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Outline

▶ Maximal cliques in graphs
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Maximal cliques in simple graphs

We consider simple graphs, that is graphs, without loops and multiple
edges.

A subset C of vertices in a graph Γ is called a clique if any two
vertices in C are adjacent.

Problem 1 (A general problem in graph theory)

For a graph Γ, determine all its cliques.

A clique in a graph is called maximal if it is not included in another
clique of larger size.

To solve Problem 1, it suffices to solve the following problem.

Problem 2 (A general problem in graph theory)

For a graph Γ, determine all its maximal cliques.
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Cliques and cocliques as complementary objects

For a graph Γ, the complement of Γ, denoted by Γ, is the graph with
the same vertex set as Γ and inverted adjacency relation.

A subset C of vertices in a graph Γ is called a coclique (independent
set), if any two vertices in C are not adjacent.

The cliques in Γ are in one-to-one correspondence with cocliques in Γ;
in particular, maximal cliques in Γ are in one-to-one correspondence
with maximal cocliques in Γ.

A clique C of size s in a graph Γ is called maximum if Γ has no
cliques of size larger than s.

Every maximum clique is always maximal, but not every maximal
clique is maximum. Maximum cliques are just largest (with respect to
the size) maximal cliques.
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Erdős–Ko–Rado theorem

The Erdős–Ko–Rado theorem, one of the fundamental results in
combinatorics, provides information about systems of intersecting
sets. A family A of subsets of a ground set — it might as well be
{1, . . . , n} — is intersecting if any two sets in A have at least one
point in common.

Theorem 1 (Erdős–Ko–Rado, 1961)

Let k and n be integers with n ≥ 2k. If A is an intersecting family of
k-subsets of {1, . . . , n}, then

|A| ≤
(
n− 1

k − 1

)
.

Moreover, if n > 2k, equality holds if and only if A consists of all the
k-subsets that contain a given point from {1, . . . , n}.
An intersecting family A consisting of all the k-subsets that contain a
given point from {1, . . . , n} is called canonical.
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Extensions of Erdős–Ko–Rado theorem

This theorem has two parts: a bound and a characterisation of
families that meet the bound, and states that a maximum intersecting
family is necessarily canonical.

One reason this theorem is so important is that it has many
interesting extensions. To address these, we first translate it to a
question in graph theory. The Kneser graph K(n, k) has all k-subsets
of {1, . . . , n} as its vertices, and two k-subsets are adjacent if they are
disjoint. (We assume n ≥ 2k to avoid trivialities.)

Then an intersecting family of k-subsets is a coclique in the Kneser
graph, and we see that the EKR theorem characterises the cocliques
of maximum size in the Kneser graph.

So we can seek to extend the EKR theorem by replacing the Kneser
graphs by other interesting families of graphs.
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EKR-type results

The classical Erdős-Ko-Rado theorem [EKR61] classified maximum
intersecting families of k-element subsets of {1, 2, . . . , n} when
n ≥ 2k + 1.

Since then, EKR-type results refer to understanding maximum
intersecting families in a broader context, and more generally,
classifying extremal configurations in other domains. The book
[GM15] by Godsil and Meagher provides an excellent survey on the
modern algebraic approaches to proving EKR-type results for
permutations, set systems, orthogonal arrays, and so on.

[EKR61] P. Erdős, C. Ko, and R. Rado, Intersection theorems for systems of finite

sets, Quart. J. Math. Oxford Ser. (2) 12 (1961), 313–320.

[GM15] C. D. Godsil, K. Meagher, Erdős-Ko-Rado Theorems: Algebraic

Approaches, Cambridge University Press (2015).
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Strongly regular graphs

A graph Γ is called k-regular if there exists an integer k ≥ 0 such that
each vertex in Γ has exactly k neighbours.

