Compatible Groups and Inverse Limits

Zhaochen Ding
Joint work with Gabriel Verret

University of Auckland

Motivation

Throughout, all groups and digraphs are finite
Let digraph Γ be G-arc-transitive and $v \in \vee \Gamma$.

Figure: Local actions of G at v
$G_{v}^{\Gamma^{+}(v)}$: induced permutation group by G_{v} on $\Gamma^{+}(v)$. $G_{v}^{\Gamma^{-}(v)}$: induced permutation group by G_{v} on $\Gamma^{-}(v)$.

Motivation

Throughout, all groups and digraphs are finite
Let digraph Γ be G-arc-transitive and $v \in \mathrm{~V} \Gamma$.

Figure: Local actions of G at v
$G_{v}^{\Gamma+}(v)$: induced permutation group by G_{v} on $\Gamma^{+}(v)$.
$G_{v}^{\Gamma^{-}(v)}$: induced permutation group by G_{v} on $\Gamma^{-}(v)$.

Definition

$G_{v}^{\Gamma^{+}(v)}$ and $G_{v}^{\Gamma^{-}(v)}$ are called compatible if they arise in this way.

Motivation

Question: Given two permutation groups L_{1} and L_{2}, how to determine their compatibility?

Fact

- $G_{v}^{\Gamma+}(v) \cong G_{v}^{\left[G_{v}: G_{v u_{1}}\right]}$ and $G_{v}^{\Gamma^{-}(v)} \cong G_{v}^{\left[G_{v}: G_{w_{1} v}\right]}$.
- $G_{v u_{1}} \cong G_{w_{1} v}$.

Motivation

Question: Given two permutation groups L_{1} and L_{2}, how to determine their compatibility?

Fact

- $G_{v}^{\Gamma^{+}(v)} \cong G_{v}^{\left[G_{v}: G_{v u_{1}}\right]}$ and $G_{v}^{\Gamma^{-}(v)} \cong G_{v}^{\left[G_{v}: G_{w_{1} v}\right]}$.
- $G_{v u_{1}} \cong G_{w_{1} v}$.

Theorem (Giudici et al. 2019)
L_{1} and L_{2} are compatible $\Longleftrightarrow \exists$ a group H with subgroups $K_{1} \cong K_{2}$ s.t. $L_{1} \cong H^{\left[H: K_{1}\right]}$ and $L_{2} \cong H^{\left[H: K_{2}\right]}$.

Compatible groups

Definition

Two (abstract) groups L_{1} and L_{2} are compatible if $\exists G$ and $N_{1} \cong N_{2} \unlhd G$ such that $L_{\delta} \cong G / N_{\delta}$ for $\delta=1,2$. Such a G is called a witness.

Example. C_{2}^{2} and C_{4} are compatible. We have a witness $C_{2} \times C_{4}$ with isomorphic normal subgroups

$$
\left(C_{2} \times C_{4}\right) /\left(C_{2} \times 1\right) \cong C_{4}
$$

and

$$
\left(C_{2} \times C_{4}\right) /\left(1 \times C_{2}\right) \cong C_{2}^{2} .
$$

Compatible groups

Definition
 Two (abstract) groups L_{1} and L_{2} are compatible if $\exists G$ and $N_{1} \cong N_{2} \unlhd G$ such that $L_{\delta} \cong G / N_{\delta}$ for $\delta=1,2$. Such a G is called a witness.

Problem

Given two (abstract) groups, how to determine their compatibility?

Remark.

- 'Compatibility' \Longrightarrow '?'

Compatible groups

Definition
 Two (abstract) groups L_{1} and L_{2} are compatible if $\exists G$ and $N_{1} \cong N_{2} \unlhd G$ such that $L_{\delta} \cong G / N_{\delta}$ for $\delta=1,2$. Such a G is called a witness.

Problem

Given two (abstract) groups, how to determine their compatibility?

Remark.

- 'Compatibility' \Longrightarrow '?'
- Same order.

Compatible groups

Definition
 Two (abstract) groups L_{1} and L_{2} are compatible if $\exists G$ and $N_{1} \cong N_{2} \unlhd G$ such that $L_{\delta} \cong G / N_{\delta}$ for $\delta=1,2$. Such a G is called a witness.

Problem

Given two (abstract) groups, how to determine their compatibility?

Remark.

- 'Compatibility' \Longrightarrow '?'
- Same order.
- Same multi-set of composition factors.

