Orientably-Regular p-Maps and Regular p-Maps

Yao Tian
Capital Normal University

School of Mathematical Sciences 2023-10-17

Algebraic Maps

Definition

For a given finite set F and three fixed-point-free involutory permutations t, r, ℓ on F, a quadruple $\mathcal{M}=\mathcal{M}(F ; t, r, \ell)$ is called a combinatorial map if they satisfy two conditions: (1) $t \ell=\ell t$; (2) the group $\langle t, r, \ell\rangle$ acts transitively on F.

Definition

For a given finite set D and two fixed-point-free permutations r, ℓ on D where ℓ is an involutory, a triple $\mathcal{M}=\mathcal{M}(D ; r, \ell)$ is called a combinatorial orientable map if $\langle r, \ell\rangle$ acts transitively on D.

(1) Regular Maps.

A regular map can be constructed in the following way.
Let G be any finite group that is generated by three involutions t, r and ℓ such that $t \ell$ has order 2 , and $t r$ and $r \ell$ have order at least 2 . The elements of G are taken as the set of flags of \mathcal{M}. The left multiplication of t, r and ℓ on the set of flags are called transversal, rotary and longitudinal involution respectively. We take the vertices, edges and face-boundaries by the right cosets of $\langle r, t\rangle$, $\langle t, \ell\rangle$ and $\langle r, \ell\rangle$ in G, respectively, with incidence given by non-empty intersection. We denote such a map by $\mathcal{M}(G ; r, t, \ell)$.

Proposition

Given an abstract group G and two triples of generators $\left(r_{1}, t_{1}, \ell_{1}\right)$ and (r_{2}, t_{2}, ℓ_{2}),

$$
\mathcal{M}_{1}=\mathcal{M}\left(G ; r_{1}, t_{1}, \ell_{1}\right) \cong \mathcal{M}_{2}=\mathcal{M}_{2}\left(G ; r_{2}, t_{2}, \ell_{2}\right)
$$

if and only if

$$
r_{1}^{\sigma}=r_{2}, t_{1}^{\sigma}=t_{2}, l_{1}^{\sigma}=l_{2}
$$

for some σ in $\operatorname{Aut}(G)$.

(2) Orientably-regular maps.

An orientably-regular map can be constructed in the following direct way.
Let G be any finite group that is generated by an element r of order at least 2 and an involution ℓ. The elements of G are taken as the set of arcs of \mathcal{M}. We take vertices, edges, face-boundaries by right cosets of $\langle r\rangle,\langle\ell\rangle$ and $\langle r \ell\rangle$ in G, respectively, with incidence given by non-empty intersection of cosets. The left multiplication of r and ℓ on the arcs are called local rotation and arc-revision involution respectively. We denote such a map by $\mathcal{M}(G ; r, \ell)$.

Moreover, two maps $\mathcal{M}\left(G ; r_{1}, \ell_{1}\right) \cong \mathcal{M}\left(G ; r_{2}, \ell_{2}\right)$ if and only if there exists an automorphism σ of G such that $r_{1}^{\sigma}=r_{2}$ and $\ell_{1}^{\sigma}=\ell_{2}$.

Definition (p-map)

A map is called a p-map if the number of vertices is p^{k}, where p is prime and $k \geq 1$.

Definition (π-map)

We call the $\operatorname{map} \mathcal{M}$ of n vertices a π-map if all prime divisors of n lie on π.
Recall that for a given set π of primes, π^{\prime} means the set of all primes not containing in π and an integer is called a π-number if all of its prime divisors lie in π. Let G be a finite group, a π-subgroup refers to a subgroup whose order is a π-number and a Hall π-subgroup is meant a π-subgroup whose index in G is a π^{\prime}-number. The maximal normal subgroup of odd order is denoted by $O_{2^{\prime}}(G)$.

Definition

- An orientably-regular (resp. A regular) p-map \mathcal{M} is called solvable if $\operatorname{Aut}^{+}(\mathcal{M})(\operatorname{resp} . \operatorname{Aut}(\mathcal{M}))$ is solvable; and called normal if $\operatorname{Aut}^{+}(\mathcal{M})(\operatorname{resp} . \operatorname{Aut}(\mathcal{M}))$ contains the normal Sylow p-subgroup.

