Card Shuffle Groups

Wenying Zhu

Beijing Normal University

This is joint work with Binzhou Xia and Zhishuo Zhang.
7 Nov 2023, Seminar (Online)

Perfectly shuffle $2 n$ cards

- Cut the deck in half:

- Perfectly interleave them:

Questions

Perform out-shuffles on a deck of 52 cards repeatedly.

Questions

Perform out-shuffles on a deck of 52 cards repeatedly.

Question: Can it return to the original order?

Questions

Perform out-shuffles on a deck of 52 cards repeatedly.

Question: Can it return to the original order?
Answer: Yes. For example, after 52! times.

Questions

Perform out-shuffles on a deck of 52 cards repeatedly.

Question: Can it return to the original order?
Answer: Yes. For example, after 52! times.
Question: What is the minimum number of times needed to return to the original order?

Questions

Perform out-shuffles on a deck of 52 cards repeatedly.

Question: Can it return to the original order?
Answer: Yes. For example, after 52! times.
Question: What is the minimum number of times needed to return to the original order?

Answer: 8 times.

Why 8 times

- Position $x: 0 \begin{array}{llllllllll} & 1 & 2 & 3 & 4 & \cdots & 25 & 26 & \cdots & 50 \\ 51\end{array}$

Out-shuffle O

Why 8 times

- Position $x: 0 \begin{array}{llllllllll} & 1 & 2 & 3 & 4 & \cdots & 25 & 26 & \cdots & 50 \\ 51\end{array}$

Out-shuffle O

Why 8 times

 after $O: 0 \begin{array}{llllllllll} & 26 & 1 & 27 & 2 & \cdots & 38 & 13 & \cdots & 25\end{array} 51$

Out-shuffle O

Why 8 times

- Position x: $0 \begin{array}{lllllllllll} & 1 & 2 & 3 & 4 & \cdots & 25 & 26 & \cdots & 50 & 51\end{array}$ after $O: 0 \begin{array}{llllllllll} & 26 & 1 & 27 & 2 & \cdots & 38 & 13 & \cdots & 25\end{array} 51$ $x^{O}: 0 \quad 2 \quad 4 \quad 6 \quad 8 \quad \cdots \quad 50 \quad 1 \quad \cdots \quad 49 \quad 51$

Out-shuffle O

Why 8 times

- Position $x: 0 \begin{array}{llllllllll} & 1 & 2 & 3 & 4 & \cdots & 25 & 26 & \cdots & 50 \\ 51\end{array}$
after $0: 0 \begin{array}{lllllllllll} & 26 & 1 & 27 & 2 & \cdots & 38 & 13 & \cdots & 25 & 51\end{array}$ $x^{O}: 0 \quad 2 \quad 4 \quad 6 \quad 8 \quad \cdots \quad 50 \quad 1 \quad \cdots \quad 49 \quad 51$
- $(i+26 j)^{O}=2 i+j$ for $i \in\{0, \ldots, 25\}$ and $j \in\{0,1\}$;

Out-shuffle O

Why 8 times

- Position $x: 0 \begin{array}{llllllllll} & 1 & 2 & 3 & 4 & \cdots & 25 & 26 & \cdots & 50 \\ 51\end{array}$
after $0: 0 \begin{array}{lllllllllll} & 26 & 1 & 27 & 2 & \cdots & 38 & 13 & \cdots & 25 & 51\end{array}$ $x^{O}: 0 \quad 2 \quad 4 \quad 6 \quad 8 \quad \cdots \quad 50 \quad 1 \quad \cdots \quad 49 \quad 51$
- $(i+26 j)^{O}=2 i+j$ for $i \in\{0, \ldots, 25\}$ and $j \in\{0,1\}$;
- $0^{O}=0$ and $51^{O}=51$;

Out-shuffle O

Why 8 times

- Position $x: 0 \begin{array}{lllllllllll} & 1 & 2 & 3 & 4 & \cdots & 25 & 26 & \cdots & 50 & 51\end{array}$
after $O: 0 \begin{array}{lllllllllll} & 26 & 1 & 27 & 2 & \cdots & 38 & 13 & \cdots & 25 & 51\end{array}$ $x^{O}: 0 \quad 2 \quad 4 \quad 6 \quad 8 \quad \cdots \quad 50 \quad 1 \quad \cdots \quad 49 \quad 51$
- $(i+26 j)^{O}=2 i+j$ for $i \in\{0, \ldots, 25\}$ and $j \in\{0,1\}$;
- $0^{O}=0$ and $51^{\circ}=51$;
- $x^{O}=(2 x \bmod 51)$ for $x \in\{1, \ldots, 50\}$;

Out-shuffle O

Why 8 times

- Position $x: 0 \begin{array}{lllllllllll} & 1 & 2 & 3 & 4 & \cdots & 25 & 26 & \cdots & 50 & 51\end{array}$

after $O:$	0	26	1	27	2	\cdots	38	13	\cdots	25
$x^{O}:$	0	2	4	6	8	\cdots	50	1	\cdots	49
51										

- $(i+26 j)^{O}=2 i+j$ for $i \in\{0, \ldots, 25\}$ and $j \in\{0,1\}$;
- $0^{O}=0$ and $51^{O}=51$;
- $x^{O}=(2 x \bmod 51)$ for $x \in\{1, \ldots, 50\}$;
- the order of O is the smallest positive integer t such that $2^{t} \equiv 1(\bmod 51)$.

Out-shuffle O

Why 8 times

- Position $x: 0 \begin{array}{lllllllllll} & 1 & 2 & 3 & 4 & \cdots & 25 & 26 & \cdots & 50 & 51\end{array}$
after O: $0 \begin{array}{lllllllllll} & 26 & 1 & 27 & 2 & \cdots & 38 & 13 & \cdots & 25 & 51\end{array}$ $x^{O}: 0 \quad 2 \quad 4 \quad 6 \quad 8 \quad \cdots \quad 50 \quad 1 \quad \cdots \quad 49 \quad 51$
- $(i+26 j)^{O}=2 i+j$ for $i \in\{0, \ldots, 25\}$ and $j \in\{0,1\}$;
- $0^{O}=0$ and $51^{O}=51$;
- $x^{O}=(2 x \bmod 51)$ for $x \in\{1, \ldots, 50\}$;
- the order of O is the smallest positive
integer t such that $2^{t} \equiv 1(\bmod 51)$.

