On finite generalized quadrangles with PSL(2, q) as an automorphism group

Jianbing Lu

joint with Tao Feng

Zhejiang University jianbinglu@zju.edu.cn

December 5th, 2023

- **1** Finite generalized quadrangles and their symmetries
- 2) Finite generalized quadrangles with PSL(2, q) as an automorphism group
- 3 Future work

3

(日) (同) (三) (三)

Generalized polygons

- In 1959 Tits introduced the concept of generalized polygons in order to study the simple groups of Lie type systematically, and his work builds a bridge between geometry and group theory.
- A finite generalized *n*-gon is a finite point-line incidence geometry whose bipartite incidence graph has diameter *n* and girth 2*n*. It is *thick* if each line contains at least three points and each point is on at least three lines.
- The Feit-Higman theorem shows that finite thick generalized *n*-gons exist only for n = 2, 3, 4, 6 or 8. A finite generalized 3-gon is a projective plane, and a finite generalized 4-gon is also called a generalized quadrangle.

イロト 不得下 イヨト イヨト 二日

Generalized polygons

• The Fano plane is a projective plane of order 2.

3

(日) (周) (三) (三)

Generalized polygons

• The two generalized hexagons of order 2. Each is the point - line dual of the other.

• • • • • • • • • • • •

Generalized quadrangles

Definition

A finite generalized quadrangle (GQ) S of order (s, t) is a point-line incidence geometry $(\mathcal{P}, \mathcal{L}, I)$, where

- each point is incident with t + 1 lines, every two points are incident with at most one line;
- each line is incident with s + 1 points;
- GQ Axiom: for each point-line pair (x, ℓ) that is not incident there is exactly one point y on ℓ that is collinear with x.

• GQ Axiom \Rightarrow no triangles

- t = 1, a grid;
- s = 1, a dual grid;

Classical examples

TABLE 1. The classical generalized quadrangles given by certain rank 3 classical groups.

Q	Order	$\operatorname{soc}(G)$	Point stabilizer in $\operatorname{soc}(G)$
W(3,q), q odd	(q,q)	$PSp_4(q)$	$E_q^{1+2}: (\mathrm{GL}_1(q) \circ \mathrm{Sp}_2(q))$
$\mathrm{W}(3,q),q$ even	(q,q)	$\operatorname{Sp}_4(q)$	E_q^3 : $\mathrm{GL}_2(q)$
$\mathbf{Q}(4,q),q$ odd	(q,q)	$P\Omega_5(q)$	$E_q^3:((\frac{(q-1)}{2} \times \Omega_3(q)).2)$
$\mathbf{Q}^{-}(5,q)$	(q,q^2)	$\mathbf{P}\Omega_6^-(q)$	$E_q^4: (\frac{q-1}{ Z(\Omega_6^-(q)) } \times \Omega_4^-(q))$
${\rm H}(3,q^2)$	(q^2,q)	$\mathrm{PSU}_4(q)$	$E_q^{1+4}: \left(\mathrm{SU}_2(q) : \frac{q^2 - 1}{\gcd(q+1,4)} \right)$
${\rm H}(4,q^2)$	(q^2,q^3)	$\mathrm{PSU}_5(q)$	$E_q^{1+6}: \left(\mathrm{SU}_3(q) : \frac{q^2 - 1}{\gcd(q+1,5)} \right)$
$\mathrm{H}(4,q^2)^D$	(q^3,q^2)	$\mathrm{PSU}_5(q)$	$E_q^{4+4}: \operatorname{GL}_2(q^2)$

The classical generalized quadrangles come in dual pairs: W(3, q) is isomorphic to the dual of Q(4, q), Q⁻(5, q) is isomorphic to the dual of H(3, q²), and H(4, q²)^D denotes the dual of H(4, q²).

イロト イポト イヨト イヨト

Finite generalized quadrangles and their symmetries

Unique GQ of order 2: W(2)

• The points of PG(3,2), together with the totally isotropic lines with respect to the alternating form $b(x, y) = x_1y_2 + x_2y_1 + x_3y_4 + x_4y_3$ of PG(3,2), form the GQ(2,2).

