Card Shuffle Groups

Wenying Zhu

Beijing Normal University

This is joint work with Binzhou Xia and Zhishuo Zhang.

7 Nov 2023, Seminar (Online)

Perfectly shuffle 2n cards

• Cut the deck in half:

• Perfectly interleave them:

Perform out-shuffles on a deck of 52 cards repeatedly.

Perform out-shuffles on a deck of 52 cards repeatedly.

Question: Can it return to the original order?

Perform out-shuffles on a deck of 52 cards repeatedly.

Question: Can it return to the original order?

Answer: Yes. For example, after 52! times.

Perform out-shuffles on a deck of 52 cards repeatedly.

Question: Can it return to the original order?

Answer: Yes. For example, after 52! times.

Question: What is the minimum number of times needed to return to the original order?

Perform out-shuffles on a deck of 52 cards repeatedly.

Question: Can it return to the original order?

Answer: Yes. For example, after 52! times.

Question: What is the minimum number of times needed to return to the original order?

Answer: 8 times.

• Position x: 0 1 2 3 4 ··· 25 26 ··· 50 51

• Position x: 0 1 2 3 4 ··· 25 26 ··· 50 51

Position x: 0
1
2
3
4
25
26
50
51
after O: 0
26
1
27
2
...
38
13
...
25
51

• Position x: 0 1 2 3 4 ... 25 26 ... 50 51 after O: 0 26 1 27 2 ... 38 13 ... 25 51 $x^{O}: 0$ 2 4 6 8 ... 50 1 ... 49 51

• Position x: 0 1 2 3 4 \cdots 25 26 \cdots 50 51 after O: 0 26 1 27 2 \cdots 38 13 \cdots 25 51 $x^{O}:$ 0 2 4 6 8 \cdots 50 1 \cdots 49 51

•
$$(i + 26j)^O = 2i + j$$
 for $i \in \{0, ..., 25\}$
and $j \in \{0, 1\}$;

• Position x: 0 1 2 3 4 \cdots 25 26 \cdots 50 51 after O: 0 26 1 27 2 \cdots 38 13 \cdots 25 51 x^{O} : 0 2 4 6 8 \cdots 50 1 \cdots 49 51

•
$$(i + 26j)^O = 2i + j$$
 for $i \in \{0, ..., 25\}$
and $j \in \{0, 1\}$;

•
$$0^{O} = 0$$
 and $51^{O} = 51$;

• Position x: 0 1 2 3 4 \cdots 25 26 \cdots 50 51 after O: 0 26 1 27 2 \cdots 38 13 \cdots 25 51 $x^{O}:$ 0 2 4 6 8 \cdots 50 1 \cdots 49 51

•
$$(i + 26j)^O = 2i + j$$
 for $i \in \{0, ..., 25\}$
and $j \in \{0, 1\}$;

•
$$0^{O} = 0$$
 and $51^{O} = 51$;

•
$$x^{O} = (2x \mod{51}) \text{ for } x \in \{1, \dots, 50\};$$

Out-shuffle O

• Position x: 0 1 2 3 4 \cdots 25 26 \cdots 50 51 after O: 0 26 1 27 2 \cdots 38 13 \cdots 25 51 $x^{O}:$ 0 2 4 6 8 \cdots 50 1 \cdots 49 51

•
$$(i + 26j)^O = 2i + j$$
 for $i \in \{0, ..., 25\}$
and $j \in \{0, 1\}$;

•
$$0^{O} = 0$$
 and $51^{O} = 51$;

•
$$x^{O} = (2x \mod 51)$$
 for $x \in \{1, \dots, 50\}$;

 the order of O is the smallest positive integer t such that 2^t ≡ 1 (mod 51).

Out-shuffle O

• Position x: 0 1 2 3 4 \cdots 25 26 \cdots 50 51 after O: 0 26 1 27 2 \cdots 38 13 \cdots 25 51 $x^{O}:$ 0 2 4 6 8 \cdots 50 1 \cdots 49 51

•
$$(i + 26j)^O = 2i + j$$
 for $i \in \{0, ..., 25\}$
and $j \in \{0, 1\}$;

•
$$0^{O} = 0$$
 and $51^{O} = 51$;

•
$$x^{O} = (2x \mod 51)$$
 for $x \in \{1, \dots, 50\}$;

 the order of O is the smallest positive integer t such that 2^t ≡ 1 (mod 51).

• $(i + jn)^O = 2i + j$ for $i \in \{0, ..., n - 1\}$ and $j \in \{0, 1\}$;

• Position x: 0 1 2 3 4 \cdots 25 26 \cdots 50 51 after O: 0 26 1 27 2 \cdots 38 13 \cdots 25 51 $x^{O}:$ 0 2 4 6 8 \cdots 50 1 \cdots 49 51

•
$$(i + 26j)^O = 2i + j$$
 for $i \in \{0, ..., 25\}$
and $j \in \{0, 1\}$;

•
$$0^{O} = 0$$
 and $51^{O} = 51$;

•
$$x^{O} = (2x \mod 51)$$
 for $x \in \{1, \dots, 50\}$;

Out-shuffle O

- $(i + jn)^O = 2i + j$ for $i \in \{0, ..., n 1\}$ and $j \in \{0, 1\}$;
- $x^{O} = (2\ell \mod 2n 1)$ for $x \in \{1, \dots, 2n 2\}$.

