th entry of c is feasible through its neighbors, as the
i-th row of H suggests a linear equation:

ci = −
∑

j∈N(i)

cj ,

where N(i) denotes the set of neighbors of i in Γ.
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Storage Codes on Triangle-Free Graphs

The rate of a linear storage code C , denoted by R(C ), is the ratio of its
dimension to the dimension of the ambient vector space. For a family of
storage codes {Cn}, where n is the length of Cn, the rate of this family is
defined as limn→∞ R(Cn), assuming this limit exists.

We would like to construct high-rate storage codes since it represents high
probability of all players to correctly guess the colour of their own hat in
the model of guessing game.

In the previous example, the graph Kn used to construct the storage code
Cn = {(c1, . . . , cn) ∈ Fn

q|
∑n

i=1 ci = 0} is dense, which prompts the
question of the maximum achievable rate of storage codes on graphs
without cliques Kt (t ≥ 3), i.e., triangle-free graphs.
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The Rates of Storage Codes on Triangle-Free Graphs

A triangle-free yet edge-rich graph does not necessarily yield a high-rate
storage code. Consider the complete bipartite graph Kt,t as an example: It
is triangle-free and dense, but any storage code C on it would have
R(C ) ≤ 1/2 due to its two independent vertex sets.

An initial conjecture by D. Christofides and K. Markström [CM11]
suggested a maximum rate of 1/2 for triangle-free graphs. Subsequently,
P. Cameron, A. Dang, and S. Riis [CDR14] disproved this conjecture by
some sporadic examples.

In 2022, A. Barg and G. Zémor [BZ22] introduced four infinite families of
storage codes on triangle-free graphs using Cayley graphs.
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Storage Codes on Triangle-Free Cayley Graphs

Method: Let 0 /∈ S ⊆ Fr
2. If the sum of any three distinct vectors in S is

nonzero, then the Cayley graph Γ = Cay(Fr
2,S) is triangle-free. Let C be

a binary linear code defined by using H := A(Γ) + I as its parity-check
matrix. Then C is a storage code on triangle-free graph Γ.

A. Barg and G. Zémor [BZ22] asked whether the rates of storage codes on
triangle-free graphs can be arbitrarily close to 1 and the answer is yes.

Even eariler, A. Golovnev and I. Haviv [GH20] introduced a family of
storage codes on the generalized Kneser graphs (which are triangle-free)
attaining unit rate, albeit using different terminology.

Subsequently, A. Barg, M. Schwartz and L. Yohananov [BSY22], and H.
Huang and Q. Xiang [HX23] independently generalized the Hamming
family presented in [BZ22].
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The BCH family of Storage Codes on Triangle-Free Graphs

In [BZ22], A. Barg and G. Zémor constructed a family of storage codes
(BCH family) and posed a question whether it can approach unit rate.

Let q = 2m with m being an positive integer. Define the vertex set as
G = F2

q and the connection set as Sm\{0}, where

Sm := {(a, a3)|a ∈ Fq} ⊆ G .

The resulting graph is Γ = Cay(F2
q,Sm\{0}). We then define

Hm := A(Γ) + I and construct the binary linear code Cn (with
n = q2 = 4m) using Hm as its parity-check matrix.

The choice of the connection set Sm\{0} for Γ, which coincides with the
column set of the parity-check matrix for the 2-error-correcting BCH code,
underpins our naming of {Cn} as the BCH family.
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Polynomial Method

We apply the polynomial method to investigate the intrinsic algebraic
structure of the BCH family, which leads us to establish an upper bound
on the rank of the parity-check matrix Hm of the BCH family.

We can express the (x , y)-entry of Hm as the value of a polynomial
evaluated at (x , y). First, the matrix Hm over F2 can be formulated as

Hm = (ax ,y )x ,y∈F2
q
,

where the (x , y)-entry is given by

ax ,y =

{
1, if x − y ∈ Sm,

0, otherwise.
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Polynomial Method

Let x = (x1, x2) and y = (y1, y2). Then each entry ax ,y can be expressed
as the value of a polynomial g evaluated at (x , y):

ax ,y = ((x1 − y1)
3 − (x2 − y2))

q−1 + 1

= (x31 + x1y
2
1 + x21y1 + y31 + x2 + y2)

q−1 + 1

=: g(x1, x2, y1, y2).