Image: A math and A math and

Lemma

Let S be a finite thick generalized quadrangle of order (s, t) with point set \mathcal{P} and line set \mathcal{L} . Then $|\mathcal{P}| = (s+1)(st+1)$, $|\mathcal{L}| = (t+1)(st+1)$, and the following properties hold:

- (i) (Higman's inequality) $s \le t^2$ and $t \le s^2$;
- (ii) (Divisibility condition) s + t divides st(s + 1)(t + 1);

(4 個) トイヨト イヨト

The automorphism groups of GQ

An **automorphism** of a GQ is a permutation of the points and lines, which preserves the incidence. A **flag** is an incident point-line pair. A GQ which admits an automorphism group acting transitively on the set of flags is called flag-transitive.

Conjecture (Kantor, 1991)

A finite flag-transitive GQ is classical, the unique GQ(3,5) or the generalized quadrangle of order (15,17) arising from the Lunelli-Sce hyperoval up to duality.

イロト イポト イヨト イヨト

Antiflag-transitive and locally 2-transitive generalized quadrangles

Theorem (Bamberg, Li, and Swartz, 2017)

Let S be a finite thick generalized quadrangle and suppose G is a subgroup of automorphisms of S acting transitively on the antiflags (nonincident point-line pairs) of S. Then S is isomorphic to a classical generalized quadrangle or to the unique GQ(3,5) or its dual.

Theorem (Bamberg, Li, and Swartz, 2020)

If S is a finite thick locally 2-transitive (transitive on ordered pairs of collinear points and ordered pairs of concurrent lines) generalized quadrangle, then S is isomorphic to a classical generalized quadrangle or to the unique GQ(3,5) or its dual.

11 / 30

イロト 不得下 イヨト イヨト

Point-primitive and line-primitive generalized quadrangles

G is primitive on Ω if it is transitive and there is no non-trivial equivalence relation on Ω which is G-invariant: equivalently, if the stabilizer G_{α} of a point $\alpha \in \Omega$ is a maximal subgroup of G.

Theorem (Bamberg et al., 2012)

A group of automorphisms acting primitively on the points and lines of a finite thick generalized quadrangle is almost simple. Let G be an almost simple group of automorphisms of a finite thick generalized quadrangle S.

- If G acts primitively on the points and lines of S, then the socle of G is not a sporadic simple group.
- If G acts flag-transitively and point-primitively on S and the socle of G is an alternating group A_n with $n \ge 5$, then $G \le S_6$ and S is the unique generalized quadrangle of order (2,2).

イロト 不得下 イヨト イヨト 二日

2 Finite generalized quadrangles with PSL(2, q) as an automorphism group

3 Future work

Image: A math a math

Maximal subgroups of the almost simple groups with socle PSL(2, q)

Lemma (Giudici, 2007)

Let G be an almost simple group with socle X = PSL(2, q), where $q = p^f \ge 4$ for a prime p. Let M be a maximal subgroup of G not containing X, and set $M_0 := M \cap X$. Then M_0 is a maximal subgroup of X as listed in Table 1 with some exceptions.

Jianbing Lu (ZJU)

Generalized quadrangles

December 5th, 2023 13 / 30

イロト 人間ト イヨト イヨト

Maximal subgroups of PSL(2, q)

Table: Maximal subgroups of X = PSL(2, q) and their indices in X

Case	M_0	$[X: M_0]$
1	$\mathbf{C}^{f}_{p} \rtimes \mathbf{C}_{\frac{q-1}{\gcd(2,q-1)}}$	q+1
2	$\mathrm{PGL}(2, q_0)$	$rac{q_0(q_0^2+1)}{2}$
3	A_5	$\frac{q(q^2-1)}{120}$
4	A_4	$\frac{p(p^2-1)}{24}$
5	S_4	$\frac{24}{p(p^2-1)}$
6	$\mathrm{PSL}(2, q_0)$	$rac{q_0^{r-1} {48 \choose q_0^{2r} - 1}}{q_0^{2} - 1}$
7	$\mathrm{PGL}(2,q_0)$	$rac{q_0^{r-1}(q_0^{2r}-1)}{q_0^2-1}$
8	$\mathrm{D}_{2(q-1)/\gcd(2,q-1)}$	$\frac{q(q+1)}{2}$
9	$\mathrm{D}_{2(q+1)/\gcd(2,q-1)}$	$\frac{q(q-1)}{2}$

