The Product of a Finite Group And a Cyclic Group

Hao Yu
Capital Normal University
School of Mathematical Sciences

September 13, 2023

Factorizations of groups

Definition (Factorizations of groups)

- A group X is said to be properly factorizable if $X=G C$ for two proper subgroups G and C of X, while the expression $X=G C$ is called a factorization of X, and X is the product group of G and C.
- We say that X has an exact factorization if $G \cap C=1$.

Factorizations of groups

Factorizations of groups naturally arise from the well-known Frattini's argument, including its version in permutation groups.

Proposition (Frattini's argument)

Let X be a group acting transitively on a set Ω, G be a subgroup of X and X_{α} be a point stabilizer of X. If G acts transitively on Ω, then $X=G X_{\alpha}$.

Proposition (Lucchini)

If X is a transitive permutation group of degree n with a cyclic point-stabilizer, then $|X| \leq n(n-1)$.
G acts regularly on Ω if $G \cap X_{\alpha}=1$. A group G is said a Burnside group if every permutation group containing a regular subgroup isomorphic to G is either 2-transitive or imprimitive.

Factorizations of groups

Proposition (Burnside)

Every cyclic group of order of $p^{m}(m>1)$ is a Brunside group.

Proposition (Schur)

Every cyclic group of composite order is a Brunside group.

Proposition (H. Wielandt)

Every dihedral group is a Burnside group.

Proposition (Scott)

Every generalized quaternion group is a Burnside group.

Factorizations of groups

Proposition (Itô)

If X has a factorization $X=G C$ where both G and C are abelian subgroups of X, Then X is metabelian, that is X^{\prime} is abelian.

Proposition (Wielandt and Kegel)

The product of two nilpotent subgroups must be soluble.

Proposition (Douglas)

The product of two cyclic groups must be super-solvable.

Proposition (V. S. Monakhov)

The finite group $X=G C$ is solvable, where both G and C are subgroups with cyclic subgroups of index no more than 2.

Factorizations of groups

The factorizations of the finite almost simple groups were determined in M. W. Licheck, C. E. Prager and J. Saxl. The factorizations of almost simple groups with a solvable factor were determined in C.H. Li and B. Z. Xia.

Factorizations of groups

Set $Q=\left\langle a, b \mid a^{2 n}=1, b^{2}=a^{n}, a^{b}=a^{-1}\right\rangle \cong Q_{4 n}$,
$D=\left\langle a, b \mid a^{n}=b^{2}=1, a^{b}=a^{-1}\right\rangle \cong D_{2 n}$ and $C=\left\langle c \mid c^{m}=1\right\rangle$ where
$n \geq 2$. Let $G \in\{Q, D\}$. Then we have the following results.

Theorem

Suppose that $X=X(G)$ has an exact factorization $X=G C$. Let M be the subgroup of the biggest order in X such that $\langle c\rangle \leq M \subseteq\langle a\rangle\langle c\rangle$. Then one of items in the following table holds.

Table: The forms of M, M_{X} and X / M_{X}

Case	M	M_{X}	X / M_{X}
1	$\langle a\rangle\langle c\rangle$	$\langle a\rangle\langle c\rangle$	\mathbb{Z}_{2}
2	$\left\langle a^{2}\right\rangle\langle c\rangle$	$\left\langle a^{2}\right\rangle\left\langle c^{2}\right\rangle$	D_{8}
3	$\left\langle a^{2}\right\rangle\langle c\rangle$	$\left\langle a^{2}\right\rangle\left\langle c^{3}\right\rangle$	A_{4}
4	$\left\langle a^{3}\right\rangle\langle c\rangle$	$\left\langle a^{3}\right\rangle\left\langle c^{4}\right\rangle$	S_{4}
5	$\left\langle a^{4}\right\rangle\langle c\rangle$	$\left\langle a^{4}\right\rangle\left\langle c^{3}\right\rangle$	S_{4}

Factorizations of groups

Proposition

Let H be a subgroup of G. Then $N_{G}(H) / C_{G}(H)$ is isomorphic to a subgroup of Aut (H).

Using above theorem and proposition, we can get the following theorem:

Theorem

Let $G \in\{Q, D\}$ and $X=X(G)$, and M be defined as above. Then we have $\left\langle a^{2}, c\right\rangle \leq C_{X}\left(\langle c\rangle_{X}\right)$ and $\left|X: C_{X}\left(\langle c\rangle_{X}\right)\right| \leq 4$. Moreover, if $\langle c\rangle_{X}=1$, then $M_{X} \cap\left\langle a^{2}\right\rangle \triangleleft M_{X}$.