Out-shuffle O

- $(i+j n)^{O}=2 i+j$ for $i \in\{0, \ldots, n-1\}$ and $j \in\{0,1\}$;

Why 8 times

- Position $x: 0 \begin{array}{lllllllllll} & 1 & 2 & 3 & 4 & \cdots & 25 & 26 & \cdots & 50 & 51\end{array}$

after $0:$	0	26	1	27	2	\cdots	38	13	\cdots	25
$x^{O}:$	0	2	4	6	8	\cdots	50	1	\cdots	49
51										

- $(i+26 j)^{O}=2 i+j$ for $i \in\{0, \ldots, 25\}$ and $j \in\{0,1\}$;
- $0^{O}=0$ and $51^{O}=51$;
- $x^{O}=(2 x \bmod 51)$ for $x \in\{1, \ldots, 50\}$;
- the order of O is the smallest positive
integer t such that $2^{t} \equiv 1(\bmod 51)$.

Out-shuffle O

- $(i+j n)^{O}=2 i+j$ for $i \in\{0, \ldots, n-1\}$ and $j \in\{0,1\}$;
- $x^{O}=(2 \ell \bmod 2 n-1)$ for $x \in\{1, \ldots, 2 n-2\}$.

More questions

Question: Is it possible to send a given card to any chosen position by performing a sequence of the two shuffles?

More questions

Question: Is it possible to send a given card to any chosen position by performing a sequence of the two shuffles?

Answer: Yes.

More questions

Question: Is it possible to send a given card to any chosen position by performing a sequence of the two shuffles?

Answer: Yes.
Question: Can we obtain all different orderings by performing a sequence of the two shuffles?

More questions

Question: Is it possible to send a given card to any chosen position by performing a sequence of the two shuffles?

Answer: Yes.
Question: Can we obtain all different orderings by performing a sequence of the two shuffles?

If it is not possible, then

More questions

Question: Is it possible to send a given card to any chosen position by performing a sequence of the two shuffles?

Answer: Yes.
Question: Can we obtain all different orderings by performing a sequence of the two shuffles?

If it is not possible, then
Question: How many/Which orderings can be obtained by performing a sequence of the two shuffles?

More questions

Question: Is it possible to send a given card to any chosen position by performing a sequence of the two shuffles?

Answer: Yes.
Question: Can we obtain all different orderings by performing a sequence of the two shuffles?

If it is not possible, then
Question: How many/Which orderings can be obtained by performing a sequence of the two shuffles?

To answer these questions, we first determine the parity of O and I.

Observation

Observation: for $n=4$,

- Position $x: 0 \begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
after $O: 0$
$x^{O}: 0$ 2

Observation

Observation: for $n=4$,

- Position $x: 0 \begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
after $O: 0 \begin{array}{llllllll}0 & 4 & 1 & 5 & 2 & 6 & 3 & 7\end{array}$
$x^{0}: 0 \begin{array}{llllllll} & 2 & 4 & 6 & 1 & 3 & 5 & 7\end{array}$
- the inversion number of $(0,2,4,6,1,3,5,7)$ is $1+2+3$.

Observation

Observation: for $n=4$,

- Position $x: 0 \begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

after $O:$	0	4	1	5	2	6	3
7							
$x^{O}:$	0	2	4	6	1	3	5
7							

- the inversion number of $(0,2,4,6,1,3,5,7)$ is $1+2+3$.

For general n, the order of the $2 n$ cards after O is

$$
(0,2,4,6, \ldots, 2 n-2,1,3,5, \ldots, 2 n-1)
$$

Observation

Observation: for $n=4$,

- Position $x: 0 \begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

after O : 0		1	5	2	6		3	7
$x^{O}: 0$	2	4	6	1	3		5	7

- the inversion number of $(0,2,4,6,1,3,5,7)$ is $1+2+3$.

For general n, the order of the $2 n$ cards after O is

$$
(0,2,4,6, \ldots, 2 n-2,1,3,5, \ldots, 2 n-1)
$$

and thus its inversion number is $1+\cdots+n-1=n(n-1) / 2$.

Parity of O and I

- Inversion number $n(n-1) / 2$

Parity of O and I

- Inversion number $n(n-1) / 2 \Longrightarrow$ If $n \equiv 0$ or $1(\bmod 4)$, then O is even; otherwise O is odd.

Parity of O and I

- Inversion number $n(n-1) / 2 \Longrightarrow$ If $n \equiv 0$ or $1(\bmod 4)$, then O is even; otherwise O is odd.
- I is obtained by permutating the two piles and then performing O.

$$
\left(x^{\prime}=x^{(0, n)(1, n+1) \cdots(n-1,2 n-1) O} \text { for all } x \in\{0,1, \ldots, 2 n-1\}\right)
$$

Parity of O and I

- Inversion number $n(n-1) / 2 \Longrightarrow$ If $n \equiv 0$ or $1(\bmod 4)$, then O is even; otherwise O is odd.
- I is obtained by permutating the two piles and then performing O. $\left(x^{\prime}=x^{(0, n)(1, n+1) \cdots(n-1,2 n-1) O}\right.$ for all $\left.x \in\{0,1, \ldots, 2 n-1\}\right)$
- The permutation of the $2 n$ cards induced by permutating the two piles has the same parity as n.

Parity of O and I

- Inversion number $n(n-1) / 2 \Longrightarrow$ If $n \equiv 0$ or $1(\bmod 4)$, then O is even; otherwise O is odd.
- I is obtained by permutating the two piles and then performing O.
$\left(x^{\prime}=x^{(0, n)(1, n+1) \cdots(n-1,2 n-1) O}\right.$ for all $\left.x \in\{0,1, \ldots, 2 n-1\}\right)$
- The permutation of the $2 n$ cards induced by permutating the two piles has the same parity as n.
- If n and O have the same parity, then I is even; otherwise I is odd

Parity of O and I

- Inversion number $n(n-1) / 2 \Longrightarrow$ If $n \equiv 0$ or $1(\bmod 4)$, then O is even; otherwise O is odd.
- I is obtained by permutating the two piles and then performing O.
$\left(x^{\prime}=x^{(0, n)(1, n+1) \cdots(n-1,2 n-1) O}\right.$ for all $\left.x \in\{0,1, \ldots, 2 n-1\}\right)$
- The permutation of the $2 n$ cards induced by permutating the two piles has the same parity as n.
- If n and O have the same parity, then I is even; otherwise I is odd \Longrightarrow If $n \equiv 0$ or $3(\bmod 4)$, then I is even; otherwise I is odd.

Parity of O and I

- Inversion number $n(n-1) / 2 \Longrightarrow$ If $n \equiv 0$ or $1(\bmod 4)$, then O is even; otherwise O is odd.
- I is obtained by permutating the two piles and then performing O. $\left(x^{\prime}=x^{(0, n)(1, n+1) \cdots(n-1,2 n-1) O}\right.$ for all $\left.x \in\{0,1, \ldots, 2 n-1\}\right)$
- The permutation of the $2 n$ cards induced by permutating the two piles has the same parity as n.
- If n and O have the same parity, then I is even; otherwise I is odd \Longrightarrow If $n \equiv 0$ or $3(\bmod 4)$, then l is even; otherwise l is odd.
- Thus $\langle O, I\rangle \leq \operatorname{Alt}(2 n) \Longleftrightarrow n \equiv 0(\bmod 4)$.

