The Product of a Finite Group And a Cyclic Group

Hao Yu Capital Normal University School of Mathematical Sciences

September 13, 2023

Hao Yu (CNU)

The Product of a Finite Group And a Se

September 13, 2023

Definition (Factorizations of groups)

- A group X is said to be properly factorizable if X = GC for two proper subgroups G and C of X, while the expression X = GC is called a factorization of X, and X is the product group of G and C.
- We say that X has an exact factorization if $G \cap C = 1$.

Hao Yu (CNU)

The Product of a Finite Group And a September 13, 2023

23 2 / 2

Factorizations of groups

Factorizations of groups naturally arise from the well-known Frattini's argument, including its version in permutation groups.

Proposition (Frattini's argument)

Let X be a group acting transitively on a set Ω , G be a subgroup of X and X_{α} be a point stabilizer of X. If G acts transitively on Ω , then $X = GX_{\alpha}$.

Proposition (Lucchini)

If X is a transitive permutation group of degree n with a cyclic point-stabilizer, then $|X| \leq n(n-1)$.

G acts regularly on Ω if $G \cap X_{\alpha} = 1$. A group G is said a Burnside group if every permutation group containing a regular subgroup isomorphic to G is either 2-transitive or imprimitive.

Proposition (Burnside)

Every cyclic group of order of p^m (m > 1) is a Brunside group.

Proposition (Schur)

Every cyclic group of composite order is a Brunside group.

Proposition (H. Wielandt)

Every dihedral group is a Burnside group.

Proposition (Scott)

 $\label{eq:every_generalized} Every\ generalized\ quaternion\ group\ is\ a\ Burnside\ group.$

Hao Yu (CNU)

The Product of a Finite Group And a

September 13, 2023

Proposition (Itô)

If X has a factorization X = GC where both G and C are abelian subgroups of X, Then X is metabelian, that is X' is abelian.

Proposition (Wielandt and Kegel)

The product of two nilpotent subgroups must be soluble.

Proposition (Douglas)

The product of two cyclic groups must be super-solvable.

Proposition (V. S. Monakhov)

The finite group X = GC is solvable, where both G and C are subgroups with cyclic subgroups of index no more than 2.

Hao Yu (CNU)

September 13, 2023

4 E b

The factorizations of the finite almost simple groups were determined in M. W. Licheck, C. E. Prager and J. Saxl. The factorizations of almost simple groups with a solvable factor were determined in C.H. Li and B. Z. Xia.

Factorizations of groups

Set
$$Q = \langle a, b \mid a^{2n} = 1, b^2 = a^n, a^b = a^{-1} \rangle \cong Q_{4n},$$

 $D = \langle a, b \mid a^n = b^2 = 1, a^b = a^{-1} \rangle \cong D_{2n}$ and $C = \langle c \mid c^m = 1 \rangle$ where $n \ge 2$. Let $G \in \{Q, D\}$. Then we have the following results.

Theorem

Suppose that X = X(G) has an exact factorization X = GC. Let M be the subgroup of the biggest order in X such that $\langle c \rangle \leq M \subseteq \langle a \rangle \langle c \rangle$. Then one of items in the following table holds.

Table: The forms of M, M_X and X/M_X

Case	M	M_X	X/M_X
1	$\langle a \rangle \langle c \rangle$	$\langle a \rangle \langle c \rangle$	\mathbb{Z}_2
$\mathcal{2}$	$\langle a^2 \rangle \langle c \rangle$	$\langle a^2 \rangle \langle c^2 \rangle$	D_8
3	$\langle a^2 \rangle \langle c \rangle$	$\langle a^2 \rangle \langle c^3 \rangle$	A_4
4	$\langle a^3 \rangle \langle c \rangle$	$\langle a^3 \rangle \langle c^4 \rangle$	S_4
5	$\langle a^4 \rangle \langle c \rangle$	$\langle a^4 \rangle \langle c^3 \rangle$	S_4

Proposition

Let H be a subgroup of G. Then $N_G(H)/C_G(H)$ is isomorphic to a subgroup of Aut (H).

