New properties of permutation groups

Marina Anagnostopoulou-Merkouri
Joint work with Rosemary Bailey, Peter Cameron, and Enoch Suleiman

24th October 2023
整造 University of

Part I

Pre-primitive groups

$G \leqslant \operatorname{Sym}(\Omega)$ - transitive permutation group on a finite set Ω.
We say that $\Delta \subseteq \Omega$ is a block for G if

$$
\Delta \cap \Delta^{g} \in\{\Delta, \emptyset\} \text { for all } g \in G
$$

Note: $\Pi=\left\{\Delta^{g} \mid g \in G\right\}$ is a G-invariant partition of Ω.
We say that G is:

- Primitive: G is transitive and the only G-invariant partitions of Ω are the trivial ones.
- Quasiprimitive: all the non-trivial normal subgroups of G are transitive.
G primitive $\Rightarrow G$ quasiprimitive, G quasiprimitive $\nRightarrow G$ primitive.

Aim: Find a property P such that:

G quasiprimitive $+G$ has $P \Longleftrightarrow G$ primitive.

We will call this property pre-primitivity.

Pre-primitivity

Definition. G is pre-primitive (PP) if every G-invariant partition is the orbit partition of a normal subgroup of G.

Lemma

Let $G \leqslant \operatorname{Sym}(\Omega)$. Then G is primitive if and only if it is both quasiprimitive and pre-primitive.

Proof. If G is primitive, then it is quasiprimitive and its G-invariant partitions are orbit partitions of G and 1 respectively.

Conversely, if G is pre-primitive, then each G-invariant partition is the orbit partition of some normal subgroup of G, so the only G-invariant partitions are the trivial ones.

Example

$$
\text { - } G=C_{4}=\langle(1,2,3,4)\rangle .
$$

- $\{1,2,3,4\} \longleftrightarrow G ;$
- $\{\{1,3\},\{2,4\}\} \longleftrightarrow\langle(1,3)(2,4)\rangle$;
- $\{\{1\},\{2\},\{3\},\{3\}\} \longleftrightarrow 1$.
- $G=\langle(1,3,5)(2,4,6),(1,4)(2,3)(5,6)\rangle \cong S_{3}$.
- $\{\{1,4\},\{2,5\},\{3,6\}\}$ is G-invariant;
- The only non-trivial normal subgroup of G is $\langle(1,3,5)(2,4,6)\rangle$.

Question: Can we classify all pre-primitive groups?

n	$T(n)$	$P(n)$	$P P(n)$	$Q P(n)$	correlation
10	45	9	42	9	0.0133
11	8	8	8	8	0
12	301	6	276	7	0.0014
13	9	9	9	9	0
14	63	4	59	5	-0.0108
15	104	6	102	8	-0.0178
16	1954	22	1833	22	0.0007
17	10	10	10	10	0
18	983	4	900	4	0.0003
19	8	8	8	8	0
20	1117	4	1019	10	-0.0046

Observation: Pre-primitive groups are not "hard to find".

Regular groups

A transitive group $G \leqslant \operatorname{Sym}(\Omega)$ is regular if $G_{\alpha}=1$ for any $\alpha \in \Omega$.
Note: If G is regular, then we can identify Ω with G and act by right multiplication.

Theorem (A-M, Cameron, Suleiman, '23)

If $G \leqslant \operatorname{Sym}(\Omega)$ is regular, then it is PP if and only if it is a Dedekind group.

- A G-invariant partition is the right coset partition of some $H \leqslant G$.
- Conversely, every right coset partition is G-invariant.
- The left coset partition of H is the orbit partition of H.
- If $H \notin G$, then the left coset partition of H and the right coset partition of H are different, and none of them have both properties.
- All subgroups of G must be normal.

We first look at the imprimitive wreath product. Let $G \leqslant \operatorname{Sym}(\Gamma)$ and $H \leqslant \operatorname{Sym}(\Delta)$ and consider $G \imath H$.