A graph on v vertices is called a strongly regular graph with
parameters (v, k, λ, µ) if:
(a) it is k-regular;
(b) each pair of adjacent vertices in the graph have exactly λ common
neighbours;
(c) each pair of distinct nonadjacent vertices in the graph have
exactly µ common neighbours.
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Delsarte-Hoffman bound

Every non-trivial strongly regular graph has exactly three distinct
eigenvalues, which can be expressed in terms of the parameters.

For the clique number ω(Γ) of a strongly regular graph Γ, the
Delsarte-Hoffman bound holds:

ω(Γ) ≤ 1− k

θmin
,

where θmin is the smallest eigenvalue of Γ.

A clique in a strongly regular graph whose size lies on the
Delsarte-Hoffman bound is called a Delsarte clique.
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Projective planes

An projective plane is a system of points and lines that satisfy the
following axioms:

▶ Any two distinct points lie on a unique line.

▶ Any two distinct lines intersect in a unique point.

▶ There exist three non-collinear points (points not on a single
line).

In this lecture we are interested in finite projective planes (that is,
projective planes having finitely many points).
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Properties of finite projective planes

If the number of points in an projective plane is finite, then if one line
of the plane contains n+ 1 points for some positive integer n then:

▶ each line contains n+ 1 points,

▶ each point is contained in n+ 1 lines,

▶ there are n2 + n+ 1 points in all, and

▶ there is a total of n2 + n+ 1 lines.

The number n is called the order of the projective plane.
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Projective plane PG(2, q)

Let q be a prime power and V be a 3-dimensional vector space over
the finite field Fq.

▶ The points of PG(2, q) are the 1-dimensional subspaces of V .

▶ The lines of PG(2, q) are the 2-dimensional subspaces of V .

▶ The incidence between the points and the lines is given by the
natural inclusion.

In a similar way, the projective space PG(d, q) can be defined for any
integer d ≥ 2.
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Affine planes
An affine plane is a system of points and lines that satisfy the
following axioms:

▶ Any two distinct points lie on a unique line.

▶ Given any line and any point not on that line there is a unique
line which contains the point and does not meet the given line.
(Playfair’s axiom)

▶ There exist three non-collinear points (points not on a single
line).

In an affine plane, two lines are called parallel if they are equal or
disjoint. Using this definition, Playfair’s axiom above can be replaced
by:

▶ Given a point and a line, there is a unique line which contains
the point and is parallel to the line.

The familiar Euclidean plane is an affine plane. In this lecture we are
interested in finite affine planes (that is, affine planes having finitely
many points).
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Properties of finite affine planes

If the number of points in an affine plane is finite, then if one line of
the plane contains n points then:

▶ each line contains n points,

▶ each point is contained in n+ 1 lines,

▶ there are n2 points in all, and

▶ there is a total of n2 + n lines.

The number n is called the order of the affine plane.
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Affine plane AG(2, q)

Let q be a prime power and W be a 2-dimensional vector space over
the finite field Fq.

▶ The points of AG(2, q) are all the cosets of the 0-dimensional
subspace of W .

▶ The lines of AG(2, q) are all the cosets of the 1-dimensional
subspaces of W .

▶ The incidence between the points and the lines is given by the
natural inclusion.

In a similar way, the affine space AG(d, q) can be defined for any
integer d ≥ 2.
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The goal of this lecture

In order to extend the Erdős–Ko–Rado theorem to another graphs,
we need to define the notion of ‘intersecting’ for the vertices of the
graphs we consider. Once we have done this, we can define the notion
of canonical intersecting families in these graphs.

In this lecture we consider two important families of strongly regular
graphs for which the notion of canonical intersecting families
(canonical cliques) is well defined: the block graphs of 2-(n,m, 1)
designs and the block graphs of orthogonal arrays.
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2-designs

A 2-(n,m, 1) design is a collection of m-sets of an n-set with the
property that every pair from the n-set is in exactly one m-set.

A specific 2-(n,m, 1) design is denoted by (V,B), where V is the n-set
(which we call the base set) and B is the collection of m-sets — these
are called the blocks of the design.