Questions on $\langle O, I\rangle$

Question: Can $\langle O, I\rangle$ equal $\operatorname{Alt}(2 n)$ when $n \equiv 0(\bmod 4)$?

Questions on $\langle O, I\rangle$

Question: Can $\langle O, I\rangle$ equal $\operatorname{Alt}(2 n)$ when $n \equiv 0(\bmod 4)$?
Question: Can $\langle O, I\rangle$ equal $\operatorname{Sym}(2 n)$ when $n \neq 0(\bmod 4)$?

Questions on $\langle O, I\rangle$

Question: Can $\langle O, I\rangle$ equal $\operatorname{Alt}(2 n)$ when $n \equiv 0(\bmod 4)$?
Question: Can $\langle O, I\rangle$ equal $\operatorname{Sym}(2 n)$ when $n \not \equiv 0(\bmod 4)$?
Answer: Both no.

Questions on $\langle O, I\rangle$

Question: Can $\langle O, I\rangle$ equal $\operatorname{Alt}(2 n)$ when $n \equiv 0(\bmod 4)$?
Question: Can $\langle O, I\rangle$ equal $\operatorname{Sym}(2 n)$ when $n \not \equiv 0(\bmod 4)$?
Answer: Both no.
Observation: for $n=4$,

- original order: $(0,1,2,3,4,5,6,7)$,

Questions on $\langle O, I\rangle$

Question: Can $\langle O, I\rangle$ equal $\operatorname{Alt}(2 n)$ when $n \equiv 0(\bmod 4)$?
Question: $\operatorname{Can}\langle O, I\rangle$ equal $\operatorname{Sym}(2 n)$ when $n \not \equiv 0(\bmod 4)$?
Answer: Both no.
Observation: for $n=4$,

- original order: $(0,1,2,3,4,5,6,7)$, after the out-shuffle: $(0,2,4,6,1,3,5,7)$,

Questions on $\langle O, I\rangle$

Question: Can $\langle O, I\rangle$ equal $\operatorname{Alt}(2 n)$ when $n \equiv 0(\bmod 4)$?
Question: $\operatorname{Can}\langle O, I\rangle$ equal $\operatorname{Sym}(2 n)$ when $n \not \equiv 0(\bmod 4)$?
Answer: Both no.
Observation: for $n=4$,

- original order: $(0,1,2,3,4,5,6,7)$, after the out-shuffle: $(0,2,4,6,1,3,5,7)$,
after the in-shuffle: $(1,3,5,7,0,2,4,6)$;

Questions on $\langle O, I\rangle$

Question: Can $\langle O, I\rangle$ equal $\operatorname{Alt}(2 n)$ when $n \equiv 0(\bmod 4)$?
Question: Can $\langle O, I\rangle$ equal $\operatorname{Sym}(2 n)$ when $n \not \equiv 0(\bmod 4)$?
Answer: Both no.
Observation: for $n=4$,

- original order: ($0,1,2,3,4,5,6,7$), after the out-shuffle: $(0,2,4,6,1,3,5,7)$,
after the in-shuffle: $(1,3,5,7,0,2,4,6)$;
- out-shuffle and in-shuffle preserve the partition $\{0,7\},\{1,6\},\{2,5\},\{3,4\}$.

Questions on $\langle O, I\rangle$

Question: $\operatorname{Can}\langle O, I\rangle$ equal $\operatorname{Alt}(2 n)$ when $n \equiv 0(\bmod 4)$?
Question: Can $\langle O, I\rangle$ equal $\operatorname{Sym}(2 n)$ when $n \not \equiv 0(\bmod 4)$?
Answer: Both no.
Observation: for $n=4$,

- original order: $(0,1,2,3,4,5,6,7)$, after the out-shuffle: $(0,2,4,6,1,3,5,7)$, after the in-shuffle: $(1,3,5,7,0,2,4,6)$;
- out-shuffle and in-shuffle preserve the partition $\{0,7\},\{1,6\},\{2,5\},\{3,4\}$.

For a general n, out-shuffle and in-shuffle preserve the partition $\{0,2 n-1\},\{1,2 n-2\}, \ldots,\{n-1, n\}$.

$\langle O, I\rangle$ is neither $\operatorname{Alt}(2 n)$ nor $\operatorname{Sym}(2 n)$

- A permutation group on a set Ω is said to be imprimitive if this group preserves a nontrivial partition of Ω; otherwise, it is said to be primitive.

$\langle O, I\rangle$ is neither $\operatorname{Alt}(2 n)$ nor $\operatorname{Sym}(2 n)$

- A permutation group on a set Ω is said to be imprimitive if this group preserves a nontrivial partition of Ω; otherwise, it is said to be primitive.
- O and I preserve $\{0,2 n-1\},\{1,2 n-2\}, \ldots,\{n-1, n\}$

$\langle O, I\rangle$ is neither $\operatorname{Alt}(2 n)$ nor $\operatorname{Sym}(2 n)$

- A permutation group on a set Ω is said to be imprimitive if this group preserves a nontrivial partition of Ω; otherwise, it is said to be primitive.
- O and I preserve $\{0,2 n-1\},\{1,2 n-2\}, \ldots,\{n-1, n\}$ $\Longrightarrow\langle O, I\rangle$ is imprimitive.

$\langle O, I\rangle$ is neither $\operatorname{Alt}(2 n)$ nor $\operatorname{Sym}(2 n)$

- A permutation group on a set Ω is said to be imprimitive if this group preserves a nontrivial partition of Ω; otherwise, it is said to be primitive.
- O and I preserve $\{0,2 n-1\},\{1,2 n-2\}, \ldots,\{n-1, n\}$ $\Longrightarrow\langle O, I\rangle$ is imprimitive.
- $\operatorname{Alt}(2 n)$ is primitive

$\langle O, I\rangle$ is neither $\operatorname{Alt}(2 n)$ nor $\operatorname{Sym}(2 n)$

- A permutation group on a set Ω is said to be imprimitive if this group preserves a nontrivial partition of Ω; otherwise, it is said to be primitive.
- O and I preserve $\{0,2 n-1\},\{1,2 n-2\}, \ldots,\{n-1, n\}$ $\Longrightarrow\langle O, I\rangle$ is imprimitive.
- $\operatorname{Alt}(2 n)$ is primitive $\Longrightarrow \operatorname{Alt}(2 n) \notin\langle O, I\rangle$

$\langle O, I\rangle$ is neither $\operatorname{Alt}(2 n)$ nor $\operatorname{Sym}(2 n)$

- A permutation group on a set Ω is said to be imprimitive if this group preserves a nontrivial partition of Ω; otherwise, it is said to be primitive.
- O and I preserve $\{0,2 n-1\},\{1,2 n-2\}, \ldots,\{n-1, n\}$
$\Longrightarrow\langle O, I\rangle$ is imprimitive.
- $\operatorname{Alt}(2 n)$ is primitive $\Longrightarrow \operatorname{Alt}(2 n) \notin\langle O, I\rangle \Longrightarrow O$ and I can't generate $\operatorname{Alt}(2 n)$ or $\operatorname{Sym}(2 n)$.

