Elementary abelian subgroups and their local structure in classical groups

Meizheng Fu

• Motivation:

• Motivation:

Many open conjectures such as the McKay, Dade or Alperin Weight conjectures in the representation theory of finite groups can be studied by reducing to finite quasi-simple groups.

• Motivation:

Many open conjectures such as the McKay, Dade or Alperin Weight conjectures in the representation theory of finite groups can be studied by reducing to finite quasi-simple groups.

In such studies, *p***-radical subgroups** and their local structure play a critical role.

$$P_{\leq G} = P_{\perp}(N_{\leq}(R))$$

G = H = N_G(P) P = G • Every *p*-radical subgroup *R* of *G* with $O_p(G) \neq G$ is radical in some maximal-proper <u>*p*-local</u> subgroup of *G*.

- Every *p*-radical subgroup *R* of *G* with $O_p(G) \neq G$ is radical in some maximal-proper *p*-local subgroup *M* of *G*.
- Every M of G can be realized as the normalizer of an elementary abelian p-subgroup E.

- Every *p*-radical subgroup *R* of *G* with $O_p(G) \neq G$ is radical in some maximal-proper *p*-local subgroup *M* of *G*.
- Every M of G can be realized as the normalizer of an elementary abelian p-subgroup E.

p-radical subgroup
$$R \leq M = N_G E$$

- Every *p*-radical subgroup *R* of *G* with $O_p(G) \neq G$ is radical in some maximal-proper *p*-local subgroup *M* of *G*.
- Every M of G can be realized as the normalizer of an elementary abelian p-subgroup E.

p-radical subgroup $R \leq M = N_G(E)$

• So it is sensible to first classify the elementary abelian subgroups of *G*.

Classify in a linear algebraic group G

Classify in a linear algebraic group G.

Classify in a linear algebraic group G. Transfer the results to the finite group of Lie type G^F , he fixed point subgroup of G of the Steinberg endomorphism F. $C_{\text{GF}}(E_i)$ $N/C_{\text{CF}}(E_i).$

What has been done

By An, Dietrich and Litterick:

What has been done

E < Torus I < G

By An, Dietrich and Litterick:

1. classification and local structure of total **E** all of the simple algebraic groups

2. classification and local structure of nontoral E in an exceptional simple algebraic group

3. classification and local structure of E in finite exceptional \mathbf{X} groups of Lie type

By An, Dietrich and Litterick:

1. classification and local structure of toral E in *all* of the simple algebraic groups

2. classification and local structure of nontoral E in an exceptional simple algebraic group

3. classification and local structure of E in finite exceptional groups of Lie type

By Andersen et al.:

What has been done

By An, Dietrich and Litterick:

1. classification and local structure of toral E in *all* of the simple algebraic groups

2. classification and local structure of nontoral E in an exceptional simple algebraic group

3. classification and local structure of E in finite exceptional groups of Lie type

By Andersen et al.:

1. classification and local structure of *E* in the algebraic group $PGL_n(\mathbb{C})$ (Theorem 8.5)

Nontoral E	$C_G(E)$	$C_G(E)/C_G(E)^\circ$	$N_G(E)/C_G(E)$]
	$\overline{\Gamma}_1 \times \mathrm{PGL}_3(\mathbb{C})$	$\bar{\Gamma}_1$	$Sp_{2}(2)$]
$\bar{\Gamma}_1$	$\times (\mathrm{SL}_2(\mathbb{C}) \circ_2 T_1)$	$\bar{\Gamma}_1$	$\begin{pmatrix} \operatorname{Sp}_2(2) & 0\\ *_{1\times 2} & 1 \end{pmatrix} \cong S_4$	
$\overline{\Gamma}_1 \rightarrow 2$	$\bar{\Gamma}_1 \times T_2$	$\bar{\Gamma}_1$	$\begin{pmatrix} \operatorname{Sp}_2(2) & 0\\ *_{2\times 2} & S_3 \end{pmatrix}$	/
-0				

• an algorithm for the class distribution of nontoral *E* in $PGL_n(\mathbb{C})$

- an algorithm for the class distribution of nontoral *E* in $PGL_n(\mathbb{C})$
- classification and local structure of the **maximal nontoral** elementary abelian 2-subgroups in $PGL_n(q)$ for q a power of a prime ℓ where $\ell \equiv 1 \pmod{4}$.
- classification and local structure of the **nonmaximal nontoral** elementary abelian 2-subgroups in $PGL_n(q)$ for q a power of a prime ℓ where $\ell \equiv 1 \pmod{4}$.

• Here are some more details.

• Here are some more details.

k: $G = PGL_n(\mathbb{C}), n = 2^r k. r \ge 1 \text{ and } n \text{ is not a power of } 2.$

• Here are some more details.

 $G = PGL_n(\mathbb{C}), n = 2^r k. r \ge 1$ and *n* is not a power of 2.