Theorem (A-M, Cameron, Suleiman, '23)

The wreath product G \H in its imprimitive action is pre-primitive if and only if both G and H are pre-primitive.
$\mathbf{G}, \mathbf{H} \mathbf{P P} \Rightarrow \mathbf{G}\langle\mathbf{H} \mathbf{P P}:$

- Every G 乙 H-invariant partition is comparable to the canonical partition in the G ? H-invariant partition lattice.
- Π - G $2 H$-invariant partition above the canonical partition: Canonical partition blocks are partitioned in some H-invariant way and this partition of the blocks is the orbit partition of some $N \boxtimes H$. Then we show that Π is the orbit partition of G $2 N$.
- Π - Gl H-invariant partition below the canonical partition: Each block of the canonical partition is partitioned in the same G-invariant way and this partition is the orbit partition of some $K \Downarrow G$. Then we show that Π is the orbit partition of $K^{|\Delta|}$.
The other direction is similar.

Direct products: A necessary condition

Unlike the wreath product case, it is not easy to find a necessary and sufficient condition for $G \times H$ in its product action to be pre-primitive.

Proposition (A-M, Cameron, Suleiman, '23)

If $G \times H$ is pre-primitive, then both G and H are pre-primitive.

- $G \times H$ can be embedded in $G \imath H$ in its imprimitive action.
- Since pre-primitivity is closed upwards, $G \backslash H$ is pre-primitive.
- G and H are pre-primitive by the previous theorem.

Note: $G, H P P \nRightarrow G \times H P P . C_{4}$ and Q_{8} acting regularly are Dedekind and thus PP, but $C_{4} \times Q_{8}$ is regular, but not Dedekind so not PP.

Direct products: Some facts about partitions

Let $G \leqslant \operatorname{Sym}(\Gamma)$ and $H \leqslant \operatorname{Sym}(\Delta)$. Every $(G \times H)$-invariant partition Π induces two partitions on Γ and Δ.

- Fix a $\delta \in \Delta$. The intersection of the parts of Π with $\Gamma \times\{\delta\}$ form a partition of $\Gamma \times\{\delta\}$, and by ignoring the second component we obtain a partition of Γ, which we call the G-fibre partition and we denote it by Π_{G}.
- The sets $\{\gamma \in \Gamma \mid(\exists \delta \in \Delta)(\gamma, \delta) \in P\}$ for every $P \in \Pi$ form a partition of Γ which we call the G-projection partition and we denote it by Π^{G}.

The H-fibre and H-projection partitions are defined in the same way.

Orbit and projection partitions: An example

$$
\begin{aligned}
& \text { Let } G=C_{4} \leqslant S_{4} \text { and } \\
& H=Q_{8}=\langle(1,2,3,4)(5,6,7,8),(1,5,3,7)(2,8,4,6)\rangle \leqslant S_{8} .
\end{aligned}
$$

The partition below is $(G \times H)$-invariant.

- G-fibre partition: Partition into singletons.
- G-projection partition: Partition into a single part.
- H-fibre partition: Partition into singletons.
- H-projection partition: $\{\{1,2,3,4\},\{5,6,7,8\}\}$.

Direct products: Some sufficient conditions

There are some special cases in which we know that $G \times H$ in its product action is pre-primitive.

Theorem (A-M, Cameron, Suleiman, '23)

In each of the following cases $G \times H$ is pre-primitive.

- G, H abelian;
- G, H are primitive;
- G, H are pre-primitive and $(|\Gamma|,|\Delta|)=1$;
- G, H are pre-primitive and one of the following holds for every $(G \times H)$-invariant partition Π.
- $\Pi_{G}=\Pi^{G}$ and $\Pi_{H}=\Pi^{H}$;
- The Π^{G} and Π^{H} are the partitions into a single part.