Question: Is it possible to send a given card to any chosen position by performing a sequence of the two shuffles?

Question: Is it possible to send a given card to any chosen position by performing a sequence of the two shuffles?

Answer: Yes.

Question: Is it possible to send a given card to any chosen position by performing a sequence of the two shuffles?

Answer: Yes.

Question: Can we obtain all different orderings by performing a sequence of the two shuffles?

Question: Is it possible to send a given card to any chosen position by performing a sequence of the two shuffles?

Answer: Yes.

Question: Can we obtain all different orderings by performing a sequence of the two shuffles?

If it is not possible, then

Question: Is it possible to send a given card to any chosen position by performing a sequence of the two shuffles?

Answer: Yes.

Question: Can we obtain all different orderings by performing a sequence of the two shuffles?

If it is not possible, then

Question: How many/Which orderings can be obtained by performing a sequence of the two shuffles?

Question: Is it possible to send a given card to any chosen position by performing a sequence of the two shuffles?

Answer: Yes.

Question: Can we obtain all different orderings by performing a sequence of the two shuffles?

If it is not possible, then

Question: How many/Which orderings can be obtained by performing a sequence of the two shuffles?

To answer these questions, we first determine the parity of O and I.

Observation: for n = 4,

• Position x: 0 1 2 3 4 5 6 7
after O: 0 4 1 5 2 6 3 7
$$x^{O}$$
: 0 2 4 6 1 3 5 7

Observation: for n = 4,

- Position x: 0 1 2 3 4 5 6 7 after O: 0 4 1 5 2 6 3 7 x^{O} : 0 2 4 6 1 3 5 7
- the inversion number of (0,2,4,6,1,3,5,7) is 1 + 2 + 3.

Observation: for n = 4,

- Position x: 0 1 2 3 4 5 6 7 after O: 0 4 1 5 2 6 3 7 x^{O} : 0 2 4 6 1 3 5 7
- the inversion number of (0,2,4,6,1,3,5,7) is 1 + 2 + 3.

For general n, the order of the 2n cards after O is

$$(0, 2, 4, 6, \ldots, 2n - 2, 1, 3, 5, \ldots, 2n - 1),$$

Observation: for n = 4,

- Position x: 0 1 2 3 4 5 6 7 after O: 0 4 1 5 2 6 3 7 x^{O} : 0 2 4 6 1 3 5 7
- the inversion number of (0,2,4,6,1,3,5,7) is 1 + 2 + 3.

For general n, the order of the 2n cards after O is

$$(0, 2, 4, 6, \ldots, 2n - 2, 1, 3, 5, \ldots, 2n - 1),$$

and thus its inversion number is $1 + \cdots + n - 1 = n(n-1)/2$.

• Inversion number n(n-1)/2

• Inversion number $n(n-1)/2 \implies$ If $n \equiv 0$ or 1 (mod 4), then O is even; otherwise O is odd.

- Inversion number $n(n-1)/2 \implies \text{If } n \equiv 0 \text{ or } 1 \pmod{4}$, then *O* is even; otherwise *O* is odd.
- *I* is obtained by permutating the two piles and then performing *O*.
 (x^I = x^{(0,n)(1,n+1)…(n-1,2n-1)O} for all x ∈ {0,1,...,2n-1})

- Inversion number $n(n-1)/2 \implies \text{If } n \equiv 0 \text{ or } 1 \pmod{4}$, then O is even; otherwise O is odd.
- *I* is obtained by permutating the two piles and then performing *O*.
 (x^I = x^{(0,n)(1,n+1)…(n-1,2n-1)O} for all x ∈ {0,1,...,2n-1})
- The permutation of the 2*n* cards induced by permutating the two piles has the same parity as *n*.

- Inversion number $n(n-1)/2 \implies \text{If } n \equiv 0 \text{ or } 1 \pmod{4}$, then O is even; otherwise O is odd.
- *I* is obtained by permutating the two piles and then performing *O*.
 (x^I = x^{(0,n)(1,n+1)…(n-1,2n-1)O} for all x ∈ {0,1,...,2n-1})
- The permutation of the 2*n* cards induced by permutating the two piles has the same parity as *n*.
- If *n* and *O* have the same parity, then *I* is even; otherwise *I* is odd

- Inversion number $n(n-1)/2 \implies \text{If } n \equiv 0 \text{ or } 1 \pmod{4}$, then O is even; otherwise O is odd.
- *I* is obtained by permutating the two piles and then performing *O*.
 (x^I = x^{(0,n)(1,n+1)…(n-1,2n-1)O} for all x ∈ {0,1,...,2n-1})
- The permutation of the 2*n* cards induced by permutating the two piles has the same parity as *n*.
- If *n* and *O* have the same parity, then *I* is even; otherwise *I* is odd \implies If $n \equiv 0$ or 3 (mod 4), then *I* is even; otherwise *I* is odd.

