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Part I

Pre-primitive groups
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Primitivity and quasiprimitivity

G 6 Sym(Ω) - transitive permutation group on a finite set Ω.

We say that ∆ ⊆ Ω is a block for G if

∆ ∩∆g ∈ {∆, ∅} for all g ∈ G .

Note: Π = {∆g | g ∈ G} is a G -invariant partition of Ω.

We say that G is:

Primitive: G is transitive and the only G -invariant partitions
of Ω are the trivial ones.

Quasiprimitive: all the non-trivial normal subgroups of G are
transitive.

G primitive ⇒ G quasiprimitive, G quasiprimitive 6⇒ G primitive.

3 / 30



”Lifting” quasiprimitivity to primitivity

Aim: Find a property P such that:

G quasiprimitive + G has P ⇐⇒ G primitive.

We will call this property pre-primitivity.
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Pre-primitivity

Definition. G is pre-primitive (PP) if every G -invariant partition
is the orbit partition of a normal subgroup of G .

Lemma

Let G 6 Sym(Ω). Then G is primitive if and only if it is both
quasiprimitive and pre-primitive.

Proof. If G is primitive, then it is quasiprimitive and its
G -invariant partitions are orbit partitions of G and 1 respectively.

Conversely, if G is pre-primitive, then each G -invariant partition is
the orbit partition of some normal subgroup of G , so the only
G -invariant partitions are the trivial ones.
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An example and a non-example

Example

G = C4 = 〈(1, 2, 3, 4)〉.

{1, 2, 3, 4} ←→ G ;

{{1, 3}, {2, 4}} ←→ 〈(1, 3)(2, 4)〉;

{{1}, {2}, {3}, {3}} ←→ 1.

G = 〈(1, 3, 5)(2, 4, 6), (1, 4)(2, 3)(5, 6)〉 ∼= S3.

{{1, 4}, {2, 5}, {3, 6}} is G -invariant;

The only non-trivial normal subgroup of G is 〈(1, 3, 5)(2, 4, 6)〉.
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Motivation

Question: Can we classify all pre-primitive groups?

Observation: Pre-primitive groups are not ”hard to find”.
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Regular groups

A transitive group G 6 Sym(Ω) is regular if Gα = 1 for any α ∈ Ω.

Note: If G is regular, then we can identify Ω with G and act by
right multiplication.

Theorem (A-M, Cameron, Suleiman, ’23)

If G 6 Sym(Ω) is regular, then it is PP if and only if it is a
Dedekind group.

A G -invariant partition is the right coset partition of some
H 6 G .

Conversely, every right coset partition is G -invariant.

The left coset partition of H is the orbit partition of H.

If H 6P G , then the left coset partition of H and the right
coset partition of H are different, and none of them have both
properties.

All subgroups of G must be normal.
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The imprimitive wreath product

We first look at the imprimitive wreath product. Let G 6 Sym(Γ)
and H 6 Sym(∆) and consider G o H.

Theorem (A-M, Cameron, Suleiman, ’23)

The wreath product G o H in its imprimitive action is pre-primitive
if and only if both G and H are pre-primitive.
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Some comments on the proof

G,H PP ⇒ G oH PP:

Every G o H-invariant partition is comparable to the canonical
partition in the G o H-invariant partition lattice.

Π - G o H-invariant partition above the canonical
partition: Canonical partition blocks are partitioned in some
H-invariant way and this partition of the blocks is the orbit
partition of some N P H. Then we show that Π is the orbit
partition of G o N.

Π - G o H-invariant partition below the canonical
partition: Each block of the canonical partition is partitioned
in the same G -invariant way and this partition is the orbit
partition of some K P G . Then we show that Π is the orbit
partition of K |∆|.

The other direction is similar.
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Direct products: A necessary condition

Unlike the wreath product case, it is not easy to find a necessary
and sufficient condition for G × H in its product action to be
pre-primitive.

Proposition (A-M, Cameron, Suleiman, ’23)

If G × H is pre-primitive, then both G and H are pre-primitive.

G × H can be embedded in G o H in its imprimitive action.

Since pre-primitivity is closed upwards, G o H is pre-primitive.

G and H are pre-primitive by the previous theorem.