Skew product groups

- X is called a skew product group of G if X has an exact factorization $X=G C$ where C is a cyclic group and is core-free.
- Let $A=G .\langle t\rangle$, where $G \triangleleft A$, be a group and $t^{l}=g \in G$. Then t induces an automorphism τ of G by conjugacy. Recall that by the cyclic extension theory of groups, this extension is valid if and only if

$$
\tau^{l}=\operatorname{Inn}(g) \quad \text { and } \quad \tau(g)=g
$$

Skew product groups

Using Tabel 1 and Theorem 1.14, we get

Table: The forms of M, M_{X} and X / M_{X}

Case	M	M_{X}	X / M_{X}
1	$\langle a\rangle\langle c\rangle$	$\left(\left\langle a^{2}\right\rangle \rtimes\langle c\rangle\right) \cdot\langle a\rangle$	\mathbb{Z}_{2}
2	$\left\langle a^{2}\right\rangle\langle c\rangle$	$\left\langle a^{2}\right\rangle \rtimes\left\langle c^{2}\right\rangle$	D_{8}
3	$\left\langle a^{2}\right\rangle\langle c\rangle$	$\left\langle a^{2}\right\rangle \rtimes\left\langle c^{3}\right\rangle$	A_{4}
4	$\left\langle a^{3}\right\rangle\langle c\rangle$	$\left(\left\langle a^{6}\right\rangle\left\langle c^{4}\right\rangle\right) \cdot\left\langle a^{3}\right\rangle$	S_{4}
5	$\left\langle a^{4}\right\rangle\langle c\rangle$	$\left\langle a^{4}\right\rangle \rtimes\left\langle c^{3}\right\rangle$	S_{4}

$G=Q$ and $M=\langle a\rangle\langle c\rangle$

Suppose that $X=X(Q), M=\langle a\rangle\langle c\rangle$ and $\langle c\rangle_{X}=1$. Set $R:=\left\{a^{2 n}=c^{m}=1, b^{2}=a^{n}, a^{b}=a^{-1}\right\}$. Then

$$
\begin{aligned}
X & =\left(\left(\left\langle a^{2}\right\rangle \rtimes\langle c\rangle\right) \cdot\langle a\rangle\right) \cdot\langle b\rangle \\
& =\left\langle a, b, c \mid R,\left(a^{2}\right)^{c}=a^{2 r}, c^{a}=a^{2 s} c^{t}, c^{b}=a^{u} c^{v}\right\rangle
\end{aligned}
$$

where $r^{t-1} \equiv r^{v-1} \equiv 1(\bmod n), t^{2} \equiv 1(\bmod m)$,
$2 s \sum_{l=1}^{t} r^{l}+2 s r \equiv 2 s r+2 s \sum_{l=1}^{v} r^{l}-u \sum_{l=1}^{t} r^{l}+u r \equiv 2(1-r)(\bmod 2 n)$, $2 s \sum_{l=1}^{w} r^{l} \equiv u \sum_{l=1}^{w}\left(1-s\left(\sum_{l=1}^{t} r^{l}+r\right)\right)^{l} \equiv 0(\bmod 2 n) \Leftrightarrow w \equiv 0(\bmod m)$, and moreover, if $2 \mid n$, then $u\left(\sum_{l=0}^{v-1} r^{l}-1\right) \equiv 0(\bmod 2 n)$ and $v^{2} \equiv 1(\bmod m)$; if $2 \nmid n$, then
$u \sum_{l=1}^{v} r^{l}-u r \equiv 2 s r+(n-1)(1-r)(\bmod 2 n)$ and $v^{2} \equiv t(\bmod m)$; and if $t \neq 1$, then u is even.