A 2-(n,m, 1) design may also be called a 2-design.

A simple counting argument shows that the number of blocks in a
2-(n,m, 1) design is n(n−1)

m(m−1) and each element of V occurs in exactly
n−1
m−1 blocks (this is usually called the replication number).
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Example of a 2-(13,3,1) design (a Steiner triple system)
▶ The point-set is the cyclic group Z/13Z
▶ The triples are the twenty-six 3-sets that are cyclically generated

(mod 13) by the base blocks {1, 3, 9}, {2, 5, 6} under the
transformation x 7→ x+ 1.

{1, 3, 9} {2, 5, 6}
{2, 4, 10} {3, 6, 7}
{3, 5, 11} {4, 7, 8}
{4, 6, 12} {5, 8, 9}
{5, 7, 0} {6, 9, 10}
{6, 8, 1} {7, 10, 11}
{7, 9, 2} {8, 11, 12}
{8, 10, 3} {9, 12, 0}
{9, 11, 4} {10, 0, 1}
{10, 12, 5} {11, 1, 2}
{11, 0, 6} {12, 2, 3}
{12, 1, 7} {0, 3, 4}
{0, 2, 8} {1, 4, 5}
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EKR-type theorem for 2-designs
The blocks of a 2-design are a set system, and every pair from the
base set occurs in exactly one block. Thus two distinct blocks of a
2-design must have intersection size 0 or 1. An intersecting set system
from a 2-design is a set of blocks from the design in which any two
have intersection of size exactly 1. (Note that a 2-design can be
viewed as a combinatorial approximation of the set of k-subsets of an
n-element set appearing in the EKR theorem.)

A question that naturally arises: what is the largest possible such set?
Clearly if we take the collection of all blocks that contain a fixed
element, we will have a system of size n−1

m−1 .

An EKR-type theorem for 2-designs would state that this is the
largest possible set of intersecting blocks and determine the
conditions when the only intersecting sets of blocks that has this size
is the set of all blocks that contain a fixed element. (The first result
would be the bound in the EKR theorem, and the second would be
the characterisation.)
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Block graph of a 2-(n,m, 1) design

The block graph of a 2-(n,m, 1) design (V,B) is the graph with the
blocks of the design as the vertices in which two blocks are adjacent if
and only if they intersect.

In a 2-design, any two blocks that intersect meet in exactly one point.
The block graph of a design (V,B) is denoted by X(V,B).

Alternatively, we could define a graph on the same vertex set in which
two vertices are adjacent if and only if the blocks do not intersect —
this graph is simply the complement of the block graph.

A clique in the block graph X(V,B) (or a coclique in its complement) is
an intersecting set system from (V,B).
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Designs that are not symmetric are non-trivial

Fisher’s inequality implies that the number of blocks in a 2-design is
at least n; if equality holds, the design is said to be symmetric and the
block graph of a symmetric 2-design is the complete graph Kn. To
avoid this trivial case, we assume that our designs are not symmetric.

Theorem 2 (Well-known)

The block graph of a 2-(n,m, 1) design (that is not symmetric) is
strongly regular with parameters(

n(n− 1)

m(m− 1)
,
m(n−m)

m− 1
, (m− 1)2 +

n− 1

m− 1
− 2,m2

)
.
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Canonical cliques of the block graph of a non-trivial
design

The Delsarte bound says that a clique in the block graph of a
2-(n,m, 1) design has size at most n−1

m−1 .

It is not difficult to construct a clique of this size: for any
i ∈ {1, . . . , n} let Si be the collection of all blocks in the design that
contain i. We call the cliques Si the canonical cliques of the block
graph.

