Compatible Groups and Inverse Limits

Zhaochen Ding Joint work with Gabriel Verret

University of Auckland

Throughout, all groups and digraphs are finite

Let digraph Γ be *G*-arc-transitive and $v \in V \Gamma$.

Figure: Local actions of G at v

 $G_v^{\Gamma^+(v)}$: induced permutation group by G_v on $\Gamma^+(v)$. $G_v^{\Gamma^-(v)}$: induced permutation group by G_v on $\Gamma^-(v)$.

Throughout, all groups and digraphs are finite

Let digraph Γ be *G*-arc-transitive and $v \in V \Gamma$.

Figure: Local actions of G at v

 $G_v^{\Gamma^+(v)}$: induced permutation group by G_v on $\Gamma^+(v)$. $G_v^{\Gamma^-(v)}$: induced permutation group by G_v on $\Gamma^-(v)$.

Definition

 $G_v^{\Gamma^+(v)}$ and $G_v^{\Gamma^-(v)}$ are called *compatible* if they arise in this way.

Question: Given two permutation groups L_1 and L_2 , how to determine their compatibility?

Fact

•
$$G_v^{\Gamma^+(v)} \cong G_v^{[G_v:G_{vu_1}]}$$
 and $G_v^{\Gamma^-(v)} \cong G_v^{[G_v:G_{w_1v}]}$

• $G_{vu_1} \cong G_{w_1v}$.

Question: Given two permutation groups L_1 and L_2 , how to determine their compatibility?

Fact

•
$$G_v^{\Gamma^+(v)} \cong G_v^{[G_v:G_{vu_1}]}$$
 and $G_v^{\Gamma^-(v)} \cong G_v^{[G_v:G_{w_1v}]}$

• $G_{vu_1}\cong G_{w_1v}$.

Theorem (Giudici et al. 2019)

 L_1 and L_2 are compatible $\iff \exists$ a group H with subgroups $K_1 \cong K_2$ s.t. $L_1 \cong H^{[H:K_1]}$ and $L_2 \cong H^{[H:K_2]}$.

Definition

Two (abstract) groups L_1 and L_2 are *compatible* if $\exists G$ and $N_1 \cong N_2 \trianglelefteq G$ such that $L_{\delta} \cong G/N_{\delta}$ for $\delta = 1, 2$. Such a G is called a *witness*.

Example. C_2^2 and C_4 are compatible. We have a witness $C_2 \times C_4$ with isomorphic normal subgroups

$$(C_2 \times C_4)/(C_2 \times 1) \cong C_4$$

and

$$(C_2 \times C_4)/(1 \times C_2) \cong C_2^2.$$

Definition

Two (abstract) groups L_1 and L_2 are *compatible* if $\exists G$ and $N_1 \cong N_2 \trianglelefteq G$ such that $L_{\delta} \cong G/N_{\delta}$ for $\delta = 1, 2$. Such a G is called a *witness*.

Problem

Given two (abstract) groups, how to determine their compatibility?

Remark.

'Compatibility' => '?'

Definition

Two (abstract) groups L_1 and L_2 are *compatible* if $\exists G$ and $N_1 \cong N_2 \trianglelefteq G$ such that $L_{\delta} \cong G/N_{\delta}$ for $\delta = 1, 2$. Such a G is called a *witness*.

Problem

Given two (abstract) groups, how to determine their compatibility?

- 'Compatibility' => '?'
 - Same order.

Definition

Two (abstract) groups L_1 and L_2 are *compatible* if $\exists G$ and $N_1 \cong N_2 \trianglelefteq G$ such that $L_{\delta} \cong G/N_{\delta}$ for $\delta = 1, 2$. Such a G is called a *witness*.

Problem

Given two (abstract) groups, how to determine their compatibility?

- 'Compatibility' \implies '?'
 - Same order.
 - Same multi-set of composition factors.

Definition

Two (abstract) groups L_1 and L_2 are *compatible* if $\exists G$ and $N_1 \cong N_2 \trianglelefteq G$ such that $L_{\delta} \cong G/N_{\delta}$ for $\delta = 1, 2$. Such a G is called a *witness*.

Problem

Given two (abstract) groups, how to determine their compatibility?

- 'Compatibility' \implies '?'
 - Same order.
 - Same multi-set of composition factors.
 - (Sims) Compatible groups have subnormal series whose factors are the same in the same order. (Say they have compatible subnormal series)

Definition

Two (abstract) groups L_1 and L_2 are *compatible* if $\exists G$ and $N_1 \cong N_2 \trianglelefteq G$ such that $L_{\delta} \cong G/N_{\delta}$ for $\delta = 1, 2$. Such a G is called a *witness*.

