On finite generalized quadrangles with $\operatorname{PSL}(2, q)$ as an automorphism group

Jianbing Lu
joint with Tao Feng
Zhejiang University
jianbinglu@zju.edu.cn

December 5th, 2023
(1) Finite generalized quadrangles and their symmetries

(2) Finite generalized quadrangles with $\operatorname{PSL}(2, q)$ as an automorphism group

Generalized polygons

- In 1959 Tits introduced the concept of generalized polygons in order to study the simple groups of Lie type systematically, and his work builds a bridge between geometry and group theory.
- A finite generalized n-gon is a finite point-line incidence geometry whose bipartite incidence graph has diameter n and girth $2 n$. It is thick if each line contains at least three points and each point is on at least three lines.
- The Feit-Higman theorem shows that finite thick generalized n-gons exist only for $n=2,3,4,6$ or 8 . A finite generalized 3 -gon is a projective plane, and a finite generalized 4 -gon is also called a generalized quadrangle.

Generalized polygons

- The Fano plane is a projective plane of order 2.

Generalized polygons

- The two generalized hexagons of order 2. Each is the point - line dual of the other.

Generalized quadrangles

Definition

A finite generalized quadrangle (GQ) \mathcal{S} of order (s, t) is a point-line incidence geometry ($\mathcal{P}, \mathcal{L}, I$), where

- each point is incident with $t+1$ lines, every two points are incident with at most one line;
- each line is incident with $s+1$ points;
- GQ Axiom: for each point-line pair (x, ℓ) that is not incident there is exactly one point y on ℓ that is collinear with x.
- GQ Axiom \Rightarrow no triangles

- $t=1$, a grid;
- $s=1$, a dual grid;

Classical examples

Table 1. The classical generalized quadrangles given by certain rank 3 classical groups.

\mathcal{Q}	Order	$\operatorname{soc}(G)$	Point stabilizer in $\operatorname{soc}(G)$
$\mathrm{W}(3, q), q$ odd	(q, q)	$\mathrm{PSp}_{4}(q)$	$E_{q}^{1+2}:\left(\mathrm{GL}_{1}(q) \circ \mathrm{Sp}_{2}(q)\right)$
$\mathrm{W}(3, q), q$ even	(q, q)	$\mathrm{Sp}_{4}(q)$	$E_{q}^{3}: \mathrm{GL}_{2}(q)$
$\mathrm{Q}(4, q), q$ odd	(q, q)	${\mathrm{P} \Omega_{5}(q)} E_{q}^{3}:\left(\left(\frac{(q-1)}{2} \times \Omega_{3}(q)\right) .2\right)$	
$\mathrm{Q}^{-}(5, q)$	$\left(q, q^{2}\right)$	${\mathrm{P} \Omega_{6}^{-}(q)}^{2}$	$E_{q}^{4}:\left(\frac{q-1}{\left\|Z\left(\Omega_{6}^{-}(q)\right)\right\|} \times \Omega_{4}^{-}(q)\right)$
$\mathrm{H}\left(3, q^{2}\right)$	$\left(q^{2}, q\right)$	$\mathrm{PSU}_{4}(q)$	$E_{q}^{1+4}:\left(\mathrm{SU}_{2}(q): \frac{q^{2}-1}{\operatorname{gcd}(q+1,4)}\right)$
$\mathrm{H}\left(4, q^{2}\right)$	$\left(q^{2}, q^{3}\right)$	$\mathrm{PSU}_{5}(q)$	$E_{q}^{1+6}:\left(\mathrm{SU}_{3}(q): \frac{q^{2}-1}{\operatorname{gcd}(q+1,5)}\right)$
$\mathrm{H}\left(4, q^{2}\right)^{D}$	$\left(q^{3}, q^{2}\right)$	$\mathrm{PSU}_{5}(q)$	$E_{q}^{4+4}: \mathrm{GL}_{2}\left(q^{2}\right)$

- The classical generalized quadrangles come in dual pairs: $W(3, q)$ is isomorphic to the dual of $Q(4, q), Q^{-}(5, q)$ is isomorphic to the dual of $H\left(3, q^{2}\right)$, and $H\left(4, q^{2}\right)^{D}$ denotes the dual of $H\left(4, q^{2}\right)$.

Unique GQ of order 2: $W(2)$

- The points of $\operatorname{PG}(3,2)$, together with the totally isotropic lines with respect to the alternating form $b(x, y)=x_{1} y_{2}+x_{2} y_{1}+x_{3} y_{4}+x_{4} y_{3}$ of $\mathrm{PG}(3,2)$, form the $\mathrm{GQ}(2,2)$.