From this, we know that a set of intersecting blocks in a 2-design is
no larger than the set of all blocks that contain a common point —
this is the bound for an EKR-type theorem for the blocks in a design.
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Example of a 2-(13,3,1) design and canonical cliques

{1, 3, 9} {2, 5, 6}
{2, 4, 10} {3, 6, 7}
{3, 5, 11} {4, 7, 8}
{4, 6, 12} {5, 8, 9}
{5, 7, 0} {6, 9, 10}
{6, 8, 1} {7, 10, 11}
{7, 9, 2} {8, 11, 12}
{8, 10, 3} {9, 12, 0}
{9, 11, 4} {10, 0, 1}
{10, 12, 5} {11, 1, 2}
{11, 0, 6} {12, 2, 3}
{12, 1, 7} {0, 3, 4}
{0, 2, 8} {1, 4, 5}

For a given point, there are exactly six triples containing it. Each
such six triples form a canonical clique. The six triples containing 1:

{1, 3, 9}, {6, 8, 1}, {12, 1, 7}, {10, 0, 1}, {11, 1, 2}, {1, 4, 5}.
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A sufficient condition for block graphs of 2-designs to
have only canonical maximum cliques
It is not known for which designs the canonical intersecting sets are
the only maximum intersecting sets. Godsil & Meagher offer a partial
result.

Theorem 3 ([GM15, Theorem 5.3.4])

If a clique in the block graph of a 2-(n,m, 1) design does not consist of
all the blocks that contain a given point, then its size is at most
m2 −m+ 1.

A corollary of this is an analogue of the EKR theorem, with the
characterisation of maximum families, for intersecting sets of blocks
in a 2-(n,m, 1) design.

Corollary 1 ([GM15, Corollary 5.3.5])

The only cliques of size n−1
m−1 in the block graph X(V,B) of a 2-(n,m, 1)

design with n > m3 − 2m2 + 2m are the sets of blocks that contain a
given point i in {1, . . . , n}.

25 / 54



Example of the block graph of a 2-design for which
there are non-canonical maximum cliques
The characterisation in this corollary may fail if n ≤ m3 − 2m2 + 2m.

For example, consider the projective geometry PG(3, 2). The points
of this geometry can be identified with the 15 nonzero vectors in a
4-dimensional vector space V over GF (2), and the lines with the 35
subspaces of dimension 2. This gives us a design with parameters
2-(15, 3, 1), where each block consists of the three nonzero vectors in
a 2-dimensional subspace. The parameters of this design correspond
to equality case in the inequality above.

There are exactly 15 subspaces of V with dimension 3, and each such
subspace contains exactly seven points and exactly seven lines and so
provides a copy of the projective plane of order two.

Each point of the design lies on exactly seven lines, and this provides
the family of 15 canonical cliques of size 7.

In addition, the seven lines in any one of the 15 projective planes
form a non-canonical maximum clique of size 7.
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Equality case

The characterisation in Corollary 1 may fail if n ≤ m3 − 2m2 + 2m.

Theorem 4 ([GM15, Exercise 5.7])

In case n = m3 − 2m2 + 2m, a non-canonical clique in the block graph
of a 2-(n,m, 1) design necessarily forms a (m2 −m+ 1,m, 1)
subdesign (which is a projective plane of order m− 1).
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Open problems formulated in the book

Problem 3 ([GM15, Problem 16.3.1])

Determine a characterisation of the 2-(n,m, 1) designs, based only on
the parameters of the design, for which the only maximum cliques in
the block graph are the canonical cliques.

We have considered an example of a design with a block graph that
has maximum cliques which are not canonical cliques. These
maximum cliques have an interesting structure — namely, they form
a subdesign isomorphic to the Fano plane. It is not clear if this a
result of a wider phenomenon.

Problem 4 ([GM15, Problem 16.3.2])

When the block graph of a design has maximum cliques that are not
canonical, are the non-canonical cliques isomorphic to smaller
designs?

Problem 5
Determine all the maximum cliques in the block graph for any
2-(n,m, 1) design.
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Further investigation

The stated problems suggest a comprehensive investigation of
2-(n,m, 1) designs such that n and m satisfy the inequality
n < m3 − 2m2 + 2m.