$G=Q$ and $M=\left\langle a^{2}\right\rangle\langle c\rangle$

Suppose that $X=X(Q), M=\left\langle a^{2}\right\rangle\langle c\rangle, X / M_{X} \cong D_{8}$ and $\langle c\rangle_{X}=1$. Set $R:=\left\{a^{2 n}=c^{m}=1, b^{2}=a^{n}, a^{b}=a^{-1}\right\}$. Then

$$
\begin{aligned}
X= & \left(\left(\left(\left\langle a^{2}\right\rangle \rtimes\left\langle c^{2}\right\rangle\right) \cdot\langle a\rangle\right) \cdot\langle b\rangle\right) \cdot\langle c\rangle \\
= & \langle a, b, c| R,\left(a^{2}\right)^{c^{2}}=a^{2 r},\left(c^{2}\right)^{a}=a^{2 s} c^{2 t} \\
& \left.\left(c^{2}\right)^{b}=a^{2 u} c^{2}, a^{c}=b c^{2 w}\right\rangle
\end{aligned}
$$

where either $w=0$ and $r=s=t=u=1$; or
$w \neq 0, s=u^{2} \sum_{l=0}^{w-1} r^{l}+\frac{u n}{2}, t=2 w u+1$, $r^{2 w}-1 \equiv\left(u \sum_{l=1}^{w} r^{l}+\frac{n}{2}\right)^{2}-r \equiv 0(\bmod n)$,
$s \sum_{l=1}^{t} r^{l}+s r \equiv 2 s r-u \sum_{l=1}^{t} r^{l}+u r \equiv 1-r(\bmod n)$,
$2 w(1+u w) \equiv n w \equiv 2 w(r-1) \equiv 0\left(\bmod \frac{m}{2}\right)$ and
$2^{\frac{1+(-1)^{u}}{2}} \sum_{l=1}^{i} r^{l} \equiv 0(\bmod n) \Leftrightarrow i \equiv 0\left(\bmod \frac{m}{2}\right)$.

$G=Q$ and $M=\left\langle a^{2}\right\rangle\langle c\rangle$

Suppose that $X=X(Q), M=\left\langle a^{2}\right\rangle\langle c\rangle, X / M_{X} \cong A_{4}$ and $\langle c\rangle_{X}=1$. Set $R:=\left\{a^{2 n}=c^{m}=1, b^{2}=a^{n}, a^{b}=a^{-1}\right\}$. Then

$$
\begin{aligned}
X= & \left(\left(\left(\left\langle a^{2}\right\rangle \rtimes\left\langle c^{3}\right\rangle\right) \cdot\langle a\rangle\right) \cdot\langle b\rangle\right) \cdot\langle c\rangle \\
= & \langle a, b, c| R,\left(a^{2}\right)^{c}=a^{2 r},\left(c^{3}\right)^{a}=a^{2 s} c^{3},\left(c^{3}\right)^{b}=a^{2 u} c^{3}, \\
& \left.a^{c}=b c^{\frac{i m}{2}}, b^{c}=a^{x} b\right\rangle,
\end{aligned}
$$

where $n \equiv 2(\bmod 4)$ and either
(1) $i=s=u=0, r=x=1$; or
(2) $i=1,6 \mid m, r^{\frac{m}{2}} \equiv-1(\bmod n)$ with $\mathrm{o}(r)=m$, $s \equiv \frac{r^{-3}-1}{2}+\frac{n}{2}(\bmod n), u \equiv \frac{r^{3}-1}{2 r^{2}}+\frac{n}{2}(\bmod n)$, $x \equiv-r+r^{2}+\frac{n}{2}(\bmod n)$.

$G=Q$ and $M=\left\langle a^{3}\right\rangle\langle c\rangle$

Suppose that $X=X(Q), M=\left\langle a^{3}\right\rangle\langle c\rangle, X / M_{X} \cong S_{4}$ and $\langle c\rangle_{X}=1$.

Theorem

$\left\langle a^{3}\right\rangle \triangleleft X$.

Set $R:=\left\{a^{2 n}=c^{m}=1, b^{2}=a^{n}, a^{b}=a^{-1}\right\}$. Then

$$
\begin{aligned}
X & =\left(\left(\left(\left\langle a^{3}\right\rangle \rtimes\left\langle c^{2}\right\rangle\right) \cdot\langle b\rangle\right) \cdot\langle a\rangle\right) \cdot\langle c\rangle \\
& =\left\langle a, b, c \mid R, a^{c^{4}}=a^{r}, b^{c^{4}}=a^{1-r} b,\left(a^{3}\right)^{\frac{m}{4}}=a^{-3}, a^{c^{\frac{m}{4}}}=b c^{\frac{3 m}{4}}\right\rangle,
\end{aligned}
$$

where $m \equiv 4(\bmod 8)$ and r is of order $\frac{m}{4}$ in $\mathbb{Z}_{2 n}^{*}$.