Compatible groups

Definition

Two (abstract) groups L_{1} and L_{2} are compatible if $\exists G$ and $N_{1} \cong N_{2} \unlhd G$ such that $L_{\delta} \cong G / N_{\delta}$ for $\delta=1,2$. Such a G is called a witness.

Problem

Given two (abstract) groups, how to determine their compatibility?

Remark.

- 'Compatibility' \Longrightarrow '?'
- Same order.
- Same multi-set of composition factors.
- (Sims) Compatible groups have subnormal series whose factors are the same in the same order. (Say they have compatible subnormal series)

Compatible groups

Definition

Two (abstract) groups L_{1} and L_{2} are compatible if $\exists G$ and $N_{1} \cong N_{2} \unlhd G$ such that $L_{\delta} \cong G / N_{\delta}$ for $\delta=1,2$. Such a G is called a witness.

Problem

Given two (abstract) groups, how to determine their compatibility?

Remark.

- 'Compatibility' \Longrightarrow '?'
- Same order.
- Same multi-set of composition factors.
- (Sims) Compatible groups have subnormal series whose factors are the same in the same order. (Say they have compatible subnormal series)
- '?' \Longrightarrow 'Compatibility' (We will focus on this one in this talk)

Sufficient conditions of compatibility

If \exists two normal series

$$
1=N_{0} \unlhd \cdots \unlhd N_{n}=L_{1}
$$

and

$$
1=M_{0} \unlhd \cdots \unlhd M_{n}=L_{2}
$$

such that $N_{i+1} / N_{i} \cong M_{i+1} / M_{i}$, we say L_{1} and L_{2} have compatible normal series.

Sufficient conditions of compatibility

Theorem (Length 2)
L_{1} and L_{2} have compatible normal series of length $2 \Longrightarrow$ compatible.

Proof

$\exists N_{\delta} \triangleleft L_{\delta}$ s.t. $N_{1} \cong N_{2}$ and $L_{1} / N_{1} \cong L_{2} / N_{2}$. Let $\sigma: L_{1} / N_{1} \xrightarrow{\sim} L_{2} / N_{2}$, $\pi_{\delta}: L_{\delta} \rightarrow L_{\delta} / N_{\delta}$ canonical projection, and

$$
G:=\left\{(x, y) \in L_{1} \times L_{2} \mid \sigma \circ \pi_{1}(x)=\pi_{2}(y)\right\} .
$$

Note that $N_{1} \times 1,1 \times N_{2} \unlhd G$. Also $G /\left(N_{1} \times 1\right) \cong L_{2}$ and $G /\left(1 \times N_{2}\right) \cong L_{1}$. So G is a witness.
G is the inverse limit of the diagram:

$$
\begin{gathered}
L_{1} \\
L_{2} \xrightarrow{\eta_{2} \sigma \circ \pi_{1}} L_{2} / N_{2}
\end{gathered}
$$

An example

S_{4} and $C_{2} \times A_{4}$ compatible.
$1 \triangleleft A_{4} \triangleleft S_{4}$ and $1 \triangleleft 1 \times A_{4} \triangleleft C_{2} \times A_{4}$ are compatible normal series of length 2.

An example

S_{4} and $C_{2} \times A_{4}$ compatible.
$1 \triangleleft A_{4} \triangleleft S_{4}$ and $1 \triangleleft 1 \times A_{4} \triangleleft C_{2} \times A_{4}$ are compatible normal series of length 2.
$C_{2} \times A_{4}$ and $\operatorname{SL}(2,3)$ compatible.
$1 \triangleleft C_{2} \times 1 \triangleleft C_{2} \times A_{4}$ and $1 \triangleleft C_{2} \triangleleft \mathrm{SL}(2,3)$.

An example

S_{4} and $C_{2} \times A_{4}$ compatible.
$1 \triangleleft A_{4} \triangleleft S_{4}$ and $1 \triangleleft 1 \times A_{4} \triangleleft C_{2} \times A_{4}$ are compatible normal series of length 2.
$C_{2} \times A_{4}$ and $\operatorname{SL}(2,3)$ compatible.
$1 \triangleleft C_{2} \times 1 \triangleleft C_{2} \times A_{4}$ and $1 \triangleleft C_{2} \triangleleft \operatorname{SL}(2,3)$.
S_{4} and $\operatorname{SL}(2,3)$ NOT compatible.
They do not have any compatible subnormal series.