- Inversion number $n(n-1)/2 \implies \text{If } n \equiv 0 \text{ or } 1 \pmod{4}$, then O is even; otherwise O is odd.
- *I* is obtained by permutating the two piles and then performing *O*.
 (x^I = x^{(0,n)(1,n+1)…(n-1,2n-1)O} for all x ∈ {0,1,...,2n-1})
- The permutation of the 2*n* cards induced by permutating the two piles has the same parity as *n*.
- If *n* and *O* have the same parity, then *I* is even; otherwise *I* is odd \implies If $n \equiv 0$ or 3 (mod 4), then *I* is even; otherwise *I* is odd.
- Thus $\langle O, I \rangle \leq \operatorname{Alt}(2n) \iff n \equiv 0 \pmod{4}$.

Questions on $\langle O, I \rangle$

Question: Can $\langle O, I \rangle$ equal Alt(2*n*) when $n \equiv 0 \pmod{4}$?

Questions on $\langle O, I \rangle$

Question: Can $\langle O, I \rangle$ equal Alt(2*n*) when $n \equiv 0 \pmod{4}$? Question: Can $\langle O, I \rangle$ equal Sym(2*n*) when $n \not\equiv 0 \pmod{4}$?
Question: Can $\langle O, I \rangle$ equal Alt(2*n*) when $n \equiv 0 \pmod{4}$? Question: Can $\langle O, I \rangle$ equal Sym(2*n*) when $n \not\equiv 0 \pmod{4}$? Answer: Both no.

Question: Can $\langle O, I \rangle$ equal Alt(2*n*) when $n \equiv 0 \pmod{4}$? Question: Can $\langle O, I \rangle$ equal Sym(2*n*) when $n \not\equiv 0 \pmod{4}$? Answer: Both no.

Observation: for n = 4,

• original order: (0,1,2,3,4,5,6,7),

Question: Can $\langle O, I \rangle$ equal Alt(2*n*) when $n \equiv 0 \pmod{4}$? Question: Can $\langle O, I \rangle$ equal Sym(2*n*) when $n \not\equiv 0 \pmod{4}$? Answer: Both no.

Observation: for n = 4,

• original order: (0,1,2,3,4,5,6,7),

after the out-shuffle: (0,2,4,6,1,3,5,7),

Question: Can $\langle O, I \rangle$ equal Alt(2*n*) when $n \equiv 0 \pmod{4}$? Question: Can $\langle O, I \rangle$ equal Sym(2*n*) when $n \not\equiv 0 \pmod{4}$? Answer: Both no.

Observation: for n = 4,

 original order: (0,1,2,3,4,5,6,7), after the out-shuffle: (0,2,4,6,1,3,5,7), after the in-shuffle: (1,3,5,7,0,2,4,6);

Question: Can $\langle O, I \rangle$ equal Alt(2*n*) when $n \equiv 0 \pmod{4}$? Question: Can $\langle O, I \rangle$ equal Sym(2*n*) when $n \not\equiv 0 \pmod{4}$? Answer: Both no.

Observation: for n = 4,

- original order: (0,1,2,3,4,5,6,7), after the out-shuffle: (0,2,4,6,1,3,5,7), after the in-shuffle: (1,3,5,7,0,2,4,6);
- out-shuffle and in-shuffle preserve the partition $\{0,7\}, \{1,6\}, \{2,5\}, \{3,4\}.$

Question: Can $\langle O, I \rangle$ equal Alt(2*n*) when $n \equiv 0 \pmod{4}$? Question: Can $\langle O, I \rangle$ equal Sym(2*n*) when $n \not\equiv 0 \pmod{4}$? Answer: Both no.

Observation: for n = 4,

- original order: (0,1,2,3,4,5,6,7), after the out-shuffle: (0,2,4,6,1,3,5,7), after the in-shuffle: (1,3,5,7,0,2,4,6);
- out-shuffle and in-shuffle preserve the partition $\{0,7\}, \{1,6\}, \{2,5\}, \{3,4\}.$

For a general *n*, out-shuffle and in-shuffle preserve the partition $\{0, 2n - 1\}, \{1, 2n - 2\}, \dots, \{n - 1, n\}.$

 A permutation group on a set Ω is said to be imprimitive if this group preserves a nontrivial partition of Ω; otherwise, it is said to be primitive.

 A permutation group on a set Ω is said to be imprimitive if this group preserves a nontrivial partition of Ω; otherwise, it is said to be primitive.

• *O* and *I* preserve
$$\{0, 2n - 1\}, \{1, 2n - 2\}, \dots, \{n - 1, n\}$$

- A permutation group on a set Ω is said to be imprimitive if this group preserves a nontrivial partition of Ω; otherwise, it is said to be primitive.
- *O* and *I* preserve $\{0, 2n 1\}, \{1, 2n 2\}, \dots, \{n 1, n\}$ $\implies \langle O, I \rangle$ is imprimitive.