Diaconis-Graham-Kantor

Question: How many/Which orderings can be obtained by performing a sequence of the two shuffles?
[1] P. Diaconis, R. L. Graham and W. M. Kantor, The mathematics of perfect shuffles., Adv. Appl. Math., 4 (1983), 175-196.

Diaconis-Graham-Kantor

Question: How many/Which orderings can be obtained by performing a sequence of the two shuffles?

Answered by Diaconis, Graham and Kantor in 1983 ${ }^{[1]}$.

Persi Diaconis
ICM talk in 1990

Ron Graham
ICM talk in 1983

William M. Kantor
ICM talk in 1998
[1] P. Diaconis, R. L. Graham and W. M. Kantor, The mathematics of perfect shuffles., Adv. Appl. Math., 4 (1983), 175-196.

The classification of $\langle O, I\rangle$ in [1]

Size of each pile n	$\langle O, I\rangle$
$n=2^{f}$ for some positive integer f	$C_{2} \prec C_{f+1}$
$n \equiv 0(\bmod 4), n>12$ and n is not a power of 2	$C_{2}^{n-1} \rtimes A_{n}$
$n \equiv 1(\bmod 4)$	$C_{2}^{n} \rtimes A_{n}$
$n \equiv 2(\bmod 4)$ and $n>6$	$C_{2} \imath \operatorname{Sym}(n)$
$n \equiv 3(\bmod 4)$	$C_{2}^{n-1} \rtimes S_{n}$
$n=6$	$C_{2}^{6} \rtimes \operatorname{PGL}(2,5)$
$n=12$	$C_{2}^{11} \rtimes M_{12}$

[1] P. Diaconis, R. L. Graham and W. M. Kantor, The mathematics of perfect shuffles., Adv. Appl. Math., 4 (1983), 175-196.

A deck of $k n$ cards with $k \geq 2$

- cut into k piles and then perfectly interleave them (k ! ways).

0		0	n	\cdots	$(k-1) n$
1		1	$1+n$	\cdots	$1+(k-1) n$
\vdots	\longrightarrow	\vdots	\vdots		\vdots
$k n-1$		\vdots	\vdots		\vdots
\vdots		$n-1$	$2 n-1$	\cdots	$k n-1$

A deck of $k n$ cards with $k \geq 2$

- cut into k piles and then perfectly interleave them (k ! ways).

0	0	n	-••	$(k-1) n$
1	1	$1+n$	-••	$1+(k-1) n$
-	-	-		-
-	-	-		-
$k n-1$	$n-1$	$2 n-1$	-••	kn-1

- Standard shuffle σ : picking up the top card from each of the piles $0, \ldots, k-1$ in order and repeating until all cards have been picked up.

A deck of $k n$ cards with $k \geq 2$

- cut into k piles and then perfectly interleave them (k ! ways).

- Standard shuffle σ : picking up the top card from each of the piles $0, \ldots, k-1$ in order and repeating until all cards have been picked up.
- ρ_{τ} : the permutation of the $k n$ cards induced by the permutation τ of the k piles.

Shuffle groups

- For a positive integer m, denote $[m]=\{0,1, \ldots, m-1\}$.

Shuffle groups

- For a positive integer m, denote $[m]=\{0,1, \ldots, m-1\}$.
- k piles:

0	n	\cdots	$(k-1) n$
1	$1+n$	\cdots	$1+(k-1) n$
\vdots	\vdots		\vdots
$n-1$	$2 n-1$	\cdots	$k n-1$

- For all $i \in[n]$ and $j \in[k]$,
- the i th row of the j th column is the $i+j n$th position,

Shuffle groups

- For a positive integer m, denote $[m]=\{0,1, \ldots, m-1\}$.
- k piles:

0	n	\cdots	$(k-1) n$
1	$1+n$	\cdots	$1+(k-1) n$
\vdots	\vdots		\vdots
$n-1$	$2 n-1$	\cdots	$k n-1$

- For all $i \in[n]$ and $j \in[k]$,
- the i th row of the j th column is the $i+j n$th position,
- recall σ and $\rho_{\tau} \Longrightarrow(i+j n)^{\sigma}=i k+j$ and $(i+j n)^{\rho_{\tau}}=i+j^{\tau} n$.

Shuffle groups

- For a positive integer m, denote $[m]=\{0,1, \ldots, m-1\}$.
- k piles:

0	n	\cdots	$(k-1) n$
1	$1+n$	\cdots	$1+(k-1) n$
\vdots	\vdots		\vdots
$n-1$	$2 n-1$	\cdots	$k n-1$

- For all $i \in[n]$ and $j \in[k]$,
- the i th row of the j th column is the $i+j n$th position,
- recall σ and $\rho_{\tau} \Longrightarrow(i+j n)^{\sigma}=i k+j$ and $(i+j n)^{\rho_{\tau}}=i+j^{\tau} n$.
- The shuffle group on $k n$ cards, denoted by $G_{k, k n}$, is generated by all possible shuffles $\rho_{\tau} \sigma$ for $\tau \in \operatorname{Sym}(\{0, \ldots, k-1\})$.

Shuffle groups

- For a positive integer m, denote $[m]=\{0,1, \ldots, m-1\}$.
- k piles:

0	n	\cdots	$(k-1) n$
1	$1+n$	\cdots	$1+(k-1) n$
\vdots	\vdots		\vdots
$n-1$	$2 n-1$	\cdots	$k n-1$

- For all $i \in[n]$ and $j \in[k]$,
- the i th row of the j th column is the $i+j n$th position,
- recall σ and $\rho_{\tau} \Longrightarrow(i+j n)^{\sigma}=i k+j$ and $(i+j n)^{\rho_{\tau}}=i+j^{\tau} n$.
- The shuffle group on $k n$ cards, denoted by $G_{k, k n}$, is generated by all possible shuffles $\rho_{\tau} \sigma$ for $\tau \in \operatorname{Sym}(\{0, \ldots, k-1\})$.

$$
\left(G_{k, k n}=\left\langle\rho_{\tau} \sigma \mid \tau \in \operatorname{Sym}(k)\right\rangle=\left\langle\rho_{\tau}, \sigma \mid \tau \in \operatorname{Sym}(k)\right\rangle .\right)
$$

Literature on $G_{k, k n}$ for $k \geq 3$

- Medvedoff and Morrison ${ }^{[2]}$ in 1987 conjectured:
[2] S. Medvedoff and K. Morrison, Groups of perfect shuffles, Math. Mag., 60 (1987), 3-14.