Problem

Given two (abstract) groups, how to determine their compatibility?

- 'Compatibility' \implies '?'
 - Same order.
 - Same multi-set of composition factors.
 - (Sims) Compatible groups have subnormal series whose factors are the same in the same order. (Say they have compatible subnormal series)
- '?' \implies 'Compatibility' (We will focus on this one in this talk)

Sufficient conditions of compatibility

If \exists two normal series

$$1 = N_0 \trianglelefteq \cdots \trianglelefteq N_n = L_1$$

and

$$1 = M_0 \trianglelefteq \cdots \trianglelefteq M_n = L_2$$

such that $N_{i+1}/N_i \cong M_{i+1}/M_i$, we say L_1 and L_2 have compatible normal series.

Sufficient conditions of compatibility

Theorem (Length 2)

 L_1 and L_2 have compatible normal series of length 2 \implies compatible.

Proof

 $\exists N_{\delta} \lhd L_{\delta} \text{ s.t. } N_1 \cong N_2 \text{ and } L_1/N_1 \cong L_2/N_2.$ Let $\sigma : L_1/N_1 \xrightarrow{\sim} L_2/N_2$, $\pi_{\delta} : L_{\delta} \rightarrow L_{\delta}/N_{\delta}$ canonical projection, and

$$G:=\{(x,y)\in L_1\times L_2\mid \sigma\circ\pi_1(x)=\pi_2(y)\}.$$

Note that $N_1 \times 1, 1 \times N_2 \leq G$. Also $G/(N_1 \times 1) \cong L_2$ and $G/(1 \times N_2) \cong L_1$. So G is a witness.

G is the inverse limit of the diagram:

$$L_1 \\ \downarrow^{\sigma \circ \pi_1} \\ L_2 \xrightarrow{\pi_2} L_2 / N_2$$

An example

S_4 and $C_2 \times A_4$ compatible.

 $1 \lhd A_4 \lhd S_4$ and $1 \lhd 1 \times A_4 \lhd C_2 \times A_4$ are compatible normal series of length 2.

An example

S_4 and $C_2 \times A_4$ compatible.

 $1 \lhd A_4 \lhd S_4$ and $1 \lhd 1 \times A_4 \lhd C_2 \times A_4$ are compatible normal series of length 2.

 $C_2 \times A_4$ and SL(2,3) compatible. $1 \lhd C_2 \times 1 \lhd C_2 \times A_4$ and $1 \lhd C_2 \lhd SL(2,3)$.

An example

S_4 and $C_2 \times A_4$ compatible.

 $1 \lhd A_4 \lhd S_4$ and $1 \lhd 1 \times A_4 \lhd C_2 \times A_4$ are compatible normal series of length 2.

 $C_2 \times A_4$ and SL(2,3) compatible. $1 \lhd C_2 \times 1 \lhd C_2 \times A_4$ and $1 \lhd C_2 \lhd SL(2,3)$.

 S_4 and SL(2,3) **NOT compatible.** They do not have any compatible subnormal series.

Definition

Let I be a poset. An inverse system over I consists of:

- (i) a group X_i , for each $i \in I$;
- (ii) an homomorphism $f_{ij}: X_j \to X_i$, for every $i \le j \in I$;

such that $f_{ii} = \operatorname{id}_{X_i}$ and $f_{ij} \circ f_{jk} = f_{ik}$ for $i \leq j \leq k \in I$.

Definition

Let I be a poset. An *inverse system* over I consists of:

(i) a group
$$X_i$$
, for each $i \in I$;

(ii) an homomorphism $f_{ij}: X_j \to X_i$, for every $i \le j \in I$;

such that $f_{ii} = \operatorname{id}_{X_i}$ and $f_{ij} \circ f_{jk} = f_{ik}$ for $i \leq j \leq k \in I$.

Example. $I = (\{a, b, c\}, \leq), c \leq a \text{ and } c \leq b$. An inverse system over I is as follows

Definition Let $((X_i), (f_{ij}))$ be an inverse system over *I*. Define $\varprojlim(X_i) := \{(x_i) \in \prod_{i \in I} X_i \mid \forall i \le j \in I, f_{ij}(x_j) = x_i\}.$

Example. $G := \{(x, y, z) \in X_a \times X_b \times X_c \mid f_{ca}(x) = f_{cb}(y) = z\}$ is the limit of

Definition

Let $((X_i), (f_{ij}))$ an inverse system.