Very recently, we obtained [GK23] a negative answer to Problem 4 by
giving an explicit counterexample.

[GK23] S. Goryainov, E. V. Konstantinova, Non-canonical maximum cliques

without a design structure in the block graphs of 2-designs, November 2023.

https://arxiv.org/abs/2311.01190
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A 2-(66, 6, 1) design (I)

Consider the 2-(66, 6, 1) design constructed in [D80]. The
construction of this design can also be found in [CD07, p. 76].

The point set is P = Z13 × (Z3 ∪ {a, b}) ∪ {∞}.

[D80] R. H. F. Denniston, A Steiner system with a maximal arc, Ars Combin. 9

(1980) 247–248.

[CD07] C. J. Colbourn, Jeffrey H. Dinitz (editors), Handbook of Combinatorial

Designs, Chapman & Hall/CRC, Boca Raton, FL, second edition, 2007.
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A 2-(66, 6, 1) design (II)

To define the block set, consider the following eleven basic blocks:

B1 = {20, 50, 41, 91, 0a, 6a},
B2 = {10, 20, 60, 122, 5b, 8b},
B3 = {61, 21, 122, 12, 0a, 5a},
B4 = {31, 61, 51, 100, 2b, 11b},
B5 = {52, 62, 100, 30, 0a, 2a},
B6 = {92, 52, 22, 41, 6b, 7b},
B7 = {70, 90, 101, 12, 3a, 4b},
B8 = {2a, 6a, 5a, 4b, 12b, 10b},
B9 = {81, 11, 42, 30, 9a, 12b},
B10 = {112, 32, 120, 91, 1a, 10b},
B11 = {∞, 00, 01, 02, 0a, 0b}.
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A 2-(66, 6, 1) design (III)

The 143 blocks of the block set B of the design are then obtained by
developing modulo 13 the Z13-components of all points in the basic
blocks. More precisely, for any e ∈ Z13 and basic block Bi, denote by
Be

i the set of points obtained from the points of Bi by adding e
modulo 13 to the Z13-component of each non-infinity point of Bi.
Then, for the block set B of the design, we have:

B =

11⋃
i=1

⋃
e∈Z13

Be
i .
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Non-canonical cliques without a design structure (I)
Consider the following blocks:

B11
1 = {00, 30, 21, 71, 11a, 4a},
B1

2 = {20, 30, 70, 02, 6b, 9b},
B1

3 = {71, 31, 02, 22, 1a, 6a},
B10

4 = {01, 31, 21, 70, 12b, 8b},
B10

5 = {22, 32, 70, 00, 10a, 12a},
B11

6 = {72, 32, 02, 21, 4b, 5b},
B6

7 = {00, 20, 31, 72, 9a, 10b},
B12

9 = {71, 01, 32, 20, 8a, 11b},
B4

10 = {22, 72, 30, 01, 5a, 1b},
B0

11 = {∞, 00, 01, 02, 0a, 0b},
B2

11 = {∞, 20, 21, 22, 2a, 2b},
B3

11 = {∞, 30, 31, 32, 3a, 3b},
B7

11 = {∞, 70, 71, 72, 7a, 7b}. 33 / 54



Non-canonical cliques without a design structure (II)

Put

C1 = {B11
1 , B1

2 , B
1
3 , B

10
4 , B10

5 , B11
6 , B6

7 , B
12
9 , B4

10, B
0
11, B

2
11, B

3
11, B

7
11}.

Proposition 1 (G., Konstantinova, 2023)

The set C1 is a non-canonical maximum clique in the block graph of
the design (P,B).
For any e ∈ Z13, put

Ce
1 = {Be | B ∈ C1}.

Corollary 1 (G., Konstantinova, 2023)

For any e ∈ Z13, the set Ce
1 forms a non-canonical maximum clique in

the block graph of the design (P,B).
Thus, Corollary 1 gives thirteen non-canonical maximum cliques.
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Non-canonical cliques without a design structure (III)

Consider the set of blocks

C2 =
⋃

e∈Z13

{Be
8},

obtained by developing modulo 13 the Z13-components of all points in
the basic block B8.