Definition

- An orientably-regular (resp. A regular) π-map \mathcal{M} is called solvable if $\operatorname{Aut}^{+}(\mathcal{M})(\operatorname{resp} . \operatorname{Aut}(\mathcal{M}))$ is solvable; and \mathcal{M} is called normal if Aut ${ }^{+}(\mathcal{M})($ resp. Aut $(\mathcal{M}))$ contains a normal Hall π-subgroup, otherwise, \mathcal{M} is called abnormal. Moreover, if $\operatorname{Aut}^{+}(\mathcal{M})(\operatorname{resp} . \operatorname{Aut}(\mathcal{M}))$ acts primitively on vertices, then we call \mathcal{M} a primitive orientably-regular π-map (resp. a primitive regular π-map).
A. Gardiner, R. Nedela, J. Širáň, M. Škoviera, Characterization of graphs which underlie regular maps on closed surfaces, J. London Math. Soc., 59(1)(1999), 100-108.
J. Y. Zhang, S. F. Du, On the Orientable Regular Embeddings of Complete Multipartite Graphs, European J. Combin., 33(2012) 1303-1312.
S. F. Du and J. Y. Zhang, A Classification of Orientable Regular Embeddings of Complete Multipartite Graphs, European J. Combin., 36(2014), 437-452.
L.D. James and G.A. Jones, Regular orientable imbeddings of complete graphs, J. Combin. Theory Ser. B , 39(1985) 353-367.
D.A. Catalano, M.D.E. Conder, S.F. Du, Y.S. Kwon, R. Nedela and S.E. Wilson, Classification of regular embeddings of n-dimensional cubes, J. Algeb. Combin., 33(2011)(2), 215-238.
Y.S. Kwon and R. Nedela, Non-existence of nonorientable regular embedings of n-dimensional cubes, Discrete Math., 307(2007)(3-5), 511-516.
S.F. Du, G.A. Jones, J.H. Kwak, R. Nedela and M. Škoviera, Regular embeddings of $K_{n, n}$ where n is a power of 2, I: Metacyclic case, European J. Combin., 28(6)(2007), 1595-1609.
S.F. Du, G.A. Jones, J.H. Kwak, R. Nedela, M. Škoviera, Regular embeddings of $K_{n, n}$ where n is a power of 2, II: Nonmetacyclic case, European J. Combin., 31(2010), 1946-1956.
G.A. Jones, Regular embeddings of complete bipartite graphs: classification and enumeration, London Math. Soc., 101(2010), 427-453.
J. H. Kwak and Y. S. Kwon, Classification of nonorientable regular embeddings of complete bipartite graphs, J. Combin. Theory Ser. B, 101(2011), 191-205.
S.F. Du and J.H. Kwak, Nonorientable regular embeddings of graphs of order p^{2}, Discrete Math., 310(2010), 1743-1751.

Zhu, Y.H., Xu, W.Q., Du, S.F., Ma, X.S.: On the orientable regular embeddings of order prime-cube. Discrete Math. 339, 1140-1146 (2016).

Proposition

Let Γ be a connected simple graph of order p^{3} where p is prime and let \mathcal{M} be an orientably-regular embedding of Γ with the group $G=\langle r, \ell\rangle$ of all orientation-preserving automorphisms, where ℓ is an involution and $\langle r\rangle=G_{v}$ for a vertex v in $V(G)$. Take a Sylow p-subgroup P of G. Then we have the Sylow p-subgroup P is normal in G.

Zhu, Y.H., Du, S.F.: Nonorientable regular embeddings of graphs of order p^{3}. Journal of Algebraic Combinatorics. 55, 1251-1264 (2022).

Proposition

Let Γ be a connected simple graph of order p^{3} and valency n, where p is a prime, and let \mathcal{M} be a nonorientable regular embedding of Γ with automorphism group G. Let N be a minimal normal subgroup of G which induces blocks of minimal size and let K be the kernel of G on the corresponding complete block system. Take a Sylow p-subgroup P of G. Then, we have tne Sylow p-subgroup P is normal in G.

Theorem
Let \mathcal{M} be an orientably-regular p-map or a regular p-map. Then
(1) \mathcal{M} is solvable;
(2) \mathcal{M} is normal, except for the following two cases:
(2.1) $p=2, G / O_{2}(G) \cong \mathbb{Z}_{m} \rtimes \mathbb{Z}_{2}$ or $\mathbb{Z}_{m} \rtimes \mathbb{D}_{4}$, where $m \geq 3$ is odd. (2.2) $p=3, G / O_{3}(G) \cong S_{4}$.