Let Wm = (ax ,y + 1)x ,y∈F2
q
. Then Wm = Hm + J, where J is the all-1

matrix. Hence,

rank(Wm)− rank(J) ≤ rank(Hm) ≤ rank(Wm) + rank(J),

⇐⇒ rank(Wm)− 1 ≤ rank(Hm) ≤ rank(Wm) + 1.

This means that Wm has almost the same rank as that of Hm.
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Simplification

Now the problem is reduced to computing the rank of Wm whose entry is
given by

h(x1, x2, y1, y2) = (x31 + x1y
2
1 + x21y1 + y31 + x2 + y2)

q−1.

Note that for each fixed x1, the map (x1, x2) → (x1, x2 + x31 ) is a
permutation on the rows labeled by (x1, x2) where x2 ∈ Fq. Thus we have

Proposition 2.

Let Dm = (f (x , y))x ,y∈F2
q
, where

f (x1, x2, y1, y2) = (x21y1 + x1y
2
1 + x2 + y2)

q−1.

Then Dm has the same -rank as that of Wm.
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Matrix Factorization

We can expand the polynomial (x21y1 + x1y
2
1 + x2 + y2)

q−1:

f =
∑

(l1,l2,l3,l4)∈Ω

(
q − 1

l1, l2, l3, l4

)
x2l1+l2
1 x l32 y

l1+2l2
1 y l42 ,

where Ω :=
{
(l1, l2, l3, l4)|

∑4
i=1 li = q − 1, 0 ≤ li ≤ q − 1, ∀i

}
.

Therefore, we can factor Dm as the product of two matrices

Dm = LR

=
[
· · ·

( q−1
l1,l2,l3,l4

)
x2l1+l2
1 x l32 · · ·

]
...

y l1+2l2
1 y l42

...

 ,

where the rows of L and columns of R are indexed by elements of F2
q, the

columns of L and rows of R are indexed by elements of Ω.
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Lucas’ Theorem

Let Nm be the number of distinct nonzero monomials in L. That is,

Nm : =

∣∣∣∣{(2l1 + l2, l3) :

(
q − 1

l1, l2, l3, l4

)
≡ 1 (mod 2)

}∣∣∣∣ .
We then have an upper bound for rank(Dm):

rank(Dm) ≤ rank(L) ≤ Nm.

Theorem 3 (Lucas’ Theorem).

Let p be a prime, and express the non-negative integers n, l1, l2, . . . , ls in
base p as n = ⟨nk , nk−1, . . . , n1, n0⟩p ; li = ⟨li ,k , li ,k−1, . . . , li ,1, li ,0⟩p, where
0 ≤ nj , li ,j ≤ p − 1 for j = 0, 1, . . . , k and i = 1, 2, . . . , s. Then(

n

l1, l2, . . . , ls

)
≡

k∏
j=0

(
nj

l1,j , l2,j . . . , ls,j

)
(mod p).
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Lucas’ Theorem

Notation:
Let a, b, c ∈ Z≥0. We write a+ b ⋖ c , if the following conditions hold:

ai + bi ≤ ci for all i = 0, . . . , k ,

where a = ⟨ak · · · a1a0⟩2 , b = ⟨bk · · · b1b0⟩2 , c = ⟨ck · · · c1c0⟩2.

For 0 ≤ s ≤ q − 1, define

Bs :=

{
2l1 + l2 :

(
q − 1

l1, l2, q − 1− s, l4

)
≡ 1 (mod 2) for some l4

}
,

and bs := |Bs |.
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Lucas’ Theorem

By Lucas’ Theorem,(
q − 1

l1, l2, q − 1− s, l4

)
≡ 1 (mod 2)

if and only if the addition l1 + l2 + (q − 1− s) + l4 = q − 1 involves no
carries, which is equivalent to l1 + l2 ⋖ s and l4 = s − l1 − l2.