Proposition 2 (G., Konstantinova, 2023)

The set C2 is a non-canonical maximum clique in the block graph of
the design (P,B).
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Non-canonical cliques without a design structure (IV)
The blocks in C2 are:

B0
8 = {2a, 6a, 5a, 4b, 12b, 10b},

B1
8 = {3a, 7a, 6a, 5b, 0b, 11b},

B2
8 = {4a, 8a, 7a, 6b, 1b, 12b},

B3
8 = {5a, 9a, 8a, 7b, 2b, 0b},

B4
8 = {6a, 10a, 9a, 8b, 3b, 1b},

B5
8 = {7a, 11a, 10a, 9b, 4b, 2b},

B6
8 = {8a, 12a, 11a, 10b, 5b, 3b},

B7
8 = {9a, 0a, 12a, 11b, 6b, 4b},

B8
8 = {10a, 1a, 0a, 12b, 7b, 5b},

B9
8 = {11a, 2a, 1a, 0b, 8b, 6b},

B10
8 = {12a, 3a, 2a, 1b, 9b, 7b},

B11
8 = {0a, 4a, 3a, 2b, 10b, 8b},

B12
8 = {1a, 5a, 4a, 3b, 11b, 9b}. 36 / 54



Non-canonical cliques without a design structure (V)

We then verified by Magma that the block graph of (P,B) has only
these fourteen non-canonical maximum cliques. Finally, it follows
from [CD07, p. 72, Table 3.3] that a 2-(39,6,1) design (the total
number of points in the union of the blocks from C1 is 39) and a
2-(26,6,1) design (the total number of points in the union of the
blocks from C2 is 26) do not exist, which implies that neither of the
fourteen non-canonical maximum cliques has a design structure.
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A new research direction

Thus, the following theorem holds.

Theorem 2 ([GK23, Theorem 1])

A non-canonical maximum clique in the block graph of a 2-design does
not necessarily have a design structure.

In [CD07, p. 72, Table 3.3], the necessary and sufficient conditions for
the existence of a 2-(n,m, 1) design with m ≤ 9 are given. For
m ≥ 10, much less is known. However, as was previously discussed,
non-canonical maximum cliques in the block graph of a 2-(n,m, 1)
design may exist only if n ≤ m3 − 2m2 + 2m. This means that for a
fixed value of m, there exist only finitely many 2-(n,m, 1) designs
whose block graphs may have non-canonical maximum cliques. We
thus formulate the following open problem.

Problem 6
Does there exist an infinite family of 2-designs whose block graphs
have non-canonical maximum cliques without a design structure?
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Known infinite families of 2-designs
Let us have a look at the known infinite families of 2-(n,m, 1) designs
(equivalently, Steiner systems S(t,m, n) where t = 2) with growing m.
For this, let us have a look at [CD07, p. 103, item 5.11], which
provides the following four known infinite families of Steiner systems
S(2,m, n):

1. S(2, q + 1, qt + . . .+ q + 1), q a prime power, t ≥ 2 (projective
2-designs);

2. S(2, q, qt), q a prime power, t ≥ 2 (affine 2-designs);

3. S(2, q + 1, q3 + 1), q a prime power (unitals);

4. S(2, 2r, 2r+s + 2r − 2s), 2 ≤ r < s (Denniston designs).

For family 3, the sufficient condition for n and m is never satisfied
(non-canonical maximum cliques might exist), but in 2015 De Boeck
showed that only canonical cliques exist in the block graph of any
unital.

For families 1 and 2 (geometric designs), all maximum cliques also
known and we further discuss their structure.
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Projective 2-designs

Projective designs on points and lines in PG(d, q):

▶ If d ≥ 4, the inequality is satisfied, and we have only canonical
cliques in the block graph.