Theorem

Suppose that \mathcal{M} is a nonnormal orientably-regular p-map or a nonnormal regular p-map. Let $G=\operatorname{Aut}^{+}(\mathcal{M})$ or $\operatorname{Aut}(\mathcal{M})$. Then the quotient map $\overline{\mathcal{M}}$ induced by $O_{p}(G)$ is one of the following maps:
(1) $p=2, \overline{\mathcal{M}}=\mathcal{D}(m, e)$, where $m \geq 3$ is odd and $e^{2} \equiv 1$ ($\bmod m)$ but $e \not \equiv 1(\bmod m) . \mathcal{M}$ is a nonnormal orientably-regular 2-map, more precisely, it is either chiral or reflexible and nonnormal regular;
(2) $p=2, \overline{\mathcal{M}}=D M(m)$ and \mathcal{M} is nonorientable and nonnormal regular;
(3) $p=2, \overline{\mathcal{M}}=E M(m)$ and \mathcal{M} is normal orientably-regular but nonnormal regular;
(4) $p=3, \overline{\mathcal{M}}=\mathcal{C}(3,2)$ and \mathcal{M} is nonorientable and nonnormal regular.

solvability of p-map

Lemma
P acts transitively on V so that $G=P G_{v}=P H$.
Lemma
Let G be a group having a cyclic subgroup H of index a p-power.
Then G is solvable.

Proposition

[VI. Hauptsatz 4.3] Let $G=N_{1} N_{2} \cdots N_{k}$, where N_{i} is a nilpotent subgroup of G for all $i \in\{1,2, \ldots, k\}$, and $N_{i} N_{j}=N_{j} N_{i}$ for any i, j. Then G is solvable.
B. Huppert, Endliche Gruppen I, Springer, Berlin, 1979.

Lemma
Let G be a group having a subgroup $H \cong \mathbb{D}_{2 n}$ of index a p-power. Then G is solvable.

Proposition

[Theorem 1] Let T be a nonabelian simple group with a subgroup $H<T$ satisfying $|T: H|=p^{a}$, for p a prime. Then one of the following holds:
(i) $T=A_{n}$ and $H=A_{n-1}$ with $n=p^{a}$;
(ii) $T=\operatorname{PSL}(n, q), H$ is the stabilizer of a projective point or a hyperplane in $P G(n-1, q)$ and
$|T: H|=\left(q^{n}-1\right) /(q-1)=p^{a}$;
(iii) $T=P S L(2,11)$ and $H=A_{5}$;
(iv) $T=M_{11}$ and $H=M_{10}$;
(v) $T=M_{23}$ and $H=M_{22}$;
(vi) $T=\operatorname{PSU}(4,2)$ and H is a subgroup of index 27 .
R.M. Guralnick, Subgroups of prime power index in a simple group, J. Algebra, 81(1983), 304-311.

Normality of p-map

Lemma

Suppose $G=\langle r, \ell\rangle$ such that ℓ is an involution, $|r|$ is even and $|G:\langle r\rangle|=p^{k}$, where p is an odd prime. Then G contains a normal Sylow p-subgroup.

Lemma

Suppose $G=\langle t, r, \ell\rangle$ such that t, r, ℓ are involutions, $t \ell=\ell t$ and $\langle r, t\rangle \cong \mathbb{D}_{2 n}$ where $|G:\langle r, t\rangle|=p^{k}$ for an odd prime p. Then $G / O_{2^{\prime}}(G)$ is isomorphic to either S_{4} or a Sylow 2-group of G. Moreover, if $p \geq 5$, then $G / O_{2^{\prime}}(G) \neq S_{4}$.

Proposition

Let G be a finite group with dihedral Sylow 2-subgroups. Let $O(G)$ denote the maximal normal subgroup of odd order. Then $G / O(G)$ is isomorphic to either a subgroup of $P \Gamma L(2, q)$ containing $\operatorname{PSL}(2, q)$ where q is odd, or A_{7}, or a Sylow 2-subgroup of G.