Part II

Permutation groups and orthogonal block structures

Lattices

A lattice L is a partially ordered set where for every $a, b \in L$ there exists a unique greatest lower bound (meet) $a \wedge b$, and a unique least upper bound (join) $a \vee b$.
We say that L is:

- Modular: if $a \leq b$ implies $a \vee(x \wedge b)=(a \vee x) \wedge b$ for all $a, b, x \in L$.
- Distributive: if $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$ for all $a, b, c \in L$.

Example: If X is a set, then $(\mathcal{P}(X), \subseteq)$ is a lattice.

Orthogonal block structures

Let L be a lattice of partitions.
L is an orthogonal block structure if:

- All the partitions are uniform;
- For any $\Pi, \Sigma \in L$ the corresponding equivalence relations ρ_{Π} and ρ_{Σ} commute, i.e. $\rho_{\Pi} \circ \rho_{\Sigma}=\rho_{\Sigma} \circ \rho_{\Pi}$.

Motivation:

- Orthogonal block structures were first introduced by John Nelder in the area of experimental designs.
- Used when there are systematic differences between experimental units, e.g. patients in different hospitals.

OB groups

Let $G \leqslant \operatorname{Sym}(\Omega)$ be transitive.
Note: The G-invariant partitions form a lattice $L(G)$.
Definition. G is an OB group if $L(G)$ is an orthogonal block structure.

Theorem (A-M, Bailey, Cameron, '23+)

Let $\alpha \in \Omega$. Then G is OB if and only if for any two H, K such that $G_{\alpha} \leqslant H, K \leqslant G$ we have $H K=K H$.

Example

If G is transitive and abelian, then for any H, K such that $1=G_{\alpha} \leqslant H, K \leqslant G$ we have $H K=K H$.

It turns out that the PP and the OB property are related.

```
Theorem (A-M, Bailey, Cameron, '23+)
If G\leqslant\operatorname{Sym}(\Omega)\mathrm{ is PP, then it is OB.}
```


Proof sketch.

- Subgroups containing G_{α} correspond to G-invariant partitions.
- Two G-invariant partitions commute if and only if the corresponding subgroups commute.
- G-invariant partitions of PP groups are orbit partitions of normal subgroups and normal subgroups commute.

Question: Is G PP if and only if it is OB?
Counterexample: TransitiveGroup (8, 14).

- $P=\left\{p_{1}, \ldots, p_{n}\right\}$ - finite poset. Associate a positive integer n_{i} to each p_{i}.
- Ω - Cartesian product of the sets $\left\{1, \ldots, n_{i}\right\}$.
- $D \subseteq P$ is a downset if $p \in D$ implies $q \in D$ for all $q \leq p$.

For each downset of P we define the following equivalence relation R_{D} on Ω :

$$
R_{D}\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right) \Longleftrightarrow\left(\forall p_{i} \notin D\right)\left(x_{i}=y_{i}\right) .
$$

- $\left\{R_{D} \mid D \subseteq P\right.$ downset $\}$ forms an orthogonal block structure called a poset block structure.
- If the partition lattice of $G \leqslant \operatorname{Sym}(\Omega)$ forms a poset block structure, we say that G is a PB group.

OB and PB

Lemma. An orthogonal block structure is a poset block structure if and only if it is distributive as a lattice, and hence an OB group is PB if and only if its partition lattice is distributive.

Remarks:

- Orthogonal block structures are modular as lattices.
- There are $O B$ groups which are neither PB, nor PP, e.g. TransitiveGroup (6, 2) in the GAP Transitive Groups Library.
- There are OB groups which are PB, but not PP, e.g. TransitiveGroup (8, 14) in the GAP Transitive Groups Library.
- There are OB groups which are PP, but not PB, e.g. Q_{8}.