$G=Q$ and $M=\left\langle a^{4}\right\rangle\langle c\rangle$

Suppose that $X=X(Q), M=\left\langle a^{4}\right\rangle\langle c\rangle, X / M_{X} \cong S_{4}$ and $\langle c\rangle_{X}=1$. Set $R:=\left\{a^{2 n}=c^{m}=1, b^{2}=a^{n}, a^{b}=a^{-1}\right\}$. Then

$$
\begin{aligned}
X= & \left(\left(\left\langle a^{2}, b\right\rangle\left\langle c^{3}\right\rangle\right) \cdot\langle c\rangle\right) \cdot\langle a\rangle \\
= & \langle a, b, c| R,\left(a^{4}\right)^{c}=a^{4 r},\left(c^{3}\right)^{a^{2}}=a^{4 s} c^{3} \\
& \left.\left(c^{3}\right)^{b}=a^{4 u} c^{3},\left(a^{2}\right)^{c}=b c^{\frac{i m}{2}}, b^{c}=a^{2 x} b, c^{a}=a^{2(1+2 z)} c^{1+\frac{j m}{3}}\right\rangle
\end{aligned}
$$

where either
(1) $i=0, r=j=1, x=3, s=u=z=0$; or
(2) $i=1, n \equiv 4(\bmod 8), 6 \mid m, r^{\frac{m}{2}} \equiv-1\left(\bmod \frac{n}{2}\right), \mathrm{o}(r)=m$,
$s \equiv \frac{r^{-3}-1}{2}+\frac{n}{4}\left(\bmod \frac{n}{2}\right)$,
$u \equiv \frac{r^{3}-1}{2 r^{2}}+\frac{n}{4}\left(\bmod \frac{n}{2}\right), x \equiv-r+r^{2}+\frac{n}{4}\left(\bmod \frac{n}{2}\right)$,
$1+2 z \equiv \frac{1-r}{2 r}\left(\bmod \frac{n}{2}\right), j \in\{1,2\}$.

$G=D$

Theorem

Let $G=D$ and $X=X(D)=G\langle c\rangle$, where $m=\mathrm{o}(c) \geq 2, G \cap\langle c\rangle=1$ and $\langle c\rangle_{X}=1$. Set $R:=\left\{a^{n}=b^{2}=c^{m}=1, a^{b}=a^{-1}\right\}$. Then one of following holds:
(1) $X=\left\langle a, b, c \mid R,\left(a^{2}\right)^{c}=a^{2 r}, c^{a}=a^{2 s} c^{t}, c^{b}=a^{u} c^{v}\right\rangle$,
(2) $X=\langle a, b, c| R,\left(a^{2}\right)^{c^{2}}=a^{2 r},\left(c^{2}\right)^{b}=a^{2 s} c^{2},\left(c^{2}\right)^{a}=a^{2 u} c^{2 v}, a^{c}=$ $\left.b c^{2 w}\right\rangle$,
(3) $X=\left\langle a, b, c \mid R, a^{c^{3}}=a^{r},\left(c^{3}\right)^{b}=a^{2 u} c^{3}, a^{c}=b c^{\frac{i m}{2}}, b^{c}=a^{x} b\right\rangle$,
(4) $X=\langle a, b, c| R,\left(a^{2}\right)^{c^{3}}=a^{2 r},\left(c^{3}\right)^{b}=a^{\frac{2\left(l^{3}-1\right)}{l^{2}}} c^{3},\left(a^{2}\right)^{c}=b c^{\frac{i m}{2}}, b^{c}=$ $\left.a^{2\left(-l+l^{2}+\frac{n}{4}\right)} b, c^{a}=a^{2+4 z} c^{2+3 d}\right\rangle$,
(5) $X=\left\langle a, b, c \mid R, a^{c^{4}}=a^{r}, b^{c^{4}}=a^{1-r} b,\left(a^{3}\right)^{c^{\frac{m}{4}}}=a^{-3}, a^{c^{\frac{m}{4}}}=b c^{\frac{3 m}{4}}\right\rangle$, where the above parameters meet certain conditions.

G is a p-group.