イロト 不得下 イヨト イヨト 二日

M_0, M_1 have distinct case numberings in Table 1

Let S be a finite think generalized quadrangle of order (s, t) with point set P and line set \mathcal{L} , and suppose that G is an automorphism group of S that acts primitively on both P and \mathcal{L} . Fix a point α and a line ℓ of S, and set

$$M_0 := G_\alpha \cap X, \quad M_1 := G_\ell \cap X.$$

Since X is normal in G, it is transitive on both \mathcal{P} and \mathcal{L} by the primitivity assumption. We thus have

$$\begin{aligned} |\mathcal{P}| = (s+1)(st+1) &= \frac{|X|}{|M_0|}, \\ |\mathcal{L}| = (t+1)(st+1) &= \frac{|X|}{|M_1|}. \end{aligned} \tag{1}$$

Jianbing Lu (ZJU)

15 / 30

イロト 不得下 イヨト イヨト

A coset geometry model

We define a set D as follows:

 $D = \{g \in G : \alpha^g \text{ is incident with } \ell\}.$

The points on the line ℓ are α^g for $g \in D$, and the lines through the point α are $\ell^{g^{-1}}$ for $g \in D$. We thus have $|D| = (s+1)|G_{\alpha}| = (t+1)|G_{\ell}|$. The set D is a union of (G_{α}, G_l) -double cosets in G, so we have a decomposition $D = \bigcup_{i=1}^{d} G_{\alpha} h_i G_l$, where the double cosets $G_{\alpha} h_i G_l$, $1 \leq i \leq d$, are pairwise distinct. It follows that

$$s + 1 = \frac{|D|}{|G_{\alpha}|} = \sum_{i=1}^{d} \frac{|G_{i}|}{|G_{i} \cap h_{i}^{-1}G_{\alpha}h_{i}|},$$
$$t + 1 = \frac{|D|}{|G_{\ell}|} = \sum_{i=1}^{d} \frac{|G_{\alpha}|}{|G_{\alpha} \cap h_{i}G_{i}h_{i}^{-1}|}.$$

16 / 30

A coset geometry model

Theorem

Suppose that G is a finite group, and H, K are its subgroups such that [G:H] = (1+s)(1+st), [G:K] = (1+t)(1+st) for some integers $s, t \ge 2$. Let D be a union of (H, K)-double cosets of G with |D| = (s+1)|H|. We define an incidence relation $S = (\mathcal{P}, \mathcal{L}, I)$ as follows: \mathcal{P} is the set of right cosets of H in G, \mathcal{L} is the set of right cosets of K, and a point Hg₁ is incident with a line Kg₂ if and only if $g_1g_2^{-1} \in D$. Then S is a generalized quadrangle if and only if the following conditions hold:

(i) For each $g \in G \setminus D$, there exist three elements $g_1, g_2, g_3 \in D$ such that $g = g_1 g_2^{-1} g_3$, and if $g = g'_1 g'^{-1} g'_3$ is another such expression, then $g'_1 = g_1 u$, $g'_2 = v g_2 u$ and $g'_3 = v g_3$ for some $u \in K$ and $v \in H$.

(ii) If
$$g \in D$$
 and $g = g_1g_2^{-1}g_3$ for some $g_1, g_2, g_3 \in D$, then either $g_1g_2^{-1} \in H$ or $g_2^{-1}g_3 \in K$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

M_0, M_1 have the same case numberings in Table 1

Lemma

If $M_0 \cong \text{PGL}(2, q_0)$ with $q = q_0^2$ odd, then q = 9 and S is W(2).

Lemma

Let \mathcal{P}_g be the set of fixed points of g, and suppose that α is in \mathcal{P}_g . If $[C_G(g): C_G(g) \cap G_\alpha] = |\mathcal{P}_g|$, then $C_G(g)$ acts transitively on \mathcal{P}_g .