Literature on $G_{k, k n}$ for $k \geq 3$

- Medvedoff and Morrison ${ }^{[2]}$ in 1987 conjectured:
- $G_{3,3 n} \geq \operatorname{Alt}(3 n)$ if n is not a power of 3 ;
[2] S. Medvedoff and K. Morrison, Groups of perfect shuffles, Math. Mag., 60

Literature on $G_{k, k n}$ for $k \geq 3$

- Medvedoff and Morrison ${ }^{[2]}$ in 1987 conjectured:
- $G_{3,3 n} \geq \operatorname{Alt}(3 n)$ if n is not a power of 3 ;
- $G_{4,4 n} \geq \operatorname{Alt}(4 n)$ if n is not a power of 2 ;
[2] S. Medvedoff and K. Morrison, Groups of perfect shuffles, Math. Mag., 60

Literature on $G_{k, k n}$ for $k \geq 3$

- Medvedoff and Morrison ${ }^{[2]}$ in 1987 conjectured:
- $G_{3,3 n} \geq \operatorname{Alt}(3 n)$ if n is not a power of 3 ;
- $G_{4,4 n} \geq \operatorname{Alt}(4 n)$ if n is not a power of 2 ;
- $G_{4,2^{m}}=\operatorname{AGL}(m, 2)=C_{2}^{m} \rtimes \operatorname{GL}(m, 2)$ if $m \geq 3$ is odd.
[2] S. Medvedoff and K. Morrison, Groups of perfect shuffles, Math. Mag., 60

Literature on $G_{k, k n}$ for $k \geq 3$

- Medvedoff and Morrison ${ }^{[2]}$ in 1987 conjectured:
- $G_{3,3 n} \geq \operatorname{Alt}(3 n)$ if n is not a power of 3 ;
- $G_{4,4 n} \geq \operatorname{Alt}(4 n)$ if n is not a power of 2 ;
- $G_{4,2^{m}}=\operatorname{AGL}(m, 2)=C_{2}^{m} \rtimes \operatorname{GL}(m, 2)$ if $m \geq 3$ is odd.
- In [2] they also proved:
- $G_{k, k n} \leq \operatorname{Alt}(k n)$ if and only if either $n \equiv 0(\bmod 4)$, or $n \equiv 2$ $(\bmod 4)$ and $k \equiv 0$ or $1(\bmod 4)$.
- $G_{k, k^{m}}=\operatorname{Sym}(k) \imath C_{m}$.
[2] S. Medvedoff and K. Morrison, Groups of perfect shuffles, Math. Mag., 60

Literature on $G_{k, k n}$ for $k \geq 3$

- Cohen, Harmse, Morrison and Wright ${ }^{[3]}$ confirmed the latter part of MM's conjecture when $k=4$.
$\left(G_{4,2^{m}}=\operatorname{AGL}(m, 2)\right.$ for some odd integer $\left.m \geq 3\right)$
[3] A. Cohen, A. Harmse, K.E. Morrison and S. Wright, Perfect shuffles and affine groups, 2005, https://aimath.org/morrison/Research/shuffles.

Literature on $G_{k, k n}$ for $k \geq 3$

- Cohen, Harmse, Morrison and Wright ${ }^{[3]}$ confirmed the latter part of MM's conjecture when $k=4$.
$\left(G_{4,2^{m}}=\operatorname{AGL}(m, 2)\right.$ for some odd integer $\left.m \geq 3\right)$
- In [3] they also posed:

Shuffle Group Conjecture (2005)

For $k \geq 3$, if n is not a power of k and $(k, n) \neq\left(4,2^{f}\right)$ for any positive integer f, then $G_{k, k n} \geq A_{k n}$.

[^0]
Literature on $G_{k, k n}$ for $k \geq 3$

- Amarra, Morgan and Praeger ${ }^{[4]}$ confirmed the Shuffle Group Conjecture in the following cases:

[^1]
Literature on $G_{k, k n}$ for $k \geq 3$

- Amarra, Morgan and Praeger ${ }^{[4]}$ confirmed the Shuffle Group Conjecture in the following cases:
- $k>n$;
[4] C. Amarra, L. Morgan and C. Praeger, Generalised shuffle groups, Israel J. Math., 244 (2021), 807-856.

Literature on $G_{k, k n}$ for $k \geq 3$

- Amarra, Morgan and Praeger ${ }^{[4]}$ confirmed the Shuffle Group Conjecture in the following cases:
- $k>n$;
- k and n are powers of the same integer $\ell \geq 2$;

[^2]
Literature on $G_{k, k n}$ for $k \geq 3$

- Amarra, Morgan and Praeger ${ }^{[4]}$ confirmed the Shuffle Group Conjecture in the following cases:
- $k>n$;
- k and n are powers of the same integer $\ell \geq 2$;
- k is a power of 2 .

[^3]
Literature on $G_{k, k n}$ for $k \geq 3$

- Amarra, Morgan and Praeger ${ }^{[4]}$ confirmed the Shuffle Group Conjecture in the following cases:
- $k>n$;
- k and n are powers of the same integer $\ell \geq 2$;
- k is a power of 2 .
- In [4] they also opened up the study of "generalized shuffle groups".

[^4]
Our contribution

Theorem (Xia-Zhang-Z. 2023+ ${ }^{+}$)
The Shuffle Group Conjecture holds when $k \geq 4$ or k does not divide n.

Our contribution

Theorem (Xia-Zhang-Z. 2023 ${ }^{+}$)
The Shuffle Group Conjecture holds when $k \geq 4$ or k does not divide n.

We established two key lemmas to prove the theorem.

Our contribution

Theorem (Xia-Zhang-Z. 2023+ ${ }^{+}$)

The Shuffle Group Conjecture holds when $k \geq 4$ or k does not divide n.

We established two key lemmas to prove the theorem.

- Reduction Lemma: If $G_{k, k n}$ is 2-transitive, then either $k=4$ and n is a power of 2 , or $G_{k, k n}$ contains $A_{k n}$.
- 2-transitivity Lemma: If either $k \geq 4$ and n is not a power of k, or $k=3$ and n is not divisible by 3 , then $G_{k, k n}$ is 2-transitive.