Lemma

Let \mathcal{S} be a finite thick generalized quadrangle of order (s, t) with point set \mathcal{P} and line set \mathcal{L}. Then $|\mathcal{P}|=(s+1)(s t+1),|\mathcal{L}|=(t+1)(s t+1)$, and the following properties hold:
(i) (Higman's inequality) $s \leq t^{2}$ and $t \leq s^{2}$;
(ii) (Divisibility condition) $s+t$ divides $s t(s+1)(t+1)$;

The automorphism groups of GQ

An automorphism of a GQ is a permutation of the points and lines, which preserves the incidence. A flag is an incident point-line pair. A GQ which admits an automorphism group acting transitively on the set of flags is called flag-transitive.

Conjecture (Kantor, 1991)
A finite flag-transitive GQ is classical, the unique GQ $(3,5)$ or the generalized quadrangle of order $(15,17)$ arising from the Lunelli-Sce hyperoval up to duality.

Antiflag-transitive and locally 2-transitive generalized quadrangles

Theorem (Bamberg, Li, and Swartz, 2017)
Let \mathcal{S} be a finite thick generalized quadrangle and suppose G is a subgroup of automorphisms of \mathcal{S} acting transitively on the antiflags (nonincident point-line pairs) of \mathcal{S}. Then \mathcal{S} is isomorphic to a classical generalized quadrangle or to the unique $\mathrm{GQ}(3,5)$ or its dual.

Theorem (Bamberg, Li, and Swartz, 2020)
If \mathcal{S} is a finite thick locally 2-transitive (transitive on ordered pairs of collinear points and ordered pairs of concurrent lines) generalized quadrangle, then \mathcal{S} is isomorphic to a classical generalized quadrangle or to the unique $\mathrm{GQ}(3,5)$ or its dual.

Point-primitive and line-primitive generalized quadrangles

G is primitive on Ω if it is transitive and there is no non-trivial equivalence relation on Ω which is G-invariant: equivalently, if the stabilizer G_{α} of a point $\alpha \in \Omega$ is a maximal subgroup of G.

Theorem (Bamberg et al., 2012)
A group of automorphisms acting primitively on the points and lines of a finite thick generalized quadrangle is almost simple. Let G be an almost simple group of automorphisms of a finite thick generalized quadrangle \mathcal{S}.

- If G acts primitively on the points and lines of \mathcal{S}, then the socle of G is not a sporadic simple group.
- If G acts flag-transitively and point-primitively on \mathcal{S} and the socle of G is an alternating group A_{n} with $n \geqslant 5$, then $G \leqslant \mathrm{~S}_{6}$ and \mathcal{S} is the unique generalized quadrangle of order $(2,2)$.

(1) Finite generalized quadrangles and their symmetries

(2) Finite generalized quadrangles with $\operatorname{PSL}(2, q)$ as an automorphism group

Maximal subgroups of the almost simple groups with socle $\operatorname{PSL}(2, q)$

Lemma (Giudici, 2007)
Let G be an almost simple group with socle $X=\operatorname{PSL}(2, q)$, where $q=p^{f} \geqslant 4$ for a prime p. Let M be a maximal subgroup of G not containing X, and set $M_{0}:=M \cap X$. Then M_{0} is a maximal subgroup of X as listed in Table 1 with some exceptions.

Maximal subgroups of $\operatorname{PSL}(2, q)$

Table: Maximal subgroups of $X=\operatorname{PSL}(2, q)$ and their indices in X

Case	M_{0}	$\left[X: M_{0}\right]$
1	$\mathrm{C}_{p}^{f} \rtimes \mathrm{C}_{\frac{q-1}{\operatorname{gcd}(2, q-1)}}$	$q+1$
2	$\operatorname{PGL}\left(2, q_{0}\right)$	$\frac{q_{0}\left(q_{0}^{2}+1\right)}{2}$
3	$\mathrm{~A}_{5}$	$\frac{q\left(q^{2}-1\right)}{120}$
4	$\mathrm{~A}_{4}$	$\frac{p\left(p^{2}-1\right)}{24}$
5	$\mathrm{~S}_{4}$	$\frac{p\left(p^{2}-1\right)}{48}$
6	$\mathrm{PSL}\left(2, q_{0}\right)$	$\frac{q_{0}^{r-1}\left(q_{0}^{2 r}-1\right)}{q_{0}^{2}-1}$
7	$\mathrm{PGL}\left(2, q_{0}\right)$	$\frac{q_{0}^{r-1}\left(q_{0}^{2 r}-1\right)}{q_{0}^{2}-1}$
8	$\mathrm{D}_{2(q-1) / \operatorname{gcd}(2, q-1)}$	$\frac{q(q+1)}{2}$
9	$\mathrm{D}_{2(q+1) / \operatorname{gcd}(2, q-1)}$	$\frac{q(q-1)}{2}$