Lemma

With the notations in last Lemma, suppose that $G / O_{2^{\prime}}(G)$ is isomorphic to a Sylow 2-subgroup of G, where p is odd. Then G contains a normal Sylow p-subgroup.

Lemma

Suppose that \mathcal{M} is an orientably-regular 3-map or a regular 3-map.
Then either
(1) \mathcal{M} is normal; or
(2) \mathcal{M} is nonorientable and nonnormal regular. Moreover, it is a regular covering of $\mathcal{C}(3,2)$, whose covering transformation group is a 3-group.
C.H. Li and Jozef Širáñ, Regular maps whose groups do not act faithfully on vertices, edges, or faces. Euro. J. Combin., 26(2005), 521-541.

Lemma

Suppose that \mathcal{M} is an orientably-regular 2-map or a regular 2-map.
Then either
(1) \mathcal{M} is normal; or
(2) \mathcal{M} is a regular covering of one of the following maps $\overline{\mathcal{M}}$, whose covering transformation group is a 2-group:
(2.1) $\overline{\mathcal{M}}=\mathcal{D}(m, e)$, where $m \geq 3$ is odd and $e^{2} \equiv 1(\bmod m)$ but $e \not \equiv 1(\bmod m) . \mathcal{M}$ is nonnormal orientably-regular, more precisely, it is either a chiral map or reflexible and nonnormal regular;
(2.2) $\overline{\mathcal{M}}=D M(m)$ and \mathcal{M} is nonorientable and nonnormal regular;
(2.3) $\overline{\mathcal{M}}=E M(m)$ and \mathcal{M} is normal orientably-regular but nonnormal regular.
C.H. Li and Jozef Širáň, Regular maps whose groups do not act faithfully on vertices, edges, or faces. Euro. J. Combin., 26(2005), 521-541.

Example

$O_{3}(G)=1$: Let $G=S_{4}$. Take $r=(13), t=(12)(34)$ and $\ell=(12)$. Then $\mathcal{M}(G ; r, t, \ell)$ is a nonorientable nonnormal 3-map which has three vertices and six edges. Since $|\langle r, \ell\rangle|=6$, the map has four faces. The genus g of the map is 1 .

Example

$\left|O_{3}(G)\right|=3$: Let $G=(\langle b\rangle \times\langle c\rangle) \rtimes\langle d, e\rangle$ with the defining relations

$$
\begin{gathered}
b^{2}=c^{2}=e^{2}=d^{9}=[b, c]=1, \\
b^{d}=c, c^{d}=b c, d^{e}=d^{-1}, b^{e}=c, c^{e}=b .
\end{gathered}
$$

Then $O_{3}(G)=\left\langle d^{3}\right\rangle$ and $G / O_{3}(G) \cong S_{4}$. Let $r=e, t=b, \ell=d e$. Then $\mathcal{M}(G ; r, t, \ell)$ is a nonorientable nonnormal 3-map which has 9 vertices, 18 edges and 4 faces. The genus g of the map is 7 .

Example

$\left|O_{3}(G)\right|=27$: Let $G=(\langle a\rangle \times\langle b\rangle \times\langle c\rangle) \rtimes\langle d, e, f\rangle$ with the defining relations

$$
\begin{gathered}
a^{3}=b^{3}=c^{3}, a^{d}=a^{-1}, b^{d}=b, c^{d}=c^{-1} \\
a^{e}=b^{-1}, b^{e}=a^{-1}, c^{e}=c^{-1}, a^{f}=a b^{-1} c^{-1}, b^{f}=a^{-1} b c^{-1}, c^{f}=a^{-1} b^{-} \\
d^{2}=e^{2}=f^{2}=1,(d e)^{4}=1, \text { ef }=f e,(d f)^{3}=1,(\text { def })^{3}=1 .
\end{gathered}
$$

Then $O_{3}(G)=\langle a\rangle \times\langle b\rangle \times\langle c\rangle$ and $G / O_{3}(G) \cong S_{4}$. Let $r=\operatorname{acd}, t=e, \ell=f$. Then $\mathcal{M}(G ; r, t, \ell)$ is a nonorientable nonnormal 3-map which has 27 vertices, 162 edges and 24 faces and the underlying graph is simple.