Our contribution

Theorem (Xia-Zhang-Z. 2023+ ${ }^{+}$)

The Shuffle Group Conjecture holds when $k \geq 4$ or k does not divide n.

We established two key lemmas to prove the theorem.

- Reduction Lemma: If $G_{k, k n}$ is 2-transitive, then either $k=4$ and n is a power of 2 , or $G_{k, k n}$ contains $A_{k n}$.
- 2-transitivity Lemma: If either $k \geq 4$ and n is not a power of k, or $k=3$ and n is not divisible by 3 , then $G_{k, k n}$ is 2-transitive.
- A permutation group G on a set Ω is said to be 2-transitive if the induced action of G on $\Omega \times \Omega \backslash\{(\alpha, \alpha) \mid \alpha \in \Omega\}$ is transitive.

Reducing to 2-transitivity

Reduction Lemma (Xia-Zhang-Z. 2023 ${ }^{+}$)

If $G_{k, k n}$ is 2-transitive, then either $k=4$ and n is a power of 2 , or $G_{k, k n}$ contains $A_{k n}$.

Reducing to 2-transitivity

Reduction Lemma (Xia-Zhang-Z. 2023 ${ }^{+}$)

If $G_{k, k n}$ is 2-transitive, then either $k=4$ and n is a power of 2 , or $G_{k, k n}$ contains $A_{k n}$.

- The proof is by examining the list of 2-transitive groups for elements of large fixed point ratio.

Reducing to 2-transitivity

Reduction Lemma (Xia-Zhang-Z. 2023+ ${ }^{+}$)

If $G_{k, k n}$ is 2-transitive, then either $k=4$ and n is a power of 2 , or $G_{k, k n}$ contains $A_{k n}$.

- The proof is by examining the list of 2-transitive groups for elements of large fixed point ratio.
- The fixed point ratio of a permutation g on a finite set Ω, denoted by $\operatorname{fpr}(g)$, is defined as $\operatorname{fpr}(g)=|\operatorname{Fix}(g)| /|\Omega|$, where $\operatorname{Fix}(g)=\left\{\alpha \in \Omega \mid \alpha^{g}=\alpha\right\}$.

Reducing to 2-transitivity

Reduction Lemma (Xia-Zhang-Z. 2023 ${ }^{+}$)

If $G_{k, k n}$ is 2 -transitive, then either $k=4$ and n is a power of 2 , or $G_{k, k n}$ contains $A_{k n}$.

- The proof is by examining the list of 2-transitive groups for elements of large fixed point ratio.
- The fixed point ratio of a permutation g on a finite set Ω, denoted by $\operatorname{fpr}(g)$, is defined as $\operatorname{fpr}(g)=|\operatorname{Fix}(g)| /|\Omega|$, where $\operatorname{Fix}(g)=\left\{\alpha \in \Omega \mid \alpha^{g}=\alpha\right\}$.
- Observation: $\operatorname{fpr}\left(\rho_{\tau}\right)=\operatorname{fpr}(\tau)$

Reducing to 2-transitivity

Reduction Lemma (Xia-Zhang-Z. 2023+)

If $G_{k, k n}$ is 2 -transitive, then either $k=4$ and n is a power of 2 , or $G_{k, k n}$ contains $A_{k n}$.

- The proof is by examining the list of 2-transitive groups for elements of large fixed point ratio.
- The fixed point ratio of a permutation g on a finite set Ω, denoted by $\operatorname{fpr}(g)$, is defined as $\operatorname{fpr}(g)=|\operatorname{Fix}(g)| /|\Omega|$, where $\operatorname{Fix}(g)=\left\{\alpha \in \Omega \mid \alpha^{g}=\alpha\right\}$.
- Observation: $\operatorname{fpr}\left(\rho_{\tau}\right)=\operatorname{fpr}(\tau) \Longrightarrow \operatorname{fpr}\left(\rho_{\tau}\right)=(k-2) / k$ when τ is a transposition.

An example of the examination

An example of the examination

Write $G=G_{k, k n}$. Suppose G is an affine 2-transitive permutation group, i.e., $G \leq \operatorname{AGL}(V)=\operatorname{AGL}(d, p)$ for some d-dimension vector space V over a prime field \mathbb{F}_{p}.

An example of the examination

Write $G=G_{k, k n}$. Suppose G is an affine 2-transitive permutation group, i.e., $G \leq \operatorname{AGL}(V)=\operatorname{AGL}(d, p)$ for some d-dimension vector space V over a prime field \mathbb{F}_{p}.

- Recall the observation: $\exists \rho_{\tau} \in G$ s.t. $\operatorname{fpr}\left(\rho_{\tau}\right)=(k-2) / k$.

An example of the examination

Write $G=G_{k, k n}$. Suppose G is an affine 2-transitive permutation group, i.e., $G \leq \operatorname{AGL}(V)=\operatorname{AGL}(d, p)$ for some d-dimension vector space V over a prime field \mathbb{F}_{p}.

- Recall the observation: $\exists \rho_{\tau} \in G$ s.t. $\operatorname{fpr}\left(\rho_{\tau}\right)=(k-2) / k$.
- G is transitive \Longrightarrow we may assume $\rho_{\tau} \in G_{0} \leq \mathrm{GL}(V)$.

An example of the examination

Write $G=G_{k, k n}$. Suppose G is an affine 2-transitive permutation group, i.e., $G \leq \operatorname{AGL}(V)=\operatorname{AGL}(d, p)$ for some d-dimension vector space V over a prime field \mathbb{F}_{p}.

- Recall the observation: $\exists \rho_{\tau} \in G$ s.t. $\operatorname{fpr}\left(\rho_{\tau}\right)=(k-2) / k$.
- G is transitive \Longrightarrow we may assume $\rho_{\tau} \in G_{0} \leq \operatorname{GL}(V)$.
- $\operatorname{fpr}\left(\rho_{\tau}\right)=\left|\left\{v \in V \mid v^{\rho_{\tau}}=v\right\}\right| /|V|=p^{f} / p^{d}=1 / p^{d-f}$.

An example of the examination

Write $G=G_{k, k n}$. Suppose G is an affine 2-transitive permutation group, i.e., $G \leq \operatorname{AGL}(V)=\operatorname{AGL}(d, p)$ for some d-dimension vector space V over a prime field \mathbb{F}_{p}.