M_{0}, M_{1} have distinct case numberings in Table 1

Let \mathcal{S} be a finite think generalized quadrangle of order (s, t) with point set \mathcal{P} and line set \mathcal{L}, and suppose that G is an automorphism group of \mathcal{S} that acts primitively on both \mathcal{P} and \mathcal{L}. Fix a point α and a line ℓ of \mathcal{S}, and set

$$
M_{0}:=G_{\alpha} \cap X, \quad M_{1}:=G_{\ell} \cap X .
$$

Since X is normal in G, it is transitive on both \mathcal{P} and \mathcal{L} by the primitivity assumption. We thus have

$$
\begin{align*}
& |\mathcal{P}|=(s+1)(s t+1)=\frac{|X|}{\left|M_{0}\right|}, \tag{1}\\
& |\mathcal{L}|=(t+1)(s t+1)=\frac{|X|}{\left|M_{1}\right|} . \tag{2}
\end{align*}
$$

A coset geometry model

We define a set D as follows:

$$
D=\left\{g \in G: \alpha^{g} \text { is incident with } \ell\right\} .
$$

The points on the line ℓ are α^{g} for $g \in D$, and the lines through the point α are $\ell^{g^{-1}}$ for $g \in D$. We thus have $|D|=(s+1)\left|G_{\alpha}\right|=(t+1)\left|G_{\ell}\right|$. The set D is a union of $\left(G_{\alpha}, G_{l}\right)$-double cosets in G, so we have a decomposition
$D=\bigcup_{i=1}^{d} G_{\alpha} h_{i} G_{l}$, where the double cosets $G_{\alpha} h_{i} G_{l}, 1 \leq i \leq d$, are pairwise distinct. It follows that

$$
\begin{aligned}
& s+1=\frac{|D|}{\left|G_{\alpha}\right|}=\sum_{i=1}^{d} \frac{\left|G_{l}\right|}{\left|G_{l} \cap h_{i}^{-1} G_{\alpha} h_{i}\right|}, \\
& t+1=\frac{|D|}{\left|G_{\ell}\right|}=\sum_{i=1}^{d} \frac{\left|G_{\alpha}\right|}{\left|G_{\alpha} \cap h_{i} G_{l} h_{i}^{-1}\right|} .
\end{aligned}
$$

A coset geometry model

Theorem

Suppose that G is a finite group, and H, K are its subgroups such that $[G: H]=(1+s)(1+s t),[G: K]=(1+t)(1+s t)$ for some integers $s, t \geq 2$. Let D be a union of (H, K)-double cosets of G with $|D|=(s+1)|H|$. We define an incidence relation $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ as follows: \mathcal{P} is the set of right cosets of H in G, \mathcal{L} is the set of right cosets of K, and a point Hg_{1} is incident with a line $K g_{2}$ if and only if $g_{1} g_{2}^{-1} \in D$. Then \mathcal{S} is a generalized quadrangle if and only if the following conditions hold:
(i) For each $g \in G \backslash D$, there exist three elements $g_{1}, g_{2}, g_{3} \in D$ such that $g=g_{1} g_{2}^{-1} g_{3}$, and if $g=g_{1}^{\prime} g_{2}^{\prime-1} g_{3}^{\prime}$ is another such expression, then $g_{1}^{\prime}=g_{1} u, g_{2}^{\prime}=v g_{2} u$ and $g_{3}^{\prime}=v g_{3}$ for some $u \in K$ and $v \in H$.
(ii) If $g \in D$ and $g=g_{1} g_{2}^{-1} g_{3}$ for some $g_{1}, g_{2}, g_{3} \in D$, then either $g_{1} g_{2}^{-1} \in H$ or $g_{2}^{-1} g_{3} \in K$.

M_{0}, M_{1} have the same case numberings in Table 1

Lemma

If $M_{0} \cong \operatorname{PGL}\left(2, q_{0}\right)$ with $q=q_{0}^{2}$ odd, then $q=9$ and \mathcal{S} is $W(2)$.