Hence, we can rewrite Bs as

Bs := {2l1 + l2 : l1 + l2 ⋖ s} .

Note that Nm =
∑q−1

s=0 bs .
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Properties of Bs , bs

Proposition 4.

Let s = ⟨α1, α2, . . . , αi , β1, β2, . . . , βj⟩. Then

Bs = Bs1 × 2j + Bs2 :=
{
r2j + t : r ∈ Bs1 , t ∈ Bs2

}
,

where s1 = ⟨α1, α2, . . . , αi ⟩ and s2 = ⟨β1, β2, . . . , βj⟩.

Proposition 5.

Let i be a positive integer. Then b2i−1−1 = 2i − 1.

Proposition 6.

Let s = ⟨α1, α2, . . . , αi , 0, β1, β2, . . . , βj⟩. Then bs = bs1bs2 , where
s1 = ⟨α1, α2, . . . , αi ⟩ and s2 = ⟨β1, β2, . . . , βj⟩.
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A Recurrence Relation of Nm

By the aforementioned properties and some calculations, we have

Proposition 7.

The sequence of numbers Nm satisfies the following recurrence relation:

Nm = 4Nm−1 − 2Nm−2, m ≥ 0.

By solving this linear recursion, we can obtain the formula of Nm:

Nm =
1 +

√
2

2
(2 +

√
2)m +

1−
√
2

2
(2−

√
2)m, m ≥ 0.
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An upper bound

Theorem 8.

Let Dm be defined as above with m ≥ 1. Then

rank(Dm) ≤
1 +

√
2

2
(2 +

√
2)m,

and so

R(Dm) ≤
1 +

√
2

2

(
2 +

√
2

4

)m

.

Therefore, the BCH family is of unit rate.
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The Generalized BCH Family

We can generalize the BCH family by setting the connection set to be

Sk,m := {(a, ak) : a ∈ Fq} ⊆ F2
q,

where k is a fixed odd integer and 1 < k ≤ q − 1. Then we obtain the
generalized BCH family Fk on the graph Γk,m = Cay(F2

q,Sk,m\{0}).

Remark: In the above generalization, we may require k to be odd. In fact,
the matrix Hk,m has the same rank as Hk/2,m when k is even, where Hk,m

denotes the coset matrix of Sk,m in F2
q.

We hope that the generalized BCH family Fk is also of unit rate. Before
that, we want the graph Γk,m = Cay(F2

q,Sk,m\{0}) to be connected and
triangle-free.
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The Condition for Γk,m to be Connected and Triangle-Free

When m is large enough, the graph Γk,m is connected.

Theorem 9.

Let k > 1 be an odd integer. If 2
m
2 + 1 > k , then Sk,m contains an

F2-basis for F2
q; and the graph Γk,m is connected.

The following statement gives a necessary and sufficient condition for Γk,m
to be triangle-free.

Lemma 10.

The graph Γk,m is triangle-free if and only if the equation
(x + 1)k = xk + 1 in Fq only has solutions x = 0, 1.
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Some Special Cases: k = 2r + 1

We will consider the case when k = 2r + 1 and some three bit k (more
precisely, k = 7, 11, 13) and show that in these cases, the generalized BCH
family Fk is of unit rate.

When k = 2r + 1, we can deduce from Lemma 10 that it is triangle-free iff
gcd(r ,m) = 1. Define:

Nm : =

∣∣∣∣{(2r l1 + l2, l3) :

(
q − 1

l1, l2, l3, l4

)
≡ 1 (mod 2)

}∣∣∣∣ .
Although we haven’t found the formula of Nm, we can give an upper
bound for Nm.

Theroem 11.

We have

Nm ≤
(
15

16

) m
r+1

4m.

Haihua Deng (SUSTech) Storage Codes March 27th, 2024 24 / 37



Some Special Cases: k = 7, 11, 13

In Dm := (f (x , y))x ,y∈F2
q
, the (x , y)-entry is given by

f (x , y) =
(
x2

r

1 y1 + x1y
2r
1 + x2 + y2

)q−1
,

which is a (q − 1)-power of x2
r

1 y1 + x1y
2r
1 + x2 + y2.