- Subsystem $((Y_i), (g_{ij}))$: an inverse system s.t. $Y_i \le X_i$, $f_{ij}(Y_j) = Y_i \& g_{ij} := f_{ij}|_{Y_j}$.
- Normal subsystem: $\forall Y_i, Y_i \lhd X_i$.
- Quotient system: $((X_i/Y_i), (\bar{f}_{ij})).$

Definition

Let $((X_i), (f_{ij}))$ an inverse system.

- Subsystem $((Y_i), (g_{ij}))$: an inverse system s.t. $Y_i \le X_i$, $f_{ij}(Y_j) = Y_i \& g_{ij} := f_{ij}|_{Y_j}$.
- Normal subsystem: $\forall Y_i, Y_i \lhd X_i$.
- Quotient system: $((X_i/Y_i), (\bar{f}_{ij})).$

Proposition

- If (Y_i) is subsystem of (X_i) , $\varprojlim(Y_i) \leq \varprojlim(X_i)$.
- If (Y_i) is normal subsystem of (X_i) , $\varprojlim(Y_i) \trianglelefteq \varprojlim(X_i)$.
- $\lim_{X_i} ((X_i)/(Y_i)) \cong \lim_{X_i} (X_i)/\lim_{X_i} (Y_i).$

Definition

Let $((X_i), (f_{ij}))$ an inverse system.

- Subsystem $((Y_i), (g_{ij}))$: an inverse system s.t. $Y_i \le X_i$, $f_{ij}(Y_j) = Y_i \& g_{ij} := f_{ij}|_{Y_j}$.
- Normal subsystem: $\forall Y_i, Y_i \lhd X_i$.
- Quotient system: $((X_i/Y_i), (\bar{f}_{ij}))$.

Proposition

- If (Y_i) is subsystem of (X_i) , $\varprojlim(Y_i) \leq \varprojlim(X_i)$.
- If (Y_i) is normal subsystem of (X_i) , $\varprojlim(Y_i) \trianglelefteq \varprojlim(X_i)$.
- $\varprojlim((X_i)/(Y_i)) \cong \varprojlim(X_i)/\varprojlim(Y_i)$. (Not generally true.)

Proposition (Length 3)

Let $L_1 := A_{\cdot 1}B_{\cdot 1}C$ and $L_2 := A_{\cdot 2}B_{\cdot 2}C$. If $Inn(B_{\cdot 1}C)^B \leq (Aut(B_{\cdot 2}C)_B)^B$ and $Inn(B_{\cdot 2}C)^B \leq (Aut(B_{\cdot 1}C)_B)^B$, L_1 and L_2 compatible.

Proposition (Length 3)

Let $L_1 := A_{\cdot 1}B_{\cdot 1}C$ and $L_2 := A_{\cdot 2}B_{\cdot 2}C$. If $\text{Inn}(B_{\cdot 1}C)^B \leq (\text{Aut}(B_{\cdot 2}C)_B)^B$ and $\text{Inn}(B_{\cdot 2}C)^B \leq (\text{Aut}(B_{\cdot 1}C)_B)^B$, L_1 and L_2 compatible.

Sketch of proof.

Let n := |C|. Construct $G_{11} := A^n \cdot {}_1B \cdot {}_1C$, $G_{21} := A^n \cdot {}_2B \cdot {}_1C$, $G_{12} := A^n \cdot {}_1B \cdot {}_2C$, and $G_{22} := A^n \cdot {}_2B \cdot {}_2C$ s.t. $G_{11}/A^{n-1} \cong L_1$ and $G_{22}/A^{n-1} \cong L_2$.

Proposition (Length 3)

Let $L_1 := A_{\cdot 1}B_{\cdot 1}C$ and $L_2 := A_{\cdot 2}B_{\cdot 2}C$. If $\text{Inn}(B_{\cdot 1}C)^B \leq (\text{Aut}(B_{\cdot 2}C)_B)^B$ and $\text{Inn}(B_{\cdot 2}C)^B \leq (\text{Aut}(B_{\cdot 1}C)_B)^B$, L_1 and L_2 compatible.

Sketch of proof.