- A permutation group on a set Ω is said to be imprimitive if this group preserves a nontrivial partition of Ω; otherwise, it is said to be primitive.
- *O* and *I* preserve $\{0, 2n 1\}, \{1, 2n 2\}, \dots, \{n 1, n\}$ $\implies \langle O, I \rangle$ is imprimitive.
- Alt(2*n*) is primitive

- A permutation group on a set Ω is said to be imprimitive if this group preserves a nontrivial partition of Ω; otherwise, it is said to be primitive.
- *O* and *I* preserve $\{0, 2n 1\}, \{1, 2n 2\}, \dots, \{n 1, n\}$ $\implies \langle O, I \rangle$ is imprimitive.
- Alt(2*n*) is primitive \Longrightarrow Alt(2*n*) $\notin \langle O, I \rangle$

- A permutation group on a set Ω is said to be imprimitive if this group preserves a nontrivial partition of Ω; otherwise, it is said to be primitive.
- *O* and *I* preserve $\{0, 2n 1\}, \{1, 2n 2\}, \dots, \{n 1, n\}$ $\implies \langle O, I \rangle$ is imprimitive.
- Alt(2n) is primitive \Longrightarrow Alt(2n) $\leq \langle O, I \rangle \Longrightarrow O$ and I can't generate Alt(2n) or Sym(2n).

Diaconis-Graham-Kantor

Question: How many/Which orderings can be obtained by performing a sequence of the two shuffles?

[1] P. Diaconis, R. L. Graham and W. M. Kantor, The mathematics of perfect shuffles., *Adv. Appl. Math.*, 4 (1983), 175–196.

Wenying Zhu (BNU)

Card Shuffle Groups

Diaconis-Graham-Kantor

Question: How many/Which orderings can be obtained by performing a sequence of the two shuffles?

Answered by Diaconis, Graham and Kantor in 1983^[1].

Persi Diaconis ICM talk in 1990

Ron Graham ICM talk in 1983

William M. Kantor ICM talk in 1998

[1] P. Diaconis, R. L. Graham and W. M. Kantor, The mathematics of perfect shuffles., *Adv. Appl. Math.*, 4 (1983), 175–196.

Wenying Zhu (BNU)

Card Shuffle Groups

The classification of $\langle O, I \rangle$ in [1]

Size of each pile <i>n</i>	$\langle O, I \rangle$
$n = 2^{f}$ for some positive integer f	$C_2 \wr C_{f+1}$
$n \equiv 0 \pmod{4}$, $n > 12$ and n is not a power of 2	$C_2^{n-1} \rtimes A_n$
$n \equiv 1 \pmod{4}$	$C_2^n \rtimes A_n$
$n\equiv 2 \pmod{4}$ and $n>6$	$C_2 \wr \operatorname{Sym}(n)$
$n \equiv 3 \pmod{4}$	$C_2^{n-1} \rtimes S_n$
<i>n</i> = 6	$C_2^6 \rtimes \mathrm{PGL}(2,5)$
<i>n</i> = 12	$C_2^{11} \rtimes M_{12}$

Wenying Zhu (BNU)

Card Shuffle Groups

^[1] P. Diaconis, R. L. Graham and W. M. Kantor, The mathematics of perfect shuffles., *Adv. Appl. Math.*, 4 (1983), 175–196.

A deck of *kn* cards with $k \ge 2$

• cut into k piles and then perfectly interleave them (k! ways).

$$0 \qquad 0 \qquad n \qquad \cdots \qquad (k-1)n$$

$$1 \qquad 1 \qquad 1+n \qquad \cdots \qquad 1+(k-1)n$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$kn-1 \qquad n-1 \qquad 2n-1 \qquad \cdots \qquad kn-1$$

A deck of kn cards with $k \ge 2$

• cut into k piles and then perfectly interleave them (k! ways).

• Standard shuffle σ : picking up the top card from each of the piles $0, \ldots, k-1$ in order and repeating until all cards have been picked up.

A deck of kn cards with $k \ge 2$

• cut into k piles and then perfectly interleave them (k! ways).

- Standard shuffle σ : picking up the top card from each of the piles $0, \ldots, k-1$ in order and repeating until all cards have been picked up.
- ρ_{τ} : the permutation of the *kn* cards induced by the permutation τ of the *k* piles.

• For a positive integer m, denote $[m] = \{0, 1, \dots, m-1\}$.

- For a positive integer m, denote $[m] = \{0, 1, \dots, m-1\}$.
- k piles: 0 n ... (k-1)n1 1+n ... 1+(k-1)n... n-1 2n-1 ... kn-1
- For all $i \in [n]$ and $j \in [k]$,
- the *i*th row of the *j*th column is the i + jnth position,

- For a positive integer m, denote $[m] = \{0, 1, \dots, m-1\}$.
- k piles: 0 n ... (k-1)n1 1+n ... 1+(k-1)n: : : : n-1 2n-1 ... kn-1

• For all
$$i \in [n]$$
 and $j \in [k]$,

- the *i*th row of the *j*th column is the *i* + *jn*th position,
- recall σ and $\rho_{\tau} \implies (i + jn)^{\sigma} = ik + j$ and $(i + jn)^{\rho_{\tau}} = i + j^{\tau}n$.