Theorem 12.

Let A,B be two matrices. Then

rank(A⊗ B) = rank(A) · rank(B).

Corollary 13.

Let A,B be two m × n matrices. Then

rank(A ◦ B) ≤ rank(A)rank(B).
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Reduction of Power

Let (h(x1, x2, y1, y2))(x1,x2),(y1,y2)∈F2
q
denote the matrix in which the

((x1, x2), (y1, y2))-entry is h(x1, x2, y1, y2). We may simply write
(h(x1, x2, y1, y2))(x1,x2),(y1,y2)∈F2

q
as (h).

Lemma 14.

Let i be a non-negative integer. Then

rank((h)) = rank((h2
i
)).

Proof.

Note that

h(x1, x2, y1, y2)
2i = h(x2

i

1 , x2
i

2 , y2
i

1 , y2
i

2 ).

Furthermore, this expression represents a permutation of both the rows
and columns of (h). Thus the result follows. □
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Reduction of Power

Combining Corollary 13 and Lemma 14, we have

Proposition 15.

Let d(x1, x2, y1, y2) ∈ Fq[x1, x2, y1, y2] and m, t be positive integers with
m > t. Then

rank((d2m−1)) ≤ c ·
(
rank((d2t−1))

)m
t
,

where c = max{rank((d2i−1)) : 0 ≤ i < t}.

Remark: The above proposition tells us that the rank of
Am = (d2t−1)F2

2m
×F2

2m
will give an upper bound for the rank of (d2m−1).

However, the matrix Am is changing as m increases and rank(Am) would
not change when m is sufficiently large.
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Rank of a Polynomial

When the field size q is larger than the largest individual degree d of a
polynomial h(x1, x2, y1, y2), the rank of the matrix (h(x1, x2, y1, y2)) is
invariant, depending on the polynomial h. Thus, we may call it the rank of
h, denoted by rank(h).

Lemma 16.

Let h ∈ F2[x1, x2, y1, y2]. Assume that
d = max{degx1 h, degx2 h, degy1 h, degy2 h}, where degx1 h is the degree of
h in variable x1. If q > d , then

rank((h)F2
q×F2

q
) = rank(h).
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Proof Using a Computer

According to Proposition 15 and Lemma 16,

Theorem 17.

If there exists a positive integer t such that

rank(d2t−1) < 4t ,

then the generalized BCH family Fk is of unit rate.

Using Magma, we know that rank(d26−1) = 3256 < 4096 = 46 for F7,
rank(d27−1) = 15018 < 16384 = 47 for F11, and
rank(d27−1) = 14442 < 16384 = 47 for F13.

Corollary 18.

The generalized BCH families F7,F11 and F13 are all of unit rate. □
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Relation to R(3, t)

As we shall see, the storage codes on triangle-free graphs are related to
the Ramsey number R(3, t). If we use α(Γ) to denote the independence
number of the graph Γ, then we have the following result.

Lemma 19.

Let C be an [n, k]q storage code on a graph Γ. Then we have

α(Γ) ≤ n − k .

Hence, if we have an upper bound for the rank of the parity-check matrix
of C , we then can bound the independence number α(Γ). Employing the
BCH family F3, we obtain a constructive lower bound for R(3, t):

R(3, t) ≥ Ω(t log2+
√
2 4).
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Constructive Lower Bounds for R(3, t)

Utilizing the same Cayley graph Γ, Noga Alon provided a better upper
bound in [Alo95], applying the Carlitz-Uchiyama bound [CU57] for the
eigenvalues of Γ and then using Hoffman’s ratio bound. This approach led
Alon to a constructive lower bound R(3, t) ≥ Ω(t4/3) which is better than
the result we obtained above.

Currently, the best-known constructive lower bounds of R(3, t) are
Ω(t3/2), as seen in [Alo94; KPR10]. Note that R(3, t) ∼ t2/ log t [Kim95].

Question: Can we apply group theory to give a better constructive lower
bound for R(3, t)? Or in general, R(s, t)?
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Thank you!
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