Note: G ,H PP 6⇒ G × H PP. C4 and Q8 acting regularly are
Dedekind and thus PP, but C4 × Q8 is regular, but not Dedekind
so not PP.
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Direct products: Some facts about partitions

Let G 6 Sym(Γ) and H 6 Sym(∆). Every (G × H)-invariant
partition Π induces two partitions on Γ and ∆.

Fix a δ ∈ ∆. The intersection of the parts of Π with Γ× {δ}
form a partition of Γ× {δ}, and by ignoring the second
component we obtain a partition of Γ, which we call the
G -fibre partition and we denote it by ΠG .

The sets {γ ∈ Γ | (∃δ ∈ ∆)(γ, δ) ∈ P} for every P ∈ Π form a
partition of Γ which we call the G -projection partition and
we denote it by ΠG .

The H-fibre and H-projection partitions are defined in the same
way.
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Orbit and projection partitions: An example

Let G = C4 6 S4 and
H = Q8 = 〈(1, 2, 3, 4)(5, 6, 7, 8), (1, 5, 3, 7)(2, 8, 4, 6)〉 6 S8.

The partition below is (G × H)-invariant.

G-fibre partition: Partition into singletons.

G-projection partition: Partition into a single part.

H-fibre partition: Partition into singletons.

H-projection partition: {{1, 2, 3, 4}, {5, 6, 7, 8}}.
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Direct products: Some sufficient conditions

There are some special cases in which we know that G × H in its
product action is pre-primitive.

Theorem (A-M, Cameron, Suleiman, ’23)

In each of the following cases G × H is pre-primitive.

G ,H abelian;

G ,H are primitive;

G ,H are pre-primitive and (|Γ|, |∆|) = 1;

G ,H are pre-primitive and one of the following holds for every
(G × H)-invariant partition Π.

ΠG = ΠG and ΠH = ΠH ;

The ΠG and ΠH are the partitions into a single part.
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Part II

Permutation groups and orthogonal block structures
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Lattices

A lattice L is a partially ordered set where for every a, b ∈ L there
exists a unique greatest lower bound (meet) a ∧ b, and a unique
least upper bound (join) a ∨ b.

We say that L is:

Modular: if a ≤ b implies a ∨ (x ∧ b) = (a ∨ x) ∧ b for all
a, b, x ∈ L.

Distributive: if a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) for all
a, b, c ∈ L.

Example: If X is a set, then (P(X ),⊆) is a lattice.
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Orthogonal block structures

Let L be a lattice of partitions.

L is an orthogonal block structure if:

All the partitions are uniform;

For any Π,Σ ∈ L the corresponding equivalence relations ρΠ

and ρΣ commute, i.e. ρΠ ◦ ρΣ = ρΣ ◦ ρΠ.

Motivation:

Orthogonal block structures were first introduced by John
Nelder in the area of experimental designs.

Used when there are systematic differences between
experimental units, e.g. patients in different hospitals.
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OB groups

Let G 6 Sym(Ω) be transitive.

Note: The G -invariant partitions form a lattice L(G ).

Definition. G is an OB group if L(G ) is an orthogonal block
structure.

Theorem (A-M, Bailey, Cameron, ’23+)

Let α ∈ Ω. Then G is OB if and only if for any two H,K such that
Gα 6 H,K 6 G we have HK = KH.

Example

If G is transitive and abelian, then for any H,K such that
1 = Gα 6 H,K 6 G we have HK = KH.
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PP and OB groups

It turns out that the PP and the OB property are related.

Theorem (A-M, Bailey, Cameron, ’23+)

If G 6 Sym(Ω) is PP, then it is OB.

Proof sketch.

Subgroups containing Gα correspond to G -invariant partitions.

Two G -invariant partitions commute if and only if the
corresponding subgroups commute.

G -invariant partitions of PP groups are orbit partitions of
normal subgroups and normal subgroups commute.

Question: Is G PP if and only if it is OB?

Counterexample: TransitiveGroup(8, 14).
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Poset block structures

P = {p1, . . . , pn} - finite poset. Associate a positive integer ni
to each pi .

Ω - Cartesian product of the sets {1, . . . , ni}.
D ⊆ P is a downset if p ∈ D implies q ∈ D for all q ≤ p.

For each downset of P we define the following equivalence relation
RD on Ω:

RD((x1, . . . , xn), (y1, . . . , yn)) ⇐⇒ (∀pi 6∈ D)(xi = yi ).