The maximal nontoral 2-subgroups

• Here are some more details.

 $G = PGL_n(\mathbb{C}), n = 2^r k, r \ge 1$ and n is not a power of 2. The maximal nontoral 2-subgroups $E = \overline{\Gamma}_r \times 2^m, m = k - 1$ $C_G(E) = \left(\bar{\Gamma}_r \times T_m; \mathcal{N}_G(E) / C_G(E) = \left(\begin{array}{cc} \operatorname{Sp}_{2r}(2) & 0 \\ *_{m \times 2r} & S_{m+1} \end{array} \right) \cdot \mathbf{C} \times \mathbf{C}$ $G^F = PGL_n(q)$ for q a power of a prime ℓ where $\ell \equiv 1 \pmod{4}$ We see *F* centralizes Sp_ 0 F(n)cn =ncn $N_G(E)/C_G(E)^{\circ} \cong$ $*_{m \times 2r} \quad S_{m+1}$ two *F*-elasses in $N_G(E)/C_G(E)^\circ$ contained in $C_G(E)/C_G(E)^\circ \cong \overline{\Gamma}_r.$

Theorem

In $G = \text{PGL}_n(\mathbb{C})$ where $n = 2^r k$ and $r \ge 1$, let $E_1 = \overline{\Gamma}_r \times \overline{A}_{in}$ be a nontoral elementary abelian 2-subgroup and let $E_{max} = \overline{\Gamma}_r \times \overline{A}_{max}$ be a maximal nontoral elementary abelian 2-subgroup. Here \overline{A}_{max} , maximal toral in $\text{PGL}_k(\mathbb{C})$, has rank *m* where m = k - 1 and $\overline{A}_{in} < \overline{A}_{max}$.

There exists $U_1 \leq N_1$ such that $u \in N_G(E_1) \setminus C_G(E_1)$ for each nontrivial $u \in U_1$ and $U_1C_G(E_1)/C_G(E_1)$ is the subgroup U_{in} of $W_G(E_1)$.

Consequently, as is in the maximal nontoral case, $N_G(E_1)/C_G(E_1)^\circ$ is **centralised** by *F* for every nonmaximal nontoral elementary abelian 2-subgroup E_1 of *G* and for *q* a power of a prime ℓ where $\ell \equiv 1 \pmod{4}$.

We next descend to the finite groups.

Case 1. \bar{A} is nontrivial nonmaximal toral in $\mathrm{PGL}_k(\mathbb{C})$ with $C_{\mathrm{PGL}_k(\mathbb{C})}(\bar{A})$ connected.

Hence there are two *F*-classes of $N_G(E)/C_G(E)^\circ$ in $C_G(E)/C_G(E)^\circ$, and correspondingly, there are two G^F -conjugacy classes of elementary abelian 2-subgroups.

Theorem

For $n = 2^s \times t$ with gcd (2, t) = 1 and $s \ge 1$, the conjugacy classes of the toral elementary abelian 2-subgroups of $G = \text{PGL}_n(\mathbb{C})$ with disconnected centralisers have representatives $D = D_r \times \overline{A}$ for $1 \le r \le s$, $n = 2^r \times k$ and \overline{A} is trivial or a representative of a conjugacy class of the toral elementary abelian 2-subgroups of $\text{PGL}_k(\mathbb{C})$ with $C_{\text{PGL}_k(\mathbb{C})}(\overline{A})$ connected. And

There are three *F*-classes of $N_G(E)/C_G(E)^\circ$ in $C_G(E)/C_G(E)^\circ$ and correspondingly, there are three G^F -conjugacy classes of elementary abelian 2-subgroups.

An example of $PGL_6(\mathbb{C})$

- Extend the condition of q being a power of a prime ℓ where $\ell \equiv 1$ (mod 4) to $\ell \equiv 3 \pmod{4}$.
- Extend to the elementary abelian *p*-subgroups of classical groups of type A for <u>*p* odd.</u>

- Extend the condition of q being a power of a prime l where l ≡ 1 (mod 4) to l ≡ 3 (mod 4).
- Extend to the elementary abelian *p*-subgroups of classical groups of type *A* for *p* odd.
- Explore whether the above method can be applied to classify the elementary abelian 2-subgroups and the local structure in classical groups of type *C*; if not, then establish new methods to accomplish this.

- Extend the condition of q being a power of a prime l where l ≡ 1 (mod 4) to l ≡ 3 (mod 4).
- Extend to the elementary abelian *p*-subgroups of classical groups of type *A* for *p* odd.
- Explore whether the above method can be applied to classify the elementary abelian 2-subgroups and the local structure in classical groups of type *C*; if not, then establish new methods to accomplish this.
- Classify the elementary abelian *p*-subgroups and the local structure in classical groups of types *B* and *D*.

Thank you for listening!

/∰ ► < ≣ ►

э