Quick introduction to inverse limits

Definition

Let I be a poset. An inverse system over I consists of:
(i) a group X_{i}, for each $i \in I$;
(ii) an homomorphism $f_{i j}: X_{j} \rightarrow X_{i}$, for every $i \leq j \in I$; such that $f_{i i}=\operatorname{id}_{X_{i}}$ and $f_{i j} \circ f_{j k}=f_{i k}$ for $i \leq j \leq k \in I$.

Quick introduction to inverse limits

Definition

Let I be a poset. An inverse system over I consists of:
(i) a group X_{i}, for each $i \in I$;
(ii) an homomorphism $f_{i j}: X_{j} \rightarrow X_{i}$, for every $i \leq j \in I$; such that $f_{i i}=\operatorname{id}_{X_{i}}$ and $f_{i j} \circ f_{j k}=f_{i k}$ for $i \leq j \leq k \in I$.

Example. $I=(\{a, b, c\}, \leq), c \leq a$ and $c \leq b$.
An inverse system over l is as follows

Quick introduction to inverse limits

Definition

Let $\left(\left(X_{i}\right),\left(f_{i j}\right)\right)$ be an inverse system over I. Define

$$
\lim _{\leftrightarrows}\left(X_{i}\right):=\left\{\left(x_{i}\right) \in \prod_{i \in I} X_{i} \mid \forall i \leq j \in I, f_{i j}\left(x_{j}\right)=x_{i}\right\} .
$$

Example. $G:=\left\{(x, y, z) \in X_{a} \times X_{b} \times X_{c} \mid f_{c a}(x)=f_{c b}(y)=z\right\}$ is the limit of

$$
X_{b} \xrightarrow{f_{c b}} \underset{\substack{X_{a} \\ \underbrace{}_{c a}}}{f_{c a}}
$$

Quick introduction to inverse limits

Definition

Let $\left(\left(X_{i}\right),\left(f_{i j}\right)\right)$ an inverse system.

- Subsystem $\left(\left(Y_{i}\right),\left(g_{i j}\right)\right)$: an inverse system s.t. $Y_{i} \leq X_{i}, f_{i j}\left(Y_{j}\right)=Y_{i}$ \& $g_{i j}:=f_{i j} \mid Y_{j}$.
- Normal subsystem: $\forall Y_{i}, Y_{i} \triangleleft X_{i}$.
- Quotient system: $\left(\left(X_{i} / Y_{i}\right),\left(\bar{f}_{i j}\right)\right)$.

Quick introduction to inverse limits

Definition

Let $\left(\left(X_{i}\right),\left(f_{i j}\right)\right)$ an inverse system.

- Subsystem $\left(\left(Y_{i}\right),\left(g_{i j}\right)\right)$: an inverse system s.t. $Y_{i} \leq X_{i}, f_{i j}\left(Y_{j}\right)=Y_{i}$ \& $g_{i j}:=f_{i j} \mid Y_{j}$.
- Normal subsystem: $\forall Y_{i}, Y_{i} \triangleleft X_{i}$.
- Quotient system: $\left(\left(X_{i} / Y_{i}\right),\left(\bar{f}_{i j}\right)\right)$.

Proposition

- If $\left(Y_{i}\right)$ is subsystem of $\left(X_{i}\right), \lim \left(Y_{i}\right) \leq \underset{\underset{L}{*}}{\lim }\left(X_{i}\right)$.
- If $\left(Y_{i}\right)$ is normal subsystem of $\left(X_{i}\right), \lim \left(Y_{i}\right) \unlhd \lim \left(X_{i}\right)$.
- $\lim _{\llcorner }\left(\left(X_{i}\right) /\left(Y_{i}\right)\right) \cong \lim \left(X_{i}\right) / \lim \left(Y_{i}\right)$.

Quick introduction to inverse limits

Definition

Let $\left(\left(X_{i}\right),\left(f_{i j}\right)\right)$ an inverse system.

- Subsystem $\left(\left(Y_{i}\right),\left(g_{i j}\right)\right)$: an inverse system s.t. $Y_{i} \leq X_{i}, f_{i j}\left(Y_{j}\right)=Y_{i}$ \& $g_{i j}:=f_{i j} \mid Y_{j}$.
- Normal subsystem: $\forall Y_{i}, Y_{i} \triangleleft X_{i}$.
- Quotient system: $\left(\left(X_{i} / Y_{i}\right),\left(\bar{f}_{i j}\right)\right)$.