- For a positive integer m, denote $[m] = \{0, 1, \dots, m-1\}$.
- k piles: 0 n ... (k-1)n1 1+n ... 1+(k-1)n: : : : n-1 2n-1 ... kn-1

• For all
$$i \in [n]$$
 and $j \in [k]$,

- the *i*th row of the *j*th column is the *i* + *jn*th position,
- recall σ and $\rho_{\tau} \implies (i + jn)^{\sigma} = ik + j$ and $(i + jn)^{\rho_{\tau}} = i + j^{\tau}n$.
- The shuffle group on kn cards, denoted by $G_{k,kn}$, is generated by all possible shuffles $\rho_{\tau}\sigma$ for $\tau \in \text{Sym}(\{0, \ldots, k-1\})$.

- For a positive integer m, denote $[m] = \{0, 1, \dots, m-1\}$.
- k piles: 0 n ... (k-1)n1 1+n ... 1+(k-1)n: : : : n-1 2n-1 ... kn-1

• For all
$$i \in [n]$$
 and $j \in [k]$,

- the *i*th row of the *j*th column is the *i* + *jn*th position,
- recall σ and $\rho_{\tau} \implies (i + jn)^{\sigma} = ik + j$ and $(i + jn)^{\rho_{\tau}} = i + j^{\tau}n$.
- The shuffle group on kn cards, denoted by G_{k,kn}, is generated by all possible shuffles ρ_τσ for τ ∈ Sym({0,..., k − 1}).
 (G_{k,kn} = ⟨ρ_τσ | τ ∈ Sym(k)⟩ = ⟨ρ_τ, σ | τ ∈ Sym(k)⟩.)

• Medvedoff and Morrison^[2] in 1987 conjectured:

[2] S. Medvedoff and K. Morrison, Groups of perfect shuffles, *Math. Mag.*, 60 (1987), 3–14.

- Medvedoff and Morrison^[2] in 1987 conjectured:
 - $G_{3,3n} \ge \operatorname{Alt}(3n)$ if *n* is not a power of 3;

^[2] S. Medvedoff and K. Morrison, Groups of perfect shuffles, *Math. Mag.*, 60 (1987), 3–14.

- Medvedoff and Morrison^[2] in 1987 conjectured:
 - $G_{3,3n} \ge \operatorname{Alt}(3n)$ if *n* is not a power of 3;
 - $G_{4,4n} \ge \operatorname{Alt}(4n)$ if *n* is not a power of 2;

^[2] S. Medvedoff and K. Morrison, Groups of perfect shuffles, *Math. Mag.*, 60 (1987), 3–14.

- Medvedoff and Morrison^[2] in 1987 conjectured:
 - $G_{3,3n} \ge \operatorname{Alt}(3n)$ if *n* is not a power of 3;
 - $G_{4,4n} \ge \operatorname{Alt}(4n)$ if *n* is not a power of 2;
 - $G_{4,2^m} = \operatorname{AGL}(m,2) = C_2^m \rtimes \operatorname{GL}(m,2)$ if $m \ge 3$ is odd.

^[2] S. Medvedoff and K. Morrison, Groups of perfect shuffles, *Math. Mag.*, 60 (1987), 3–14.

- Medvedoff and Morrison^[2] in 1987 conjectured:
 - $G_{3,3n} \ge \operatorname{Alt}(3n)$ if *n* is not a power of 3;
 - $G_{4,4n} \ge \operatorname{Alt}(4n)$ if *n* is not a power of 2;
 - $G_{4,2^m} = \operatorname{AGL}(m,2) = C_2^m \rtimes \operatorname{GL}(m,2)$ if $m \ge 3$ is odd.
- In [2] they also proved:
 - ► $G_{k,kn} \leq \operatorname{Alt}(kn)$ if and only if either $n \equiv 0 \pmod{4}$, or $n \equiv 2 \pmod{4}$ and $k \equiv 0$ or 1 (mod 4).
 - $G_{k,k^m} = \operatorname{Sym}(k) \wr C_m$.

^[2] S. Medvedoff and K. Morrison, Groups of perfect shuffles, *Math. Mag.*, 60 (1987), 3–14.

• Cohen, Harmse, Morrison and Wright^[3] confirmed the latter part of MM's conjecture when k = 4.

 $(G_{4,2^m} = AGL(m, 2) \text{ for some odd integer } m \geq 3)$

^[3] A. Cohen, A. Harmse, K.E. Morrison and S. Wright, Perfect shuffles and affine groups, 2005, https://aimath.org/morrison/Research/shuffles.

• Cohen, Harmse, Morrison and Wright^[3] confirmed the latter part of MM's conjecture when k = 4.

 $(G_{4,2^m} = AGL(m, 2) \text{ for some odd integer } m \geq 3)$

• In [3] they also posed:

Shuffle Group Conjecture (2005)

For $k \ge 3$, if *n* is not a power of *k* and $(k, n) \ne (4, 2^{f})$ for any positive integer *f*, then $G_{k,kn} \ge A_{kn}$.

^[3] A. Cohen, A. Harmse, K.E. Morrison and S. Wright, Perfect shuffles and affine groups, 2005, https://aimath.org/morrison/Research/shuffles.

• Amarra, Morgan and Praeger^[4] confirmed the Shuffle Group Conjecture in the following cases:

^[4] C. Amarra, L. Morgan and C. Praeger, Generalised shuffle groups, *Israel J. Math.*, 244 (2021), 807–856.