Lemma

Let \mathcal{P}_{g} be the set of fixed points of g , and suppose that α is in \mathcal{P}_{g}. If $\left[C_{G}(g): C_{G}(g) \cap G_{\alpha}\right]=\left|\mathcal{P}_{g}\right|$, then $C_{G}(g)$ acts transitively on \mathcal{P}_{g}.

Lemma

Let G be a finite transitive permutation group on a set Ω, and choose $\alpha \in \Omega$. For $g \in G$, let g^{G} be its conjugacy class in G and let Fix (g) be its number of fixed points on Ω. We have

$$
\operatorname{Fix}(g)=\frac{|\Omega| \cdot\left|g^{G} \cap G_{\alpha}\right|}{\left|g^{G}\right|} .
$$

Conjugacy classes of involutions in $\operatorname{PSL}(2, q)$

Lemma

Suppose that $X=\operatorname{PSL}(2, q), q=p^{f} \geq 4$ with p prime. Then X has a single conjugacy class C of involutions and

$$
|C|= \begin{cases}q^{2}-1, & \text { if } q \text { is even, } \\ \frac{1}{2} q(q+\epsilon), & \text { if } q \equiv \epsilon \quad(\bmod 4) \text { with } \epsilon \in\{ \pm 1\} .\end{cases}
$$

Moreover, if g is an involution in X, then

$$
C_{X}(g)= \begin{cases}\mathrm{D}_{q-1}, & \text { if } q \equiv 1 \quad(\bmod 4), \\ \mathrm{D}_{q+1}, & \text { if } q \equiv 3(\bmod 4), \\ \mathrm{C}_{2}^{f}, & \text { if } q=2^{f}, f \geq 2 .\end{cases}
$$

Conjugacy classes of elements of order 3 in $\operatorname{PSL}(2, q)$

Lemma

Suppose that $X=\operatorname{PSL}(2, q), q=p^{f}$ with $p>5$ prime. Then X has a single conjugacy class C of elements of order 3 in X and

$$
|C|= \begin{cases}q(q-1), & \text { if } q \equiv-1(\bmod 3) ; \\ q(q+1), & \text { if } q \equiv 1(\bmod 3)\end{cases}
$$

Moreover, if g is an element of order 3 in X, then

$$
C_{X}(g)= \begin{cases}C_{(q-1) / 2}, & \text { if } q \equiv 1 \quad(\bmod 3), \\ C_{(q+1) / 2}, & \text { if } q \equiv 2 \quad(\bmod 3) .\end{cases}
$$

Fixed substructure of generalized quadrangles

Theorem

Let g be an automorphism of a generalized quadrangle $\mathcal{S}=(\mathcal{P}, \mathcal{L})$. Let \mathcal{P}_{g} and \mathcal{L}_{g} be the set of fixed points and fixed lines of g respectively, and let $\mathcal{S}_{g}=\left(\mathcal{P}_{g}, \mathcal{L}_{g}\right)$ be the fixed substructure. Then one of the following holds:

- $\mathcal{P}_{g}=\mathcal{L}_{g}=\varnothing$,
- $\mathcal{L}_{g}=\varnothing, \mathcal{P}_{g}$ is a nonempty set of pairwise noncollinear points,
- $\mathcal{P}_{g}=\varnothing, \mathcal{L}_{g}$ is a nonempty set of pairwise nonconcurrent lines,
- \mathcal{L}_{g} is nonempty, and \mathcal{P}_{g} contains a point P that is collinear with each point of \mathcal{P}_{g} and is on each line of \mathcal{L}_{g},
- \mathcal{P}_{g} is nonempty, and \mathcal{L}_{g} contains a line ℓ that is concurrent with each line of \mathcal{L}_{g} and contains each point of \mathcal{P}_{g},
- \mathcal{S}_{g} is a grid with parameters $\left(s_{1}, s_{2}\right), s_{1}<s_{2}$,
- \mathcal{S}_{g} is a dual grid with parameters $\left(s_{1}, s_{2}\right), s_{1}<s_{2}$,
- \mathcal{S}_{g} is a generalized quadrangle of order $\left(s^{\prime}, t^{\prime}\right)$.

Fixed substructure of generalized quadrangles

Corollary

With the same notation, we have the following properties:
(i) If $\left|\mathcal{P}_{g}\right| \geq 2,\left|\mathcal{L}_{g}\right| \geq 2$ and \mathcal{S}_{g} admits an automorphism group H that is transitive on both points and lines, then \mathcal{S}_{g} is a subquadrangle.
(ii) If $\left|\mathcal{P}_{g}\right|=\left|\mathcal{L}_{g}\right| \geq 2$ and \mathcal{S}_{g} admits an automorphism group H that is transitive on its points, then \mathcal{S}_{g} is a subquadrangle.