▶ If d = 3, we have equality in this inequality (the inequality is not
satisfied). The block graph in this case is the Grassmann graph
Jq(4, 2). It is well-known that non-canonical maximum cliques
exist in this case, and each of them corresponds to the lines in a
subplane (that is, all non-canonical cliques have a design
structure).

▶ If d = 2, we have a symmetric design that is given by the lines in
a projective plane (the block graph is a clique and we have
nothing to do).
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Affine 2-designs

Affine designs on points and lines in AG(d, q):

▶ If d ≥ 3, the inequality is satisfied, and we have only canonical
cliques in the block graph.

▶ If d = 2, the inequality does not hold, but the design we have is
given by the lines in an affine plane (the block graph is a
complete multipartite graph and all cliques are easy to describe).
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Maximum cliques in the block graphs of projective and
affine designs

Thus, maximum cliques in the block graphs of projective and affine
designs on points and lines are known. In particular, the only
non-trivial case when non-canonical cliques exist is the case of the
design on the points and lines of PG(3, q) (in this case each
non-canonical clique has a design structure).
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Denniston designs (I)
The only infinite family of 2-designs for which maximum cliques are
not known in general is the family of Denniston designs:
S(2, 2r, 2r+s + 2r − 2s), 2 ≤ r < s.

The sufficient condition (implying that all maximum cliques are
canonical) is not satisfied if and only if s < 2r holds.
Construction:
▶ Let AG(2, q) be the Desarguesian finite affine plane of order

q = 2s.
▶ Let H be a subgroup of order 2r in F+

q .
▶ Let

f(x, y) = ax2 + hxy + by2 ∈ Fq[x, y]

be an irreducible polynomial over Fq.
▶ Let

Ω = {(x, y) : f(x, y) ∈ H}.
▶ Any line of AG(2, 2s) intersects Ω in 0 or 2r points.
▶ The point set of the Denniston design is Ω; the blocks of the

Denniston design are all the intersection 2r-sets.
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Denniston designs (II)

We have checked the designs from this construction with parameters
(r, s) ∈ {(2, 3), (3, 4), (3, 5), (4, 5), (4, 6), (4, 7)} and found that only
canonical cliques exist.

Problem 7
Does there exist a Denniston design whose block graph has a
non-canonical maximum clique?
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Orthogonal arrays and their block graphs
An orthogonal array OA(m,n) is an m× n2 array with entries from
an n-element set T with the property that the columns of any 2× n2

subarray consist of all n2 possible pairs.

The block graph of an orthogonal array OA(m,n), denoted XOA(m,n),
is defined to be the graph whose vertices are columns of the
orthogonal array, where two columns are adjacent if there exists a row
in which they have the same entry.

Let Sr,i be the set of columns of OA(m,n) that have the entry i in
row r. These sets are cliques, and since each element of the n-element
set T occurs exactly n times in each row, the size of Sr,i is n for all i
and r. These cliques are called the canonical cliques in the block
graph XOA(m,n).

A simple combinatorial argument shows that the block graph of an
orthogonal array is a strongly regular graph. Moreover, by the
Delsarte bound, a clique in XOA(m,n) has size at most n, and the
canonical cliques show the tightness of this bound.
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Example of an orthogonal array OA(3, 4)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1

Canonical cliques:

{1, 2, 3, 4} {1, 5, 9, 13} {1, 6, 11, 16}
{5, 6, 7, 8} {2, 6, 10, 14} {2, 5, 12, 15}

{9, 10, 11, 12} {3, 7, 11, 15} {3, 8, 9, 14}
{13, 14, 15, 16} {4, 8, 12, 16} {4, 7, 10, 13}

A non-canonical maximum clique: {1, 2, 5, 6}. Note that these
columns form an orthogonal subarray OA(3, 2).
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Intersecting columns in an orthogonal array

If we view columns of an orthogonal array that have the same entry in
the same row as intersecting columns, then we can view the Delsarte
bound as the bound in the EKR theorem for intersecting columns of
an orthogonal array. The question is, under what conditions will all
cliques of size n in the graph XOA(m,n) be canonical? The following
answer can be viewed as the uniqueness part of the EKR theorem.