• Amarra, Morgan and Praeger^[4] confirmed the Shuffle Group Conjecture in the following cases:

▶ k > n;

^[4] C. Amarra, L. Morgan and C. Praeger, Generalised shuffle groups, *Israel J. Math.*, 244 (2021), 807–856.

• Amarra, Morgan and Praeger^[4] confirmed the Shuffle Group Conjecture in the following cases:

▶ k > n;

• k and n are powers of the same integer $\ell \geq 2$;

^[4] C. Amarra, L. Morgan and C. Praeger, Generalised shuffle groups, Israel J. Math., 244 (2021), 807–856.

- Amarra, Morgan and Praeger^[4] confirmed the Shuffle Group Conjecture in the following cases:
 - ▶ k > n;
 - k and n are powers of the same integer $\ell \geq 2$;
 - ▶ k is a power of 2.

^[4] C. Amarra, L. Morgan and C. Praeger, Generalised shuffle groups, *Israel J. Math.*, 244 (2021), 807–856.

- Amarra, Morgan and Praeger^[4] confirmed the Shuffle Group Conjecture in the following cases:
 - ▶ k > n;
 - k and n are powers of the same integer $\ell \geq 2$;
 - ▶ k is a power of 2.
- In [4] they also opened up the study of "generalized shuffle groups".

^[4] C. Amarra, L. Morgan and C. Praeger, Generalised shuffle groups, *Israel J. Math.*, 244 (2021), 807–856.

Our contribution

Theorem (Xia-Zhang-Z. 2023⁺)

The Shuffle Group Conjecture holds when $k \ge 4$ or k does not divide n.
Our contribution

Theorem (Xia-Zhang-Z. 2023⁺)

The Shuffle Group Conjecture holds when $k \ge 4$ or k does not divide n.

We established two key lemmas to prove the theorem.

Our contribution

Theorem (Xia-Zhang-Z. 2023⁺)

The Shuffle Group Conjecture holds when $k \ge 4$ or k does not divide n.

We established two key lemmas to prove the theorem.

- Reduction Lemma: If $G_{k,kn}$ is 2-transitive, then either k = 4 and n is a power of 2, or $G_{k,kn}$ contains A_{kn} .
- 2-transitivity Lemma: If either $k \ge 4$ and n is not a power of k, or k = 3 and n is not divisible by 3, then $G_{k,kn}$ is 2-transitive.

Our contribution

Theorem (Xia-Zhang-Z. 2023⁺)

The Shuffle Group Conjecture holds when $k \ge 4$ or k does not divide n.

We established two key lemmas to prove the theorem.

- Reduction Lemma: If $G_{k,kn}$ is 2-transitive, then either k = 4 and n is a power of 2, or $G_{k,kn}$ contains A_{kn} .
- 2-transitivity Lemma: If either $k \ge 4$ and n is not a power of k, or k = 3 and n is not divisible by 3, then $G_{k,kn}$ is 2-transitive.
- A permutation group G on a set Ω is said to be 2-transitive if the induced action of G on Ω × Ω \ {(α, α) | α ∈ Ω} is transitive.

Reduction Lemma (Xia-Zhang-Z. 2023⁺)

Reduction Lemma (Xia-Zhang-Z. 2023⁺)

If $G_{k,kn}$ is 2-transitive, then either k = 4 and n is a power of 2, or $G_{k,kn}$ contains A_{kn} .

• The proof is by examining the list of 2-transitive groups for elements of large fixed point ratio.

Reduction Lemma (Xia-Zhang-Z. 2023⁺)

- The proof is by examining the list of 2-transitive groups for elements of large fixed point ratio.
- The fixed point ratio of a permutation g on a finite set Ω, denoted by fpr(g), is defined as fpr(g) = |Fix(g)|/|Ω|, where Fix(g) = {α ∈ Ω | α^g = α}.

Reduction Lemma (Xia-Zhang-Z. 2023⁺)

- The proof is by examining the list of 2-transitive groups for elements of large fixed point ratio.
- The fixed point ratio of a permutation g on a finite set Ω, denoted by fpr(g), is defined as fpr(g) = |Fix(g)|/|Ω|, where Fix(g) = {α ∈ Ω | α^g = α}.

• Observation:
$$fpr(\rho_{\tau}) = fpr(\tau)$$

Reduction Lemma (Xia-Zhang-Z. 2023⁺)

- The proof is by examining the list of 2-transitive groups for elements of large fixed point ratio.
- The fixed point ratio of a permutation g on a finite set Ω, denoted by fpr(g), is defined as fpr(g) = |Fix(g)|/|Ω|, where Fix(g) = {α ∈ Ω | α^g = α}.
- Observation: $\operatorname{fpr}(\rho_{\tau}) = \operatorname{fpr}(\tau) \Longrightarrow \operatorname{fpr}(\rho_{\tau}) = (k-2)/k$ when τ is a transposition.

Write $G = G_{k,kn}$. Suppose G is an affine 2-transitive permutation group, i.e., $G \leq AGL(V) = AGL(d, p)$ for some d-dimension vector space V over a prime field \mathbb{F}_p .