Theorem

Let $X=G C$ be a group, where G is a p-group and C is a cyclic group such that $G \cap C=1$. Set $C=C_{1} \times C_{2}$, where C_{1} is the Sylow p-subgroup of C. If $C_{X}=1$, then $F(X)=O_{p}(X)=G_{1} C_{1}$, where $G_{1}=O_{p}(X) \cap G \neq 1$ and $G_{1} C_{1} \rtimes C_{2} \triangleleft X$.

G is an abelian p-group.

Theorem

$F(X)$ is the Sylow p-subgroup of X.

Theorem
 If $X=\langle g, \sigma\rangle$ where $g \in G \cong \mathbb{Z}_{p}^{n}$ and $C=\langle\sigma\rangle$, then $X \leq \operatorname{AGL}(n, p)$.

G is a maximal class 2-group.

> Theorem
> Let $X=G C$ be a group, where C is a cyclic group, and suppose that G is a maximal class 2-group and $|G|=2^{n} \geq 32$. Assume that $G \cap C=1$ and that $C_{X}=1$. Then X is a 2 -group.

Theorem

Let $X=G C$ be a 2-group, where G is a maximal class group, C is a cyclic group and $G \cap C=1$. If $C_{X}=1$, then G_{X} is $\left\langle a_{0}\right\rangle,\left\langle a^{2}, b\right\rangle$ or G.

G is a maximal class 2-group.

Theorem

Let $X=G C$ be a 2-group, where G is a maximal class group, C is a cyclic group and $G \cap C=1$. Set R is the defined relation of G. Then X is isomorphic to one of the following groups:
(1) $X=\left\langle a, b, c \mid R, a^{c}=a^{r}, b^{c}=a^{s} b\right\rangle$, where $r^{2^{m}} \equiv 1\left(2^{n-1}\right)$, and $r^{2^{m-1}} \not \equiv 1\left(2^{n-1}\right)$ or $s \frac{r^{2^{m-1}}-1}{r-1} \not \equiv 0\left(2^{n-1}\right)$. Moreover, if G is a semidihedral 2-groups, then $2 \mid s$;
(2) $X=\left\langle a, b, c \mid R,\left(a^{2}\right)^{c^{2}}=a^{2},\left(c^{2}\right)^{a}=a^{2 s} c^{-2},\left(c^{2}\right)^{b}=a^{2 u} c^{2}, a^{c}=b c^{2 y}\right\rangle$, where $s y \equiv 1+i 2^{n-3}\left(\bmod 2^{n-2}\right)$ and $y u \equiv-1\left(\bmod 2^{n-3}\right), i=1$ if G is a generalized quaternion group and $i=0$ if G is either a dihedral group or a semidihedral group.

G is a maximal class 2-group.

Continue

(3) $X=\left\langle a, b, c \mid R,\left(a^{2}\right)^{c}=a^{2 r}, c^{b}=a^{2 s} c, c^{a}=a^{2 t} b^{u} c^{v}\right\rangle$, where $r^{2^{m}} \equiv 1\left(\bmod 2^{n-2}\right), s \sum_{l=1}^{2^{m}} r^{l} \equiv 0\left(\bmod 2^{n-2}\right)$, either
(3.1) $u=0, r^{v-1} \equiv 1\left(\bmod 2^{n-2}\right)$,
$(s+2 t) r \equiv(1-r)+s \sum_{l=1}^{v} r^{l}\left(\bmod 2^{n-2}\right), t \sum_{l=1}^{2^{m}} r^{l} \equiv$
$0\left(\bmod 2^{n-2}\right), v^{2} \equiv 1\left(\bmod 2^{m}\right)$ and $1-r \equiv t r+t \sum_{l=1}^{v} r^{l}\left(\bmod 2^{n-2}\right)$; or
(3.2) $u=1, r^{v-1}+1 \equiv 0\left(\bmod 2^{n-2}\right),(s r+1-r) \sum_{l=0}^{v-1} r^{l} \equiv$
$(s+2 t+1) r\left(\bmod 2^{n-1}\right),\left(t\left(1-r^{-1}\right)+s \sum_{l=0}^{v-1} r^{l}\right) \sum_{l=0}^{2^{m-1}-1} r^{2 l} \equiv$ $0\left(\bmod 2^{n-2}\right), r^{2}\left[t\left(1-r^{-1}\right)+s \frac{r^{v}-1}{r-1}\right] \frac{r^{v-1}-1}{r^{2}-1}+2^{n-3} i \equiv 0\left(2^{n-2}\right)$.

End

Thanks!