- Recall the observation: $\exists \rho_{\tau} \in G$ s.t. $\operatorname{fpr}\left(\rho_{\tau}\right)=(k-2) / k$.
- G is transitive \Longrightarrow we may assume $\rho_{\tau} \in G_{0} \leq \operatorname{GL}(V)$.
- $\operatorname{fpr}\left(\rho_{\tau}\right)=\left|\left\{v \in V \mid v^{\rho_{\tau}}=v\right\}\right| /|V|=p^{f} / p^{d}=1 / p^{d-f}$.
- $(k-2) / k=1 / p^{d-f}$

An example of the examination

Write $G=G_{k, k n}$. Suppose G is an affine 2-transitive permutation group, i.e., $G \leq \operatorname{AGL}(V)=\operatorname{AGL}(d, p)$ for some d-dimension vector space V over a prime field \mathbb{F}_{p}.

- Recall the observation: $\exists \rho_{\tau} \in G$ s.t. $\operatorname{fpr}\left(\rho_{\tau}\right)=(k-2) / k$.
- G is transitive \Longrightarrow we may assume $\rho_{\tau} \in G_{0} \leq \operatorname{GL}(V)$.
- $\operatorname{fpr}\left(\rho_{\tau}\right)=\left|\left\{v \in V \mid v^{\rho_{\tau}}=v\right\}\right| /|V|=p^{f} / p^{d}=1 / p^{d-f}$.
- $(k-2) / k=1 / p^{d-f} \Longrightarrow(k, p)$ is either $(3,3)$ or $(4,2)$.

An example of the examination

Write $G=G_{k, k n}$. Suppose G is an affine 2-transitive permutation group, i.e., $G \leq \operatorname{AGL}(V)=\operatorname{AGL}(d, p)$ for some d-dimension vector space V over a prime field \mathbb{F}_{p}.

- Recall the observation: $\exists \rho_{\tau} \in G$ s.t. $\operatorname{fpr}\left(\rho_{\tau}\right)=(k-2) / k$.
- G is transitive \Longrightarrow we may assume $\rho_{\tau} \in G_{0} \leq \mathrm{GL}(V)$.
- $\operatorname{fpr}\left(\rho_{\tau}\right)=\left|\left\{v \in V \mid v^{\rho_{\tau}}=v\right\}\right| /|V|=p^{f} / p^{d}=1 / p^{d-f}$.
- $(k-2) / k=1 / p^{d-f} \Longrightarrow(k, p)$ is either $(3,3)$ or $(4,2)$.
- $k n=|V|=p^{d} \Longrightarrow(k, n)$ is either $\left(3,3^{d-1}\right)$ or $\left(4,2^{d-2}\right)$.

An example of the examination

Write $G=G_{k, k n}$. Suppose G is an affine 2-transitive permutation group, i.e., $G \leq \operatorname{AGL}(V)=\operatorname{AGL}(d, p)$ for some d-dimension vector space V over a prime field \mathbb{F}_{p}.

- Recall the observation: $\exists \rho_{\tau} \in G$ s.t. $\operatorname{fpr}\left(\rho_{\tau}\right)=(k-2) / k$.
- G is transitive \Longrightarrow we may assume $\rho_{\tau} \in G_{0} \leq \mathrm{GL}(V)$.
- $\operatorname{fpr}\left(\rho_{\tau}\right)=\left|\left\{v \in V \mid v^{\rho_{\tau}}=v\right\}\right| /|V|=p^{f} / p^{d}=1 / p^{d-f}$.
- $(k-2) / k=1 / p^{d-f} \Longrightarrow(k, p)$ is either $(3,3)$ or $(4,2)$.
- $k n=|V|=p^{d} \Longrightarrow(k, n)$ is either $\left(3,3^{d-1}\right)$ or $\left(4,2^{d-2}\right)$.
- Note that $G_{3,3^{d}}$ and $G_{4,2^{d}}$ have been determined.

2-transitivity of $G_{k, k n}$

2-transitivity Lemma (Xia-Zhang-Z. 2023 ${ }^{+}$)
If either $k \geq 4$ and n is not a power of k, or $k=3$ and n is not divisible by 3 , then $G_{k, k n}$ is 2 -transitive.

2-transitivity of $G_{k, k n}$

2-transitivity Lemma (Xia-Zhang-Z. 2023+)
If either $k \geq 4$ and n is not a power of k, or $k=3$ and n is not divisible by 3 , then $G_{k, k n}$ is 2 -transitive.

- The proof of this lemma is combinatorial in nature.

2-transitivity of $G_{k, k n}$

2-transitivity Lemma (Xia-Zhang-Z. 2023+)
If either $k \geq 4$ and n is not a power of k, or $k=3$ and n is not divisible by 3 , then $G_{k, k n}$ is 2 -transitive.

- The proof of this lemma is combinatorial in nature.
- Shuffle Group Conjecture $\xrightarrow{\text { Reduction Lemma }}$ 2-transitivity of $G_{k, k n}$.

2-transitivity of $G_{k, k n}$

2-transitivity Lemma (Xia-Zhang-Z. 2023+ ${ }^{+}$

If either $k \geq 4$ and n is not a power of k, or $k=3$ and n is not divisible by 3 , then $G_{k, k n}$ is 2 -transitive.

- The proof of this lemma is combinatorial in nature.
- Shuffle Group Conjecture $\xrightarrow{\text { Reduction Lemma }}$ 2-transitivity of $G_{k, k n}$.
- Thus the remaining unresolved case of the conjecture is that $k=3$ divides n.

Sketch of Proof to 2-transitivity Lemma

- Let $G=G_{k, k n}$ and $[m]=\{0,1, \ldots, m-1\}$.

Sketch of Proof to 2-transitivity Lemma

- Let $G=G_{k, k n}$ and $[m]=\{0,1, \ldots, m-1\}$.
- G is 2-transitive on $[k n]$ iff G_{0} is transitive on $[m] \backslash\{0\}$.

Sketch of Proof to 2-transitivity Lemma

- Let $G=G_{k, k n}$ and $[m]=\{0,1, \ldots, m-1\}$.
- G is 2-transitive on $[k n]$ iff G_{0} is transitive on $[m] \backslash\{0\}$.

Sketch of Proof to 2-transitivity Lemma

- Let $G=G_{k, k n}$ and $[m]=\{0,1, \ldots, m-1\}$.
- G is 2-transitive on $[k n]$ iff G_{0} is transitive on $[m] \backslash\{0\}$.

- we complete this proof through the following cases:

Sketch of Proof to 2-transitivity Lemma

- Let $G=G_{k, k n}$ and $[m]=\{0,1, \ldots, m-1\}$.
- G is 2-transitive on $[k n]$ iff G_{0} is transitive on $[m] \backslash\{0\}$.

- we complete this proof through the following cases:
- $k \nmid n$ with $k \geq 4$; (only elaborate on this case here)
- $k \nmid n$ with $k=3$;
- $k \mid n$ with $k \geq 4$.