PB groups: An example

$$
G=S_{3} \times S_{3}
$$

$L(G)$ is distributive, so G is PB.

$$
G=Q_{8}=\left\langle-1, i, j, k \mid(-1)^{2}=1, i^{2}=j^{2}=k^{2}=i j k=-1\right\rangle
$$

A lattice is distributive if and only if it does not contain the diamond lattice and $L\left(Q_{8}\right)$ contains the diamond lattice, so Q_{8} is not PB.

$$
G=Q_{8}=\left\langle-1, i, j, k \mid(-1)^{2}=1, i^{2}=j^{2}=k^{2}=i j k=-1\right\rangle
$$

A lattice is distributive if and only if it does not contain the diamond lattice and $L\left(Q_{8}\right)$ contains the diamond lattice, so Q_{8} is not $P B$.

Let $G \leqslant \operatorname{Sym}(\Gamma), H \leqslant \operatorname{Sym}(\Delta)$, and picture $\Gamma \times \Delta$ as a rectangular array.

- $G \times H$ in product action: permutation of the rows by an element of G followed by an independent permutation of the columns of $\Gamma \times \Delta$ by an element of H.
- $G \imath H$ in imprimitive action: independent permutation of the elements in each column by and element of G followed by a permutation of the columns by an element of H.

In the first case the actions of G and H on the array are independent, whereas in the second case the permutation of the columns by H dominates the action of G on each column.

Generalised wreath products II

Motivation: We might want to act on structures and induce different permutations of the structure that are either independent, or where some dominate others.
We can describe this domination relation in terms of a poset P of actions, where $p_{1} \leq p_{2}$ if and only if p_{2} dominates p_{1}.

Figure: Permute rows, permute columns, within each row separately permute minirows, within each square separately permute microcolumns.

- Let P be the poset illustrated in the previous figure.
- Let G_{1} permute microcolumns, G_{2} permute the minirows, G_{3} permute the rows, and G_{4} permute the columns.
- We can define a group construction that acts on our structure in the way described in the caption, which we call the generalised wreath product of G_{1}, G_{2}, G_{3}, and G_{4} over the poset P.
- We can do the same given any finite poset that describes domination of actions.

Remark: The direct product in its product action and the imprimitive wreath product are special cases of generalised wreath products.

Theorem (A-M, Bailey, Cameron, '23+)

Let I be a finite poset, and let G_{i} be a finite primitive group acting on a finite set Ω_{i} for every $i \in I$. Then the following hold:
(a) The generalised wreath product G of the groups G_{i} over the poset I is pre-primitive, and hence OB;
(1) The following are equivalent:

- G has the PB property;
- The only G-invariant partitions are the ones corresponding to downsets in I;
- There do not exist incomparable elements $i, j \in I$ such that G_{i} and G_{j} are cyclic of the same prime order.
- The direct product $\prod_{i \in I} G_{i}$ in its product action can be embedded transitively inside G.
- $\prod_{i \in I} G_{i}$ is pre-primitive.
- Since PP is closed upwards, G is pre-primitive.
- We prove part (ii) by considering possible partitions that do not correspond to downsets in I and deduce that we get extra ones if and only if there exist incomparable $i, j \in I$ such that $G_{i} \cong G_{j} \cong C_{p}$ for some prime p.

Definition. Let L be a lattice of partitions. The automorphism group of L, denoted by $\operatorname{Aut}(L)$ is defined as the largest group preserving all partitions in L.

Theorem (Bailey, Praeger, Rowley, Speed, '82)

Let $P=\left\{p_{1}, \ldots, p_{n}\right\}$ be a finite poset and associate a positive integer n_{i} to each p_{i}. If \mathcal{P} is the corresponding poset block structure, then $\operatorname{Aut}(\mathcal{P})$ is the generalised wreath product of the symmetric groups $S_{n_{i}}$ over the poset P.

Corollary. Every PB group can be embedded in a generalised wreath product.
Current work. Can we do better than the full symmetric groups $S_{n_{i}}$?