Lemma

Let G be a finite transitive permutation group on a set Ω , and choose $\alpha \in \Omega$. For $g \in G$, let g^G be its conjugacy class in G and let Fix(g) be its number of fixed points on Ω . We have

$$\mathit{Fix}(g) = rac{|\Omega| \cdot |g^{\,\mathcal{G}} \cap \mathcal{G}_{lpha}|}{|g^{\,\mathcal{G}}|}.$$

Conjugacy classes of involutions in PSL(2, q)

Lemma

Suppose that X = PSL(2, q), $q = p^f \ge 4$ with p prime. Then X has a single conjugacy class C of involutions and

$$|C| = \begin{cases} q^2 - 1, & \text{if } q \text{ is even}, \\ \frac{1}{2}q(q + \epsilon), & \text{if } q \equiv \epsilon \pmod{4} \text{ with } \epsilon \in \{\pm 1\}. \end{cases}$$

Moreover, if g is an involution in X, then

$$C_X(g) = \begin{cases} D_{q-1}, & \text{if } q \equiv 1 \pmod{4}, \\ D_{q+1}, & \text{if } q \equiv 3 \pmod{4}, \\ C_2^f, & \text{if } q = 2^f, f \ge 2. \end{cases}$$

Jianbing Lu (ZJU)

Conjugacy classes of elements of order 3 in PSL(2, q)

Lemma

Suppose that X = PSL(2, q), $q = p^{f}$ with p > 5 prime. Then X has a single conjugacy class C of elements of order 3 in X and

$$|C| = \begin{cases} q(q-1), & \text{if } q \equiv -1 \pmod{3}; \\ q(q+1), & \text{if } q \equiv 1 \pmod{3}. \end{cases}$$

Moreover, if g is an element of order 3 in X, then

$$C_X(g) = egin{cases} {
m C}_{(q-1)/2}, & {
m if} \ q \equiv 1 \pmod{3}, \ {
m C}_{(q+1)/2}, & {
m if} \ q \equiv 2 \pmod{3}. \end{cases}$$

Jianbing Lu (ZJU)

20 / 30

Fixed substructure of generalized quadrangles

Theorem

Let g be an automorphism of a generalized quadrangle $S = (\mathcal{P}, \mathcal{L})$. Let \mathcal{P}_g and \mathcal{L}_g be the set of fixed points and fixed lines of g respectively, and let $S_g = (\mathcal{P}_g, \mathcal{L}_g)$ be the fixed substructure. Then one of the following holds:

- $\mathcal{P}_g = \mathcal{L}_g = \varnothing$,
- $\mathcal{L}_g = \varnothing$, \mathcal{P}_g is a nonempty set of pairwise noncollinear points,
- $\mathcal{P}_g = \varnothing$, \mathcal{L}_g is a nonempty set of pairwise nonconcurrent lines,
- \mathcal{L}_g is nonempty, and \mathcal{P}_g contains a point P that is collinear with each point of \mathcal{P}_g and is on each line of \mathcal{L}_g ,
- \mathcal{P}_g is nonempty, and \mathcal{L}_g contains a line ℓ that is concurrent with each line of \mathcal{L}_g and contains each point of \mathcal{P}_g ,
- S_g is a grid with parameters (s_1, s_2) , $s_1 < s_2$,
- \mathcal{S}_g is a dual grid with parameters (s_1, s_2) , $s_1 < s_2$,
- S_{g} is a generalized quadrangle of order (s', t'). Jianbing Lu (ZJU) Generalized quadrangles

Fixed substructure of generalized quadrangles

Corollary

With the same notation, we have the following properties:

- (i) If $|\mathcal{P}_g| \ge 2$, $|\mathcal{L}_g| \ge 2$ and \mathcal{S}_g admits an automorphism group H that is transitive on both points and lines, then \mathcal{S}_g is a subquadrangle.
- (ii) If $|\mathcal{P}_g| = |\mathcal{L}_g| \ge 2$ and \mathcal{S}_g admits an automorphism group H that is transitive on its points, then \mathcal{S}_g is a subquadrangle.

Lemma

If G is a finite group acting regularly on the points of a finite thick generalized quadrangle of order s, then it is nonabelian.

Lemma

Let S be a finite thick generalized quadrangle of order (s, t). Then there is no abelian group that acts transitively on both the points and the lines of S.