Using above theorem and proposition, we can get the following theorem:

Theorem

Let $G \in \{Q, D\}$ and X = X(G), and M be defined as above. Then we have $\langle a^2, c \rangle \leq C_X(\langle c \rangle_X)$ and $|X : C_X(\langle c \rangle_X)| \leq 4$. Moreover, if $\langle c \rangle_X = 1$, then $M_X \cap \langle a^2 \rangle \triangleleft M_X$.

Hao Yu (CNU)

September 13, 2023

- X is called a skew product group of G if X has an exact factorization X = GC where C is a cyclic group and is core-free.
- Let $A = G.\langle t \rangle$, where $G \triangleleft A$, be a group and $t^l = g \in G$. Then t induces an automorphism τ of G by conjugacy. Recall that by the cyclic extension theory of groups, this extension is valid if and only if

$$\tau^l = \operatorname{Inn}(g) \quad \text{and} \quad \tau(g) = g.$$

Hao Yu (CNU)

Using Tabel 1 and Theorem 1.14, we get

Case	M	M_X	X/M_X
1	$\langle a \rangle \langle c \rangle$	$(\langle a^2 \rangle \rtimes \langle c \rangle).\langle a \rangle$	\mathbb{Z}_2
2	$\langle a^2 \rangle \langle c \rangle$	$\langle a^2 \rangle \rtimes \langle c^2 \rangle$	D_8
3	$\langle a^2 \rangle \langle c \rangle$	$\langle a^2 \rangle \rtimes \langle c^3 \rangle$	A_4
4	$\langle a^3 \rangle \langle c \rangle$	$(\langle a^6 \rangle \langle c^4 \rangle). \langle a^3 \rangle$	S_4
5	$\langle a^4 \rangle \langle c \rangle$	$\langle a^4 \rangle \rtimes \langle c^3 \rangle$	S_4

Table: The forms of M, M_X and X/M_X

Suppose that X = X(Q), $M = \langle a \rangle \langle c \rangle$ and $\langle c \rangle_X = 1$. Set $R := \{a^{2n} = c^m = 1, b^2 = a^n, a^b = a^{-1}\}$. Then

$$\begin{array}{rcl} X &=& ((\langle a^2 \rangle \rtimes \langle c \rangle).\langle a \rangle).\langle b \rangle \\ &=& \langle a,b,c | R, (a^2)^c = a^{2r}, c^a = a^{2s}c^t, c^b = a^u c^v \rangle, \end{array}$$

where $r^{t-1} \equiv r^{v-1} \equiv 1 \pmod{n}$, $t^2 \equiv 1 \pmod{m}$, $2s \sum_{l=1}^{t} r^l + 2sr \equiv 2sr + 2s \sum_{l=1}^{v} r^l - u \sum_{l=1}^{t} r^l + ur \equiv 2(1-r) \pmod{2n}$, $2s \sum_{l=1}^{w} r^l \equiv u \sum_{l=1}^{w} (1-s(\sum_{l=1}^{t} r^l + r))^l \equiv 0 \pmod{2n} \Leftrightarrow w \equiv 0 \pmod{m}$, and moreover, if $2 \mid n$, then $u(\sum_{l=0}^{v-1} r^l - 1) \equiv 0 \pmod{2n}$ and $v^2 \equiv 1 \pmod{m}$; if $2 \nmid n$, then $u \sum_{l=1}^{v} r^l - ur \equiv 2sr + (n-1)(1-r) \pmod{2n}$ and $v^2 \equiv t \pmod{m}$; and if $t \neq 1$, then u is even.