{RD | D ⊆ P downset} forms an orthogonal block structure
called a poset block structure.

If the partition lattice of G 6 Sym(Ω) forms a poset block
structure, we say that G is a PB group.
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OB and PB

Lemma. An orthogonal block structure is a poset block structure
if and only if it is distributive as a lattice, and hence an OB group
is PB if and only if its partition lattice is distributive.

Remarks:

Orthogonal block structures are modular as lattices.

There are OB groups which are neither PB, nor PP, e.g.
TransitiveGroup(6, 2) in the GAP Transitive Groups
Library.

There are OB groups which are PB, but not PP, e.g.
TransitiveGroup(8, 14) in the GAP Transitive Groups
Library.

There are OB groups which are PP, but not PB, e.g. Q8.
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PB groups: An example

G = S3 × S3

L(G ) is distributive, so G is PB.
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PB groups: A counterexample

G = Q8 = 〈−1, i , j , k | (−1)2 = 1, i2 = j2 = k2 = ijk = −1〉

A lattice is distributive if and only if it does not contain the
diamond lattice and L(Q8) contains the diamond lattice, so Q8 is
not PB.
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PB groups: A counterexample

G = Q8 = 〈−1, i , j , k | (−1)2 = 1, i2 = j2 = k2 = ijk = −1〉

A lattice is distributive if and only if it does not contain the
diamond lattice and L(Q8) contains the diamond lattice, so Q8 is
not PB.
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Generalised wreath products I

Let G 6 Sym(Γ),H 6 Sym(∆), and picture Γ×∆ as a rectangular
array.

G × H in product action: permutation of the rows by an
element of G followed by an independent permutation of the
columns of Γ×∆ by an element of H.

G o H in imprimitive action: independent permutation of the
elements in each column by and element of G followed by a
permutation of the columns by an element of H.

In the first case the actions of G and H on the array are
independent, whereas in the second case the permutation of the
columns by H dominates the action of G on each column.
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Generalised wreath products II

Motivation: We might want to act on structures and induce
different permutations of the structure that are either independent,
or where some dominate others.

We can describe this domination relation in terms of a poset P of
actions, where p1 ≤ p2 if and only if p2 dominates p1.

Figure: Permute rows, permute columns, within each row separately
permute minirows, within each square separately permute microcolumns.
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Generalised wreath products III

Let P be the poset illustrated in the previous figure.

Let G1 permute microcolumns, G2 permute the minirows, G3

permute the rows, and G4 permute the columns.

We can define a group construction that acts on our structure
in the way described in the caption, which we call the
generalised wreath product of G1,G2,G3, and G4 over the
poset P.

We can do the same given any finite poset that describes
domination of actions.

Remark: The direct product in its product action and the
imprimitive wreath product are special cases of generalised wreath
products.
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Main theorem

Theorem (A-M, Bailey, Cameron, ’23+)

Let I be a finite poset, and let Gi be a finite primitive group acting
on a finite set Ωi for every i ∈ I . Then the following hold:

(i) The generalised wreath product G of the groups Gi over the
poset I is pre-primitive, and hence OB;

(ii) The following are equivalent:

G has the PB property;

The only G -invariant partitions are the ones corresponding to
downsets in I ;

There do not exist incomparable elements i , j ∈ I such that Gi

and Gj are cyclic of the same prime order.
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Some comments on the proof

The direct product
∏

i∈I Gi in its product action can be
embedded transitively inside G .∏

i∈I Gi is pre-primitive.

Since PP is closed upwards, G is pre-primitive.

We prove part (ii) by considering possible partitions that do
not correspond to downsets in I and deduce that we get extra
ones if and only if there exist incomparable i , j ∈ I such that
Gi
∼= Gj

∼= Cp for some prime p.
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Embedding

Definition. Let L be a lattice of partitions. The automorphism
group of L, denoted by Aut(L) is defined as the largest group
preserving all partitions in L.

Theorem (Bailey, Praeger, Rowley, Speed, ’82)

Let P = {p1, . . . , pn} be a finite poset and associate a positive
integer ni to each pi . If P is the corresponding poset block
structure, then Aut(P) is the generalised wreath product of the
symmetric groups Sni over the poset P.

Corollary. Every PB group can be embedded in a generalised
wreath product.

Current work. Can we do better than the full symmetric groups
Sni ?
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