Proposition

- If $\left(Y_{i}\right)$ is subsystem of $\left(X_{i}\right), \lim \left(Y_{i}\right) \leq \underset{\underset{L}{*}}{\lim }\left(X_{i}\right)$.
- If $\left(Y_{i}\right)$ is normal subsystem of $\left(X_{i}\right), \lim \left(Y_{i}\right) \unlhd \lim \left(X_{i}\right)$.
- $\lim _{\mathrm{L}}\left(\left(X_{i}\right) /\left(Y_{i}\right)\right) \cong \lim _{\leftarrow}\left(X_{i}\right) / \underset{\mathrm{m}}{ }\left(Y_{i}\right)$. (Not generally true.)

Sufficient condition of compatibility: continued

Proposition (Length 3)

Let $L_{1}:=A \cdot{ }_{1} B \cdot{ }_{1} C$ and $L_{2}:=A \cdot{ }_{2} B .{ }_{2} C$. If $\operatorname{Inn}\left(B \cdot{ }_{1} C\right)^{B} \leq\left(\operatorname{Aut}\left(B .{ }_{2} C\right)_{B}\right)^{B}$ and $\operatorname{Inn}\left(B \cdot{ }_{2} C\right)^{B} \leq\left(\operatorname{Aut}\left(B{ }_{1} C\right)_{B}\right)^{B}, L_{1}$ and L_{2} compatible.

Sufficient condition of compatibility: continued

Proposition (Length 3)

Let $L_{1}:=A \cdot{ }_{1} B \cdot{ }_{1} C$ and $L_{2}:=A \cdot{ }_{2} B \cdot{ }_{2} C$. If $\operatorname{Inn}\left(B \cdot{ }_{1} C\right)^{B} \leq\left(\operatorname{Aut}\left(B .{ }_{2} C\right)_{B}\right)^{B}$ and $\operatorname{Inn}\left(B ._{2} C\right)^{B} \leq\left(\operatorname{Aut}\left(B{ }_{1} C\right)_{B}\right)^{B}, L_{1}$ and L_{2} compatible.

Sketch of proof.
Let $n:=|C|$. Construct $G 11:=A^{n}{ }_{11} B \cdot{ }_{1} C, G_{21}:=A^{n}{ }_{2} B \cdot{ }_{1} C$, $G_{12}:=A^{n}{ }_{11} B{ }_{.2} C$, and $G_{22}:=A^{n}{ }_{2} B \cdot{ }_{2} C$ s.t. $G_{11} / A^{n-1} \cong L_{1}$ and $G_{22} / A^{n-1} \cong L_{2}$.

Sufficient condition of compatibility: continued

Proposition (Length 3)

Let $L_{1}:=A \cdot{ }_{1} B .{ }_{1} C$ and $L_{2}:=A \cdot{ }_{2} B .{ }_{.2} C$. If $\operatorname{Inn}\left(B .{ }_{1} C\right)^{B} \leq\left(\operatorname{Aut}\left(B .{ }_{2} C\right)_{B}\right)^{B}$ and $\operatorname{Inn}\left(B .{ }_{2} C\right)^{B} \leq\left(\operatorname{Aut}\left(B .{ }_{1} C\right)_{B}\right)^{B}, L_{1}$ and L_{2} compatible.

Sketch of proof.

Let $n:=|C|$. Construct $G 11:=A^{n}{ }_{11} B \cdot{ }_{1} C, G_{21}:=A^{n}{ }_{2} B \cdot{ }_{1} C$, $G_{12}:=A^{n}{ }_{11} B{ }_{.2} C$, and $G_{22}:=A^{n}{ }_{2} B .{ }_{2} C$ s.t. $G_{11} / A^{n-1} \cong L_{1}$ and $G_{22} / A^{n-1} \cong L_{2}$. Witness is the limit of

$$
\begin{gathered}
A^{n} \cdot{ }_{1} B \cdot{ }_{1} C \\
A^{n} \cdot{ }_{2} B \cdot{ }_{1} C^{B \cdot 1} C \\
A^{n} \cdot{ }_{1} B \cdot{ }_{2} C \\
A^{n}{ }^{n}{ }_{2} B_{2} C^{7}{ }^{7}{ }^{2} C
\end{gathered}
$$

Sufficient condition of compatibility: continued

Proposition (Current work)

Compatible normal series + extra hypothesis $(\$) \Longrightarrow$ Compatible.

Sufficient condition of compatibility: continued

Proposition (Current work)

Compatible normal series + extra hypothesis $(\$) \Longrightarrow$ Compatible.