Hao Yu (CNU)

B A B A B AQA

Suppose that X = X(Q), $M = \langle a^2 \rangle \langle c \rangle$, $X/M_X \cong D_8$ and $\langle c \rangle_X = 1$. Set $R := \{a^{2n} = c^m = 1, b^2 = a^n, a^b = a^{-1}\}$. Then

$$X = (((\langle a^2 \rangle \rtimes \langle c^2 \rangle).\langle a \rangle).\langle b \rangle).\langle c \rangle$$

= $\langle a, b, c | R, (a^2)^{c^2} = a^{2r}, (c^2)^a = a^{2s}c^{2t},$
 $(c^2)^b = a^{2u}c^2, a^c = bc^{2w}\rangle,$

where either
$$w = 0$$
 and $r = s = t = u = 1$; or
 $w \neq 0, s = u^2 \sum_{l=0}^{w-1} r^l + \frac{un}{2}, t = 2wu + 1,$
 $r^{2w} - 1 \equiv (u \sum_{l=1}^{w} r^l + \frac{n}{2})^2 - r \equiv 0 \pmod{n},$
 $s \sum_{l=1}^{t} r^l + sr \equiv 2sr - u \sum_{l=1}^{t} r^l + ur \equiv 1 - r \pmod{n},$
 $2w(1 + uw) \equiv nw \equiv 2w(r - 1) \equiv 0 \pmod{\frac{m}{2}}$ and
 $2^{\frac{1+(-1)^u}{2}} \sum_{l=1}^{i} r^l \equiv 0 \pmod{n} \Leftrightarrow i \equiv 0 \pmod{\frac{m}{2}}.$

Hao Yu (CNU)

Suppose that X = X(Q), $M = \langle a^2 \rangle \langle c \rangle$, $X/M_X \cong A_4$ and $\langle c \rangle_X = 1$. Set $R := \{a^{2n} = c^m = 1, b^2 = a^n, a^b = a^{-1}\}$. Then

$$\begin{array}{rcl} X &=& (((\langle a^2 \rangle \rtimes \langle c^3 \rangle).\langle a \rangle).\langle b \rangle).\langle c \rangle \\ &=& \langle a,b,c | R, (a^2)^c = a^{2r}, (c^3)^a = a^{2s}c^3, (c^3)^b = a^{2u}c^3, \\ &a^c = bc^{\frac{im}{2}}, b^c = a^x b \rangle, \end{array}$$

where $n \equiv 2 \pmod{4}$ and either

(1)
$$i = s = u = 0, r = x = 1;$$
 or
(2) $i = 1, 6 \mid m, r^{\frac{m}{2}} \equiv -1 \pmod{n}$ with $o(r) = m,$
 $s \equiv \frac{r^{-3}-1}{2} + \frac{n}{2} \pmod{n}, u \equiv \frac{r^{3}-1}{2r^{2}} + \frac{n}{2} \pmod{n},$
 $x \equiv -r + r^{2} + \frac{n}{2} \pmod{n}.$

Hao Yu (CNU)

(王) 王

$$G = Q$$
 and $M = \langle a^3 \rangle \langle c \rangle$

Suppose that X = X(Q), $M = \langle a^3 \rangle \langle c \rangle$, $X/M_X \cong S_4$ and $\langle c \rangle_X = 1$.

Theorem $\langle a^3 \rangle \lhd X.$

Set
$$R := \{a^{2n} = c^m = 1, b^2 = a^n, a^b = a^{-1}\}$$
. Then

$$\begin{array}{lll} X & = & (((\langle a^3 \rangle \rtimes \langle c^2 \rangle).\langle b \rangle).\langle a \rangle).\langle c \rangle \\ & = & \langle a,b,c | R, a^{c^4} = a^r, b^{c^4} = a^{1-r}b, (a^3)^{c^{\frac{m}{4}}} = a^{-3}, a^{c^{\frac{m}{4}}} = bc^{\frac{3m}{4}} \rangle, \end{array}$$

where $m \equiv 4 \pmod{8}$ and r is of order $\frac{m}{4}$ in \mathbb{Z}_{2n}^* .