Example

Let $G=S_{4}=\langle r, t, \ell\rangle$, where $r=(12), t=(13)$ and $\ell=(13)(24)$ and $\mathcal{M}=\mathcal{M}(G ; r, t, \ell)$. Since $\langle r t, t \ell\rangle=G$, we know \mathcal{M} is a nonorientable and nonnormal regular 2-map, which has 4 vertices, 3 faces and 6 edges and the underlying graph is simple. Moreover, $O_{2}(G) \cong \mathbb{D}_{4}$ and $\overline{\mathcal{M}}=D M(6)$.
Let $G^{\prime} \cong \mathbb{Z}_{2} \times S_{4} \cong\langle(56)\rangle \times\langle r, t, \ell\rangle=\left\langle r^{\prime}, t, \ell\right\rangle$, where $r^{\prime}=(56)(12)$ and $\mathcal{M}^{\prime}=\mathcal{M}^{\prime}\left(G^{\prime} ; r^{\prime}, t, \ell\right)$. Clearly, we know \mathcal{M}^{\prime} is a nonorientable and nonnormal regular 2-map, which has 4 vertices, 6 faces and 12 edges and the underlying graph has doubled edges.
Moreover, $O_{2}\left(G^{\prime}\right) \cong \mathbb{Z}_{2} \times \mathbb{D}_{4}$ and $\overline{\mathcal{M}}=\operatorname{DM}(6)$.

Example

Let $G=S_{4}=\langle r, t, \ell\rangle$, where $r=(12), t=(13)$ and $\ell=(24)$ and $\mathcal{M}=\mathcal{M}(G ; r, t, \ell)$. Since $\langle r t, t \ell\rangle=A_{4}$, we know \mathcal{M} is a nonnormal orientably-regular 2-map, which has 4 vertices, 4 faces and 6 edges and the underlying graph is simple. Moreover, $O_{2}(G) \cong \mathbb{D}_{4}$ and $\overline{\mathcal{M}}=E M(6)$.
Let $G^{\prime} \cong \mathbb{Z}_{2} \times S_{4} \cong\langle(56)\rangle \times\langle r, t, \ell\rangle=\left\langle r^{\prime}, t, \ell\right\rangle$, where $r^{\prime}=(56)(12)$ and $\mathcal{M}^{\prime}=\mathcal{M}^{\prime}\left(G^{\prime} ; r^{\prime}, t, \ell\right)$. Clearly, we know \mathcal{M}^{\prime} is a nonnormal orientably-regular 2-map, which has 4 vertices, 4 faces and 12 edges and the underlying graph has doubled edges.
Moreover, $O_{2}\left(G^{\prime}\right) \cong \mathbb{Z}_{2} \times \mathbb{D}_{4}$ and $\overline{\mathcal{M}^{\prime}}=E M(6)$.

π-map

Theorem
Suppose that \mathcal{M} is an orientably-regular π-map of odd order. Then the $\pi-\operatorname{map} \mathcal{M}$ is solvable and normal.

Theorem
Suppose that \mathcal{M} is a regular π-map of odd order. Then the regular π-map \mathcal{M} is solvable if $\operatorname{Aut}(\mathcal{M})$ has no composition factors isomorphic to $\operatorname{PSL}(2, q)$ for some odd prime power $q \neq 3$; and \mathcal{M} is normal if and only if Aut (\mathcal{M}) has a normal Hall subgroup of odd order.

Theorem

Let \mathcal{M} be a primitive orientably-regular π-map. Then π contains only one prime and \mathcal{M} is solvable, moreover, \mathcal{M} is normal if $2 \notin \pi$.

Theorem
Let \mathcal{M} be a primitive regular π-map of odd order. Then
(1) either π contains only one prime or π is the set of prime divisors of $\frac{q(q-1)}{2}$ or $\frac{q(q+1)}{2}$ where q is an odd prime power;
(2) \mathcal{M} is solvable if and only if π contains only one prime, in that case, \mathcal{M} is normal if the only prime in π is no less than 5 .
1.Shaofei Du, Yao Tian and Xiaogang Li, Orientably-Regular p-Maps and Regular p-Maps, journal of combinatorial theory, series A, 197 (2023), 105754.
2.Xiaogang Li, Yao Tian, On The Automorphism Groups of Regular Maps, Journal of Algebraic Combinatorics.

THANK YOU FOR YOUR ATTENTION!