Case for $k \nmid n$ with $k \geq 4$

Case for $k \nmid n$ with $k \geq 4$

$\bullet(i+j n)^{\rho_{\tau}}=i+j^{\tau} n ;$

Case for $k \nmid n$ with $k \geq 4$

- $(i+j n)^{\rho_{\tau}}=i+j^{\tau} n ;$
- recall $(i+j n)^{\sigma}=i k+j$;

Case for $k \nmid n$ with $k \geq 4$

- $(i+j n)^{\rho_{\tau}}=i+j^{\tau} n ;$
- recall $(i+j n)^{\sigma}=i k+j$;
- $(i k+1)^{\sigma^{-1} \rho_{\tau} \sigma}=(i+1 \cdot n)^{\rho_{\tau} \sigma}=\left(i+1^{\tau} \cdot n\right)^{\sigma}=i k+1^{\tau}$

Case for $k \nmid n$ with $k \geq 4$

- $(i+j n)^{\rho_{\tau}}=i+j^{\tau} n$;
- recall $(i+j n)^{\sigma}=i k+j$;
- $(i k+1)^{\sigma^{-1} \rho_{\tau} \sigma}=(i+1 \cdot n)^{\rho_{\tau} \sigma}=\left(i+1^{\tau} \cdot n\right)^{\sigma}=i k+1^{\tau}$
$\Longrightarrow\{i k+1, i k+2 \ldots, i k+k-1\}$ in the same orbit of G_{0}.

Case for $k \nmid n$ with $k \geq 4$

- $(i+j n)^{\rho_{\tau}}=i+j^{\tau} n ;$
- recall $(i+j n)^{\sigma}=i k+j$;
- $(i k+1)^{\sigma^{-1} \rho_{\tau} \sigma}=(i+1 \cdot n)^{\rho_{\tau} \sigma}=\left(i+1^{\tau} \cdot n\right)^{\sigma}=i k+1^{\tau}$
$\Longrightarrow\{i k+1, i k+2 \ldots, i k+k-1\}$ in the same orbit of G_{0}.
- $k \geq 4$ and $k \nmid n$

Case for $k \nmid n$ with $k \geq 4$

- $(i+j n)^{\rho_{\tau}}=i+j^{\tau} n ;$
- recall $(i+j n)^{\sigma}=i k+j$;
- $(i k+1)^{\sigma^{-1} \rho_{\tau} \sigma}=(i+1 \cdot n)^{\rho_{\tau} \sigma}=\left(i+1^{\tau} \cdot n\right)^{\sigma}=i k+1^{\tau}$
$\Longrightarrow\{i k+1, i k+2 \ldots, i k+k-1\}$ in the same orbit of G_{0}.
- $k \geq 4$ and $k \nmid n \Longrightarrow$ for $\forall x \in[n], \exists y \in\{x+n, x+2 n, x+3 n\}$ s.t. $y \sim y+1$.

Case for $k \nmid n$ with $k \geq 4$

- $(i+j n)^{\rho_{\tau}}=i+j^{\tau} n ;$
- recall $(i+j n)^{\sigma}=i k+j$;
- $(i k+1)^{\sigma^{-1} \rho_{\tau} \sigma}=(i+1 \cdot n)^{\rho_{\tau} \sigma}=\left(i+1^{\tau} \cdot n\right)^{\sigma}=i k+1^{\tau}$
$\Longrightarrow\{i k+1, i k+2 \ldots, i k+k-1\}$ in the same orbit of G_{0}.
- $k \geq 4$ and $k \nmid n \Longrightarrow$ for $\forall x \in[n], \exists y \in\{x+n, x+2 n, x+3 n\}$ s.t. $y \sim y+1$.

Case for $k \nmid n$ with $k \geq 4$

- $x^{\sigma} \equiv k x(\bmod k n-1)$ for all $x \in[k n]$;

Case for $k \nmid n$ with $k \geq 4$

- $x^{\sigma} \equiv k x(\bmod k n-1)$ for all $x \in[k n]$;
- $(n-1)^{\sigma}=k(n-1)$

Case for $k \nmid n$ with $k \geq 4$

- $x^{\sigma} \equiv k x(\bmod k n-1)$ for all $x \in[k n]$;
- $(n-1)^{\sigma}=k(n-1) \xrightarrow{n-1<(n-1) k<k n-1} n-1 \in n^{G_{0}}$;

Case for $k \nmid n$ with $k \geq 4$

- $x^{\sigma} \equiv k x(\bmod k n-1)$ for all $x \in[k n]$;
- $(n-1)^{\sigma}=k(n-1) \xrightarrow{n-1<(n-1) k<k n-1} n-1 \in n^{G_{0}}$;
- suppose $\exists x \in[n-1] \backslash\{0\}$ s.t $y \in n^{G_{0}}$ for all $y>x$.

Case for $k \nmid n$ with $k \geq 4$

- $x^{\sigma} \equiv k x(\bmod k n-1)$ for all $x \in[k n]$;
- $(n-1)^{\sigma}=k(n-1) \xrightarrow{n-1<(n-1) k<k n-1} n-1 \in n^{G_{0}}$;
- suppose $\exists x \in[n-1] \backslash\{0\}$ s.t $y \in n^{G_{0}}$ for all $y>x$.
- $x^{\sigma}=k x>x$

Case for $k \nmid n$ with $k \geq 4$

- $x^{\sigma} \equiv k x(\bmod k n-1)$ for all $x \in[k n]$;
- $(n-1)^{\sigma}=k(n-1) \xrightarrow{n-1<(n-1) k<k n-1} n-1 \in n^{G_{0}}$;
- suppose $\exists x \in[n-1] \backslash\{0\}$ s.t $y \in n^{G_{0}}$ for all $y>x$.
- $x^{\sigma}=k x>x \Longrightarrow x \in n^{G_{0}}$.

Thank you for listening!

[^0]: [3] A. Cohen, A. Harmse, K.E. Morrison and S. Wright, Perfect shuffles and affine groups, 2005, https://aimath.org/morrison/Research/shuffles.

[^1]: [4] C. Amarra, L. Morgan and C. Praeger, Generalised shuffle groups, Israel J. Math., 244 (2021), 807-856.

[^2]: [4] C. Amarra, L. Morgan and C. Praeger, Generalised shuffle groups, Israel J. Math., 244 (2021), 807-856.

[^3]: [4] C. Amarra, L. Morgan and C. Praeger, Generalised shuffle groups, Israel J. Math., 244 (2021), 807-856.

[^4]: [4] C. Amarra, L. Morgan and C. Praeger, Generalised shuffle groups, Israel J. Math., 244 (2021), 807-856.