Hao Yu (CNU)

(日) 日

$$G = Q$$
 and $M = \langle a^4 \rangle \langle c \rangle$

Suppose that X = X(Q), $M = \langle a^4 \rangle \langle c \rangle$, $X/M_X \cong S_4$ and $\langle c \rangle_X = 1$. Set $R := \{a^{2n} = c^m = 1, b^2 = a^n, a^b = a^{-1}\}$. Then

$$\begin{array}{lll} X & = & ((\langle a^2, b \rangle \langle c^3 \rangle). \langle c \rangle). \langle a \rangle \\ & = & \langle a, b, c | R, (a^4)^c = a^{4r}, (c^3)^{a^2} = a^{4s}c^3, \\ & & (c^3)^b = a^{4u}c^3, (a^2)^c = bc^{\frac{im}{2}}, b^c = a^{2x}b, c^a = a^{2(1+2z)}c^{1+\frac{jm}{3}} \rangle, \end{array}$$

where either

(1)
$$i = 0, r = j = 1, x = 3, s = u = z = 0$$
; or
(2) $i = 1, n \equiv 4 \pmod{8}, 6 \mid m, r^{\frac{m}{2}} \equiv -1 \pmod{\frac{n}{2}}, o(r) = m,$
 $s \equiv \frac{r^{-3}-1}{2r} + \frac{n}{4} \pmod{\frac{n}{2}},$
 $u \equiv \frac{r^{3}-1}{2r^{2}} + \frac{n}{4} \pmod{\frac{n}{2}}, x \equiv -r + r^{2} + \frac{n}{4} \pmod{\frac{n}{2}},$
 $1 + 2z \equiv \frac{1-r}{2r} \pmod{\frac{n}{2}}, j \in \{1, 2\}.$

Hao Yu (CNU)

▲ 王 ▶ 王 • • • • •

Let G = D and $X = X(D) = G\langle c \rangle$, where $m = o(c) \ge 2$, $G \cap \langle c \rangle = 1$ and $\langle c \rangle_X = 1$. Set $R := \{a^n = b^2 = c^m = 1, a^b = a^{-1}\}$. Then one of following holds:

(1)
$$X = \langle a, b, c | R, (a^2)^c = a^{2r}, c^a = a^{2s}c^t, c^b = a^u c^v \rangle,$$

(2)
$$X = \langle a, b, c | R, (a^2)^{c^2} = a^{2r}, (c^2)^b = a^{2s}c^2, (c^2)^a = a^{2u}c^{2v}, a^c = bc^{2w} \rangle,$$

(3)
$$X = \langle a, b, c | R, a^{c^3} = a^r, (c^3)^b = a^{2u}c^3, a^c = bc^{\frac{im}{2}}, b^c = a^x b \rangle,$$

(4)
$$X = \langle a, b, c | R, (a^2)^{c^3} = a^{2r}, (c^3)^b = a^{\frac{2(l^2-1)}{l^2}}c^3, (a^2)^c = bc^{\frac{im}{2}}, b^c = a^{2(-l+l^2+\frac{n}{4})}b, c^a = a^{2+4z}c^{2+3d}\rangle,$$

(5)
$$X = \langle a, b, c | R, a^{c^4} = a^r, b^{c^4} = a^{1-r}b, (a^3)^{c^{\frac{m}{4}}} = a^{-3}, a^{c^{\frac{m}{4}}} = bc^{\frac{3m}{4}} \rangle,$$

where the above parameters meet certain conditions.

Hao Yu (CNU)

그는 소프는

3

Let X = GC be a group, where G is a p-group and C is a cyclic group such that $G \cap C = 1$. Set $C = C_1 \times C_2$, where C_1 is the Sylow p-subgroup of C. If $C_X = 1$, then $F(X) = O_p(X) = G_1C_1$, where $G_1 = O_p(X) \cap G \neq 1$ and $G_1C_1 \rtimes C_2 \triangleleft X$.

Hao Yu (CNU)

The Product of a Finite Group And a September 13, 2023 17 / 22

F(X) is the Sylow p-subgroup of X.