Let n := |C|. Construct $G_{11} := A^n \cdot {}_1B \cdot {}_1C$, $G_{21} := A^n \cdot {}_2B \cdot {}_1C$, $G_{12} := A^n \cdot {}_1B \cdot {}_2C$, and $G_{22} := A^n \cdot {}_2B \cdot {}_2C$ s.t. $G_{11}/A^{n-1} \cong L_1$ and $G_{22}/A^{n-1} \cong L_2$. Witness is the limit of

$$\begin{array}{c}
A^{n} \cdot _{1}B \cdot _{1}C \\
 & B \cdot _{1}C \\
A^{n} \cdot _{2}B \cdot _{1}C \\
 & A^{n} \cdot _{1}B \cdot _{2}C \\
A^{n} \cdot _{2}B_{2}C \\
\end{array}$$

Proposition (Current work)

Compatible normal series + extra hypothesis (\$) \implies Compatible.

Proposition (Current work)

Compatible normal series $+ \text{ extra hypothesis } (\$) \implies \text{Compatible}.$

Extra hypothesis (\$) Let $L_{\delta} := A_{1 \cdot \delta} A_{2 \cdot \delta} \cdots \cdot_{\delta} A_{\ell}$ for $\delta = 1, 2$. For $2 \le i \le \ell - 1$, $\operatorname{Inn}(A_{i \cdot 1} \cdots \cdot_{1} A_{\ell})^{A_{i}} \le (\operatorname{Aut}(A_{i \cdot 2} \cdots \cdot_{2} A_{\ell})_{A_{i}})^{A_{i}}$ and $\operatorname{Inn}(A_{i \cdot 2} \cdots \cdot_{2} A_{\ell})^{A_{i}} \le (\operatorname{Aut}(A_{i \cdot 1} \cdots \cdot_{1} A_{\ell})_{A_{i}})^{A_{i}}.$

Proposition (Current work)

Compatible normal series $+ \text{ extra hypothesis } (\$) \implies \text{Compatible}.$

Extra hypothesis (\$) Let $L_{\delta} := A_{1 \cdot \delta} A_{2 \cdot \delta} \cdots \cdot_{\delta} A_{\ell}$ for $\delta = 1, 2$. For $2 \le i \le \ell - 1$, $\operatorname{Inn}(A_{i \cdot 1} \cdots \cdot_{1} A_{\ell})^{A_{i}} \le (\operatorname{Aut}(A_{i \cdot 2} \cdots \cdot_{2} A_{\ell})_{A_{i}})^{A_{i}}$ and $\operatorname{Inn}(A_{i \cdot 2} \cdots \cdot_{2} A_{\ell})^{A_{i}} \le (\operatorname{Aut}(A_{i \cdot 1} \cdots \cdot_{1} A_{\ell})_{A_{i}})^{A_{i}}$.

Example. Compatible **central** series satisfy the extra hypothesis. $(Inn(A_{i\cdot\delta}\cdots ._{\delta}A_{\ell})|_{A_i} = 1.)$

Corollary

(i) All nilpotent groups of the same order are compatible to each other.

(ii) All groups of the same square-free order are compatible to each other.

1. Can we remove the extra hypothesis in previous proposition?

Conjecture

Compatible normal series \implies Compatible.

1. Can we remove the extra hypothesis in previous proposition?

Conjecture

Compatible normal series \implies Compatible.

2. It is hard to prove two groups are NOT compatible so far.

Example. A_4 and C_{12} . We are not able to determine their compatibility.

1. Can we remove the extra hypothesis in previous proposition?

Conjecture

Compatible normal series \implies Compatible.

2. It is hard to prove two groups are NOT compatible so far. **Example.** A_4 and C_{12} . We are not able to determine their compatibility.

Lemma (Sims)

Compatible \implies Compatible subnormal series.

1. Can we remove the extra hypothesis in previous proposition?

Conjecture

Compatible normal series \implies Compatible.

2. It is hard to prove two groups are NOT compatible so far. **Example.** A_4 and C_{12} . We are not able to determine their compatibility.

Lemma (Sims)

Compatible \implies Compatible subnormal series.

Conjecture

 $\mathsf{Compatible} \implies \mathsf{Compatible} \text{ normal series}.$

Proposition (Progress so far)

 L_1 and L_2 compatible + their composition factors are all non-abelian \implies L_1 and L_2 have compatible normal series.

3. Can we prove A_4 and C_{12} incompatible?

Proposition (Progress so far)

If A_4 and C_{12} have a witness G, then $|G| \ge 2^{10} \cdot 3$.

3. Can we prove A_4 and C_{12} incompatible?

Proposition (Progress so far)

If A_4 and C_{12} have a witness G, then $|G| \ge 2^{10} \cdot 3$.

4. Some other applications of inverse limits? e.g. Subdirect subgroups.

Thereom (Goursat's Lemma)

The subdirect subgroup of $G \times H$ is the inverse limit of

for some group C and surjective p, q.