• Recall the observation: $\exists \ \rho_{\tau} \in G \text{ s.t. } \operatorname{fpr}(\rho_{\tau}) = (k-2)/k.$

- Recall the observation: $\exists \ \rho_{\tau} \in G \text{ s.t. } \operatorname{fpr}(\rho_{\tau}) = (k-2)/k.$
- G is transitive \implies we may assume $\rho_{\tau} \in G_0 \leq \operatorname{GL}(V)$.

- Recall the observation: $\exists \ \rho_{\tau} \in G \text{ s.t. } \operatorname{fpr}(\rho_{\tau}) = (k-2)/k.$
- G is transitive \implies we may assume $\rho_{\tau} \in G_0 \leq \operatorname{GL}(V)$.

•
$$\operatorname{fpr}(\rho_{\tau}) = |\{v \in V \mid v^{\rho_{\tau}} = v\}|/|V| = p^{f}/p^{d} = 1/p^{d-f}.$$

- Recall the observation: $\exists \ \rho_{\tau} \in G \text{ s.t. } \operatorname{fpr}(\rho_{\tau}) = (k-2)/k.$
- G is transitive \implies we may assume $\rho_{\tau} \in G_0 \leq \operatorname{GL}(V)$.

•
$$\operatorname{fpr}(\rho_{\tau}) = |\{v \in V \mid v^{\rho_{\tau}} = v\}|/|V| = p^{f}/p^{d} = 1/p^{d-f}.$$

•
$$(k-2)/k = 1/p^{d-f}$$

- Recall the observation: $\exists \ \rho_{\tau} \in G \text{ s.t. } \operatorname{fpr}(\rho_{\tau}) = (k-2)/k.$
- G is transitive \implies we may assume $\rho_{\tau} \in G_0 \leq \operatorname{GL}(V)$.
- $\operatorname{fpr}(\rho_{\tau}) = |\{v \in V \mid v^{\rho_{\tau}} = v\}|/|V| = p^{f}/p^{d} = 1/p^{d-f}.$
- $(k-2)/k = 1/p^{d-f} \implies (k,p)$ is either (3,3) or (4,2).

- Recall the observation: $\exists \ \rho_{\tau} \in G \text{ s.t. } \operatorname{fpr}(\rho_{\tau}) = (k-2)/k.$
- G is transitive \implies we may assume $\rho_{\tau} \in G_0 \leq \operatorname{GL}(V)$.
- $\operatorname{fpr}(\rho_{\tau}) = |\{v \in V \mid v^{\rho_{\tau}} = v\}|/|V| = p^{f}/p^{d} = 1/p^{d-f}.$
- $(k-2)/k = 1/p^{d-f} \implies (k,p)$ is either (3,3) or (4,2).
- $kn = |V| = p^d \Longrightarrow (k, n)$ is either $(3, 3^{d-1})$ or $(4, 2^{d-2})$.

- Recall the observation: $\exists \ \rho_{\tau} \in G \text{ s.t. } \operatorname{fpr}(\rho_{\tau}) = (k-2)/k.$
- G is transitive \implies we may assume $\rho_{\tau} \in G_0 \leq \operatorname{GL}(V)$.
- $\operatorname{fpr}(\rho_{\tau}) = |\{v \in V \mid v^{\rho_{\tau}} = v\}|/|V| = p^{f}/p^{d} = 1/p^{d-f}.$
- $(k-2)/k = 1/p^{d-f} \implies (k,p)$ is either (3,3) or (4,2).
- $kn = |V| = p^d \implies (k, n)$ is either $(3, 3^{d-1})$ or $(4, 2^{d-2})$.
- Note that $G_{3,3^d}$ and $G_{4,2^d}$ have been determined.

2-transitivity Lemma (Xia-Zhang-Z. 2023⁺)

If either $k \ge 4$ and n is not a power of k, or k = 3 and n is not divisible by 3, then $G_{k,kn}$ is 2-transitive.

2-transitivity Lemma (Xia-Zhang-Z. 2023⁺)

If either $k \ge 4$ and n is not a power of k, or k = 3 and n is not divisible by 3, then $G_{k,kn}$ is 2-transitive.

• The proof of this lemma is combinatorial in nature.

2-transitivity Lemma (Xia-Zhang-Z. 2023⁺)

If either $k \ge 4$ and n is not a power of k, or k = 3 and n is not divisible by 3, then $G_{k,kn}$ is 2-transitive.

- The proof of this lemma is combinatorial in nature.
- Shuffle Group Conjecture $\xrightarrow{Reduction Lemma}$ 2-transitivity of $G_{k,kn}$.

2-transitivity Lemma (Xia-Zhang-Z. 2023⁺)

If either $k \ge 4$ and n is not a power of k, or k = 3 and n is not divisible by 3, then $G_{k,kn}$ is 2-transitive.

- The proof of this lemma is combinatorial in nature.
- Shuffle Group Conjecture $\xrightarrow{Reduction Lemma}$ 2-transitivity of $G_{k,kn}$.
- Thus the remaining unresolved case of the conjecture is that k = 3 divides *n*.