Lemma

If G is a finite group acting regularly on the points of a finite thick generalized quadrangle of order s, then it is nonabelian.

Lemma

Let \mathcal{S} be a finite thick generalized quadrangle of order (s, t). Then there is no abelian group that acts transitively on both the points and the lines of \mathcal{S}.

On finite generalized quadrangles with $\operatorname{PSL}(2, q)$ as an automorphism group

Theorem (Feng, Lu, 2023)
Suppose that G is an automorphism group of a finite thick generalized quadrangle \mathcal{S} that is primitive on both points and lines. If G is an almost simple group with socle $\operatorname{PSL}(2, q), q \geq 4$, then $q=9$ and \mathcal{S} is the symplectic quadrangle $W(2)$.

On finite generalized quadrangles with $\operatorname{PSU}(3, q)$ as an automorphism group

Theorem (Lu, Zhang, Zou, 2023+)
Let G be an automorphism group of a finite thick generalized quadrangle \mathcal{S}. If G acts primitively on both points and lines of \mathcal{S}, then the socle of G cannot be $\operatorname{PSU}(3, q)$ with $q \geq 3$.

(1) Finite generalized quadrangles and their symmetries

(2) Finite generalized quadrangles with $\operatorname{PSL}(2, q)$ as an automorphism group
(3) Future work

Current progress

- point-primitive+line-primitive $\Rightarrow G$ must be AS type; (Bamberg et al., 2012)
- point-primitive+line-transitive+HA type $\Rightarrow \mathrm{GQ}(3,5)$, LSce $(15,17)$ (Bamberg et al., 2016)
- point-primitive $\Rightarrow G$ cannot be HS, HC type; (Bamberg et al., 2017) (Di, Feng, 2023+)

The classification of flag-transitive generalized quadrangles

Questions:

- Is it possible to classify all point-primitive and line-primitive generalized quadrangles? If add the condition of flag-transitive?
- G is a point-primitive automorphism group of a $G Q \Rightarrow$ line-transitive or has a hemisystem? (Bamberg, Evans, 2021)
- G is a point-primitive automorphism group of a $\mathrm{GQ} \Rightarrow \mathrm{HA}$ or AS type?

Main references

J. Bamberg, J. Evans,

No sporadic almost simple group acts primitively on the points of a generalised quadrangle,
Discrete Math. 344 (2021) Article 112291.

- J. Bamberg, M. Giudici, J. Morris, G. F. Royle, P. Spiga,

Generalised quadrangles with a group of automorphisms acting primitively on points and lines,
J. Combin. Theory Ser. A 119(7) (2012) 1479-1499.

國 J. Bamberg, S. P. Glasby, T. Popiel, C. E. Praeger, Generalized quadrangles and transitive pseudo-hyperovals,
J. Combin. Des. 24 (2016), 151-164.

目 J. Bamberg, C. H. Li, E. Swartz,
A classification of finite antiflag-transitive generalized quadrangles,
Trans. Amer. Math. Soc. 370 (2018), 1551-1601.

Main references

囯 J．Bamberg，C．H．Li，E．Swartz，
A classification of finite locally 2－transitive generalized quadrangles， Trans．Amer．Math．Soc． 374 （2021），1535－1578．

囯 J．Bamberg，T．Popiel，C．E．Praeger， Simple groups，product actions，and generalized quadrangles， Nagoya Math．J．（2017）1－40．

害 J．N．Bray，D．F．Holt，and C．M．Roney－Dougal，
The maximal subgroups of the low－dimensional finite classical groups，
London Mathematical Society Lecture Note Series，407．Cambridge University Press，Cambridge， 2013.
目
M．Giudici，
Maximal subgroups of almost simple groups with socle $\operatorname{PSL}(2, q)$ ， arXiv：math／0703685v1［math．GR］， 2007.

Main references

圊
W. M. Kantor,

Automorphism groups of some generalized quadrangles,
Advances in Finite Geometries and Designs, Oxford Sci. Publ., Oxford Univ. Press, New York, 1991, pp. 251-256.

曷
H. Van Maldeghem,

Generalized polygons,
Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1998.
T S. E. Payne, J. A. Thas,
Finite Generalized Quadrangles,
second ed., EMS Ser. Lect. Math., European Mathematical Society (EMS), Zürich, 2009.
T. J. Tits,

Sur la trialité et certains groupes qui s'en déduisent,
Publ. Math. IHÉS 2 (1959) 13-60.

Thanks for your attention!