Theorem 5 ([GM15, Corollary 5.5.3])

Let X = XOA(m,n) be the block graph of an orthogonal array OA(m,n)
with n > (m− 1)2. Then X has the strict-EKR property: the only
maximum cliques in X are the columns that have entry i in row r for
some 1 ≤ i ≤ n and 1 ≤ r ≤ m.

This is equivalent to saying that the largest set of intersecting
columns in an orthogonal array is the set of all columns that have the
same entry in the some row, and these sets are the only maximum
intersecting sets.
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Open problems for the block graphs of orthogonal arrays

Problem 8
Find a characterisation of the orthogonal arrays, based only on the
parameters of the array, for which all of the maximum cliques in the
orthogonal array graph are canonical cliques.

Problem 9
Assume that OA(m, (m− 1)2) is an orthogonal array and its
orthogonal array graph has non-canonical cliques of size (m− 1)2. Do
these non-canonical cliques form subarrays?

[GM15, Section 5.5] provides an example of non-canonical cliques in
the block graph of an orthogonal array that form subarrays.

Problem 10
Determine all the maximum cliques in the block graph for any
orthogonal array.
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Identification of the elements of Fq2 and the points of
AG(2, q)

A finite field Fq2 can be viewed in a canonical way as a
two-dimensional vector space over Fq, or, as the affine plane AG(2, q).

Each nonzero element uniquely defines a line through 0 and can be
viewed as a slope of this line.
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Peisert-type graphs

Let q be a prime power. Let S ⊂ F∗
q2 be a union of m ≤ q cosets of F∗

q

in F∗
q2 such that F∗

q ⊂ S, that is,

S = c1F∗
q ∪ c2F∗

q ∪ · · · ∪ cmF∗
q .

Then the Cayley graph X = Cay(F+
q2
, S) is said to be a Peisert-type

graph of type (m, q). A clique in X is called a canonical clique if it is
the image of the subfield Fq under an affine transformation.

A Peisert-type graph of type (m, q) can be viewed as a graph on the
points of the affine geometry AG(2, q) with two points being adjacent
whenever the line through these points belongs to one of m prescribed
parallel classes of lines. Peisert-type graphs are equivalent to the
block graphs of orthogonal arrays obtained from the parallel classes of
the affine plane AG(2, q).

50 / 54



Further investigation (I)

In [GY23], we proved that the non-canonical cliques (when exist) in
the block graphs of orthogonal arrays with parameters OA(

√
q + 1, q)

obtained from AG(2, q) necessarily have the subarray structure.

An interesting project could arise from the investigation of the EKR
properties of the block graphs of orthogonal arrays with parameters
OA(

√
q + 1, q) obtained from affine planes different from AG(2, q).

In particular, it is possible to examine the database of small
projective planes by Eric Moorhouse (the deletion of a line from
projective plane together with its points results in an affine plane that
depends on the choice of the deleted line). We have checked many
such small orthogonal arrays OA(

√
n+ 1, n) and found that all

non-canonical cliques in the block graphs have a subarray structure.
We thus formulate the following conjecture.

[GY23] S. Goryainov, C. H. Yip, Extremal Peisert-type graphs without the

strict-EKR property, June 2023, https://arxiv.org/abs/2306.00391
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Further investigation (II)

Conjecture 1

Let X be the block graph of an orthogonal array OA(
√
n+ 1, n),

having a non-canonical maximum clique. Then all its non-canonical
maximum cliques have a subarray structure.
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Concluding remarks

In this lecture we have discussed some details of the extension of the
EKR theorem to two important class of strongly regular graphs: the
block graphs of 2-(n,m, 1) designs and the block graphs of orthogonal
arrays.
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Thank you for your attention!
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