• Let
$$G = G_{k,kn}$$
 and $[m] = \{0, 1, \dots, m-1\}$.

• Let
$$G = G_{k,kn}$$
 and $[m] = \{0, 1, \dots, m-1\}$.

• G is 2-transitive on [kn] iff G_0 is transitive on $[m] \setminus \{0\}$.

• Let
$$G = G_{k,kn}$$
 and $[m] = \{0, 1, \dots, m-1\}$.

• G is 2-transitive on [kn] iff G_0 is transitive on $[m] \setminus \{0\}$.

- Let $G = G_{k,kn}$ and $[m] = \{0, 1, \dots, m-1\}$.
- G is 2-transitive on [kn] iff G_0 is transitive on $[m] \setminus \{0\}$.

• we complete this proof through the following cases:

• Let
$$G = G_{k,kn}$$
 and $[m] = \{0, 1, \dots, m-1\}$.

• G is 2-transitive on [kn] iff G_0 is transitive on $[m] \setminus \{0\}$.

- we complete this proof through the following cases:
 - $k \nmid n$ with $k \ge 4$; (only elaborate on this case here)
 - $k \nmid n$ with k = 3;
 - $k \mid n$ with $k \geq 4$.

0	п	•	•	•	(k-1)n
1	1 + n	•	•	•	1+(k-1)n
•	•				•
•	•				•
•	•				•
n-1	2 <i>n</i> – 1		•		kn-1

• $(i + jn)^{\rho_{\tau}} = i + j^{\tau}n;$

•
$$(i + jn)^{\rho_{\tau}} = i + j^{\tau}n;$$

•
$$(i+jn)^{\rho_{\tau}}=i+j^{\tau}n;$$

• recall
$$(i + jn)^{\sigma} = ik + j;$$

• $k \ge 4$ and $k \nmid n$

•
$$(i + jn)^{\rho_{\tau}} = i + j^{\tau}n;$$

• recall
$$(i + jn)^{\sigma} = ik + j;$$

•
$$(ik+1)^{\sigma^{-1}\rho_{\tau}\sigma} = (i+1\cdot n)^{\rho_{\tau}\sigma} = (i+1^{\tau}\cdot n)^{\sigma} = ik+1^{\tau}$$

 $\implies \{ik+1, ik+2\dots, ik+k-1\}$ in the same orbit of G_0 .

• $k \ge 4$ and $k \nmid n \implies$ for $\forall x \in [n], \exists y \in \{x + n, x + 2n, x + 3n\}$ s.t. $y \sim y + 1$.

•
$$(i + jn)^{\rho_{\tau}} = i + j^{\tau}n;$$

• recall
$$(i + jn)^{\sigma} = ik + j;$$

•
$$(ik+1)^{\sigma^{-1}\rho_{\tau}\sigma} = (i+1\cdot n)^{\rho_{\tau}\sigma} = (i+1^{\tau}\cdot n)^{\sigma} = ik+1^{\tau}$$

 $\implies \{ik+1, ik+2\dots, ik+k-1\}$ in the same orbit of G_0 .

• $k \ge 4$ and $k \nmid n \implies$ for $\forall x \in [n], \exists y \in \{x + n, x + 2n, x + 3n\}$ s.t. $y \sim y + 1$.

• $x^{\sigma} \equiv kx \pmod{kn-1}$ for all $x \in [kn]$;

• $x^{\sigma} \equiv kx \pmod{kn-1}$ for all $x \in [kn]$;

•
$$(n-1)^{\sigma} = k(n-1)$$

• $x^{\sigma} \equiv kx \pmod{kn-1}$ for all $x \in [kn]$;

•
$$(n-1)^{\sigma}=k(n-1)$$
 $\xrightarrow{n-1<(n-1)k< kn-1}$ $n-1\in n^{G_0}$;

• $x^{\sigma} \equiv kx \pmod{kn-1}$ for all $x \in [kn]$;

•
$$(n-1)^{\sigma}=k(n-1)$$
 $\xrightarrow{n-1<(n-1)k< kn-1}$ $n-1\in n^{G_0}$;

• suppose $\exists x \in [n-1] \setminus \{0\}$ s.t $y \in n^{G_0}$ for all y > x.

• $x^{\sigma} \equiv kx \pmod{kn-1}$ for all $x \in [kn]$;

•
$$(n-1)^{\sigma}=k(n-1)$$
 $\xrightarrow{n-1<(n-1)k< kn-1}$ $n-1\in n^{G_0}$;

• suppose $\exists x \in [n-1] \setminus \{0\}$ s.t $y \in n^{G_0}$ for all y > x.

• $x^{\sigma} = kx > x$

• $x^{\sigma} \equiv kx \pmod{kn-1}$ for all $x \in [kn]$;

•
$$(n-1)^{\sigma}=k(n-1)$$
 $\xrightarrow{n-1<(n-1)k< kn-1}$ $n-1\in n^{G_0}$;

• suppose $\exists x \in [n-1] \setminus \{0\}$ s.t $y \in n^{G_0}$ for all y > x.

•
$$x^{\sigma} = kx > x \implies x \in n^{G_0}$$
.

Thank you for listening!