Jianbing Lu (ZJU)

On finite generalized quadrangles with PSL(2, q) as an automorphism group

Theorem (Feng, Lu, 2023)

Suppose that G is an automorphism group of a finite thick generalized quadrangle S that is primitive on both points and lines. If G is an almost simple group with socle PSL(2, q), $q \ge 4$, then q = 9 and S is the symplectic quadrangle W(2).

On finite generalized quadrangles with PSU(3, q) as an automorphism group

Theorem (Lu, Zhang, Zou, 2023+)

Let G be an automorphism group of a finite thick generalized quadrangle S. If G acts primitively on both points and lines of S, then the socle of G cannot be PSU(3, q) with $q \ge 3$.

- Finite generalized quadrangles and their symmetries
- 2 Finite generalized quadrangles with PSL(2, q) as an automorphism group
- 3 Future work

3

(日) (周) (三) (三)

Current progress

- point-primitive+line-primitive \Rightarrow G must be AS type; (Bamberg et al., 2012)
- point-primitive+line-transitive+HA type \Rightarrow GQ(3,5), LSce(15,17) (Bamberg et al., 2016)
- point-primitive \Rightarrow G cannot be HS, HC type; (Bamberg et al., 2017) (Di, Feng, 2023+)

イロト イポト イヨト イヨト 二日

The classification of flag-transitive generalized quadrangles

Questions:

- Is it possible to classify all point-primitive and line-primitive generalized quadrangles? If add the condition of flag-transitive?
- G is a point-primitive automorphism group of a $GQ \Rightarrow$ line-transitive or has a hemisystem? (Bamberg, Evans, 2021)
- G is a point-primitive automorphism group of a $GQ \Rightarrow HA$ or AS type?

イロッ イボッ イヨッ イヨッ 三日

Main references

J. Bamberg, J. Evans,

No sporadic almost simple group acts primitively on the points of a generalised quadrangle,

Discrete Math. 344 (2021) Article 112291.

J. Bamberg, M. Giudici, J. Morris, G. F. Royle, P. Spiga,

Generalised quadrangles with a group of automorphisms acting primitively on points and lines,

J. Combin. Theory Ser. A 119(7) (2012) 1479-1499.

J. Bamberg, S. P. Glasby, T. Popiel, C. E. Praeger, Generalized quadrangles and transitive pseudo-hyperovals, *J. Combin. Des.* 24 (2016), 151-164.

J. Bamberg, C. H. Li, E. Swartz,

A classification of finite antiflag-transitive generalized quadrangles,

Trans. Amer. Math. Soc. 370 (2018), 1551-1601.

イロト 人間ト イヨト イヨト

Main references

J. Bamberg, C. H. Li, E. Swartz,

A classification of finite locally 2-transitive generalized quadrangles, *Trans. Amer. Math. Soc.* 374 (2021), 1535-1578.

J. Bamberg, T. Popiel, C.E. Praeger,

Simple groups, product actions, and generalized quadrangles,

Nagoya Math. J. (2017) 1-40.

J. N. Bray, D. F. Holt, and C. M. Roney-Dougal,

The maximal subgroups of the low-dimensional finite classical groups, London Mathematical Society Lecture Note Series, 407. Cambridge University Press, Cambridge, 2013.

M. Giudici,

Maximal subgroups of almost simple groups with socle PSL(2, q), arXiv:math/0703685v1 [math.GR], 2007.

28 / 30

イロト イヨト イヨト

Main references

W. M. Kantor,

Automorphism groups of some generalized quadrangles,

Advances in Finite Geometries and Designs, Oxford Sci. Publ., Oxford Univ. Press, New York, 1991, pp. 251-256.

H. Van Maldeghem,

Generalized polygons,

Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1998.

S. E. Payne, J. A. Thas,

Finite Generalized Quadrangles,

second ed., EMS Ser. Lect. Math., European Mathematical Society (EMS), Zürich, 2009.

J. Tits,

Sur la trialité et certains groupes qui s'en déduisent, *Publ. Math. IHÉS* 2 (1959) 13-60.

Thanks for your attention!

Jianbing Lu (ZJU)

Generalized quadrangles

December 5th, 2023 30

30 / 30