Extra hypothesis (\$)
Let $L_{\delta}:=A_{1 \cdot \delta} A_{2 \cdot \delta} \cdots \cdot{ }_{\delta} A_{\ell}$ for $\delta=1,2$. For $2 \leq i \leq \ell-1$,

$$
\operatorname{Inn}\left(A_{i \cdot 1} \cdots \cdot{ }_{1} A_{\ell}\right)^{A_{i}} \leq\left(\operatorname{Aut}\left(A_{i \cdot 2} \cdots \cdot{ }_{2} A_{\ell}\right)_{A_{i}}\right)^{A_{i}}
$$

and

$$
\operatorname{Inn}\left(A_{i \cdot 2} \cdots \cdot{ }_{2} A_{\ell}\right)^{A_{i}} \leq\left(\operatorname{Aut}\left(A_{i \cdot 1} \cdots \cdot{ }_{1} A_{\ell}\right)_{A_{i}}\right)^{A_{i}} .
$$

Sufficient condition of compatibility: continued

Proposition (Current work)

Compatible normal series + extra hypothesis $(\$) \Longrightarrow$ Compatible.

Extra hypothesis (\$)
Let $L_{\delta}:=A_{1 \cdot \delta} A_{2 \cdot \delta} \cdots \cdot{ }_{\delta} A_{\ell}$ for $\delta=1,2$. For $2 \leq i \leq \ell-1$,

$$
\operatorname{Inn}\left(A_{i \cdot 1} \cdots \cdot{ }_{1} A_{\ell}\right)^{A_{i}} \leq\left(\operatorname{Aut}\left(A_{i \cdot 2} \cdots \cdot{ }_{2} A_{\ell}\right)_{A_{i}}\right)^{A_{i}}
$$

and

$$
\operatorname{Inn}\left(A_{i \cdot 2} \cdots \cdot{ }_{2} A_{\ell}\right)^{A_{i}} \leq\left(\operatorname{Aut}\left(A_{i \cdot 1} \cdots \cdot{ }_{1} A_{\ell}\right)_{A_{i}}\right)^{A_{i}} .
$$

Example. Compatible central series satisfy the extra hypothesis. $\left(\left.\operatorname{Inn}\left(A_{i . \delta} \cdots{ }_{. \delta} A_{\ell}\right)\right|_{A_{i}}=1.\right)$

Sufficient condition of compatibility: continued

Corollary

(i) All nilpotent groups of the same order are compatible to each other.
(ii) All groups of the same square-free order are compatible to each other.

Further comments

1. Can we remove the extra hypothesis in previous proposition?

Conjecture

Compatible normal series \Longrightarrow Compatible.

Further comments

1. Can we remove the extra hypothesis in previous proposition?

Conjecture

Compatible normal series \Longrightarrow Compatible.
2. It is hard to prove two groups are NOT compatible so far.

Example. A_{4} and C_{12}. We are not able to determine their compatibility.

Further comments

1. Can we remove the extra hypothesis in previous proposition?

Conjecture

Compatible normal series \Longrightarrow Compatible.
2. It is hard to prove two groups are NOT compatible so far.

Example. A_{4} and C_{12}. We are not able to determine their compatibility.
Lemma (Sims)
Compatible \Longrightarrow Compatible subnormal series.

Further comments

1. Can we remove the extra hypothesis in previous proposition?

Conjecture

Compatible normal series \Longrightarrow Compatible.
2. It is hard to prove two groups are NOT compatible so far.

Example. A_{4} and C_{12}. We are not able to determine their compatibility.
Lemma (Sims)
Compatible \Longrightarrow Compatible subnormal series.

```
Conjecture
Compatible \(\Longrightarrow\) Compatible normal series.
```

Proposition (Progress so far)
L_{1} and L_{2} compatible + their composition factors are all non-abelian \Longrightarrow
L_{1} and L_{2} have compatible normal series.

Further comments

3. Can we prove A_{4} and C_{12} incompatible?

Proposition (Progress so far)
If A_{4} and C_{12} have a witness G, then $|G| \geq 2^{10} \cdot 3$.

Further comments

3. Can we prove A_{4} and C_{12} incompatible?

Proposition (Progress so far)

If A_{4} and C_{12} have a witness G, then $|G| \geq 2^{10} \cdot 3$.
4. Some other applications of inverse limits? e.g. Subdirect subgroups.

Thereom (Goursat's Lemma)
The subdirect subgroup of $G \times H$ is the inverse limit of

for some group C and surjective p, q.