Theorem

If $X = \langle g, \sigma \rangle$ where $g \in G \cong \mathbb{Z}_p^n$ and $C = \langle \sigma \rangle$, then $X \leq \operatorname{AGL}(n, p)$.

Hao Yu (CNU)

The Product of a Finite Group And a September 13, 2023 18 / 22

3

Let X = GC be a group, where C is a cyclic group, and suppose that G is a maximal class 2-group and $|G| = 2^n \ge 32$. Assume that $G \cap C = 1$ and that $C_X = 1$. Then X is a 2-group.

Theorem

Let X = GC be a 2-group, where G is a maximal class group, C is a cyclic group and $G \cap C = 1$. If $C_X = 1$, then G_X is $\langle a_0 \rangle$, $\langle a^2, b \rangle$ or G.

Hao Yu (CNU)

Let X = GC be a 2-group, where G is a maximal class group, C is a cyclic group and $G \cap C = 1$. Set R is the defined relation of G. Then X is isomorphic to one of the following groups:

(1)
$$X = \langle a, b, c | R, a^c = a^r, b^c = a^s b \rangle$$
, where $r^{2^m} \equiv 1(2^{n-1})$, and $r^{2^{m-1}} \not\equiv 1(2^{n-1})$ or $s \frac{r^{2^{m-1}}-1}{r-1} \not\equiv 0(2^{n-1})$. Moreover, if G is a semidihedral 2-groups, then $2|s$;

(2)
$$X = \langle a, b, c | R, (a^2)^{c^2} = a^2, (c^2)^a = a^{2s}c^{-2}, (c^2)^b = a^{2u}c^2, a^c = bc^{2y} \rangle$$
,
where $sy \equiv 1 + i2^{n-3} \pmod{2^{n-2}}$ and $yu \equiv -1 \pmod{2^{n-3}}$, $i = 1$ if
G is a generalized quaternion group and $i = 0$ if G is either a
dihedral group or a semidihedral group.

Hao Yu (CNU)

Continue

$$\begin{array}{l} (3) \quad X = \langle a, b, c | R, (a^2)^c = a^{2r}, \, c^b = a^{2s}c, \, c^a = a^{2t}b^uc^v \rangle, \, \text{where} \\ r^{2^m} \equiv 1(\text{mod } 2^{n-2}), \, s \sum_{l=1}^{2^m} r^l \equiv 0(\text{mod } 2^{n-2}), \, \text{either} \\ (3.1) \quad u = 0, \, r^{v-1} \equiv 1(\text{mod } 2^{n-2}), \\ (s+2t)r \equiv (1-r) + s \sum_{l=1}^v r^l(\text{mod } 2^{n-2}), \, t \sum_{l=1}^{2^m} r^l \equiv \\ 0(\text{mod } 2^{n-2}), v^2 \equiv 1(\text{mod } 2^m) \, \text{and} \, 1 - r \equiv tr + t \sum_{l=1}^v r^l(\text{mod } 2^{n-2}); \\ \text{or} \\ (3.2) \quad u = 1, \, r^{v-1} + 1 \equiv 0(\text{mod } 2^{n-2}), \, (sr+1-r) \sum_{l=0}^{v-1} r^l \equiv \\ (s+2t+1)r(\text{mod } 2^{n-1}), \, (t(1-r^{-1}) + s \sum_{l=0}^{v-1} r^l) \sum_{l=0}^{2^{m-1}-1} r^{2l} \equiv \\ 0(\text{mod } 2^{n-2}), r^2[t(1-r^{-1}) + s \frac{r^{v-1}}{r^{-1}}] \frac{r^{v-1}-1}{r^{2}-1} + 2^{n-3}i \equiv 0(2^{n-2}). \end{array}$$

Hao Yu (CNU)

ъ

Dac

Thanks!

Hao Yu (CNU)

The Product of a Finite Group And a September 13, 2023 22 / 22

(日) (四) (三) (三) (三)

1

999