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Why need to consider elementary abelian subgroups

Motivation:

Many open conjectures such as the McKay, Dade or Alperin
Weight conjectures in the representation theory of finite groups
can be studied by reducing to finite quasi-simple groups.

In such studies, p-radical subgroups and their local structure
play a critical role.
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Why need to consider elementary abelian subgroups

Every p-radical subgroup R of G with Op(G) , G is radical in
some maximal-proper p-local subgroup M of G.

Every M of G can be realized as the normalizer of an elementary
abelian p-subgroup E .

p-radical subgroup R 6 M = NG(E)

So it is sensible to first classify the elementary abelian subgroups
of G.
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How to classify E in finite groups

Approach by An, Dietrich and Litterick

Classify in a linear algebraic group G.
↓

Transfer the results to the finite group of Lie type GF , the fixed
point subgroup of G of the Steinberg endomorphism F.
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Proposition 4.2 (An, Dietrich and Litterick)

G, F, E 6 G, p , `.

Suppose E has a conjugate in GF . Replacing E by this conjugate, there is a
bijection:


GF -classes of

subgroups of GF

which are G-conjugate
to E

 ↔


F-classes in
NG(E)/CG(E)◦

contained in
CG(E)/CG(E)◦


. (1)
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What has been done

By An, Dietrich and Litterick:

1. classification and local structure of toral E in all of the simple
algebraic groups
2. classification and local structure of nontoral E in an
exceptional simple algebraic group
3. classification and local structure of E in finite exceptional
groups of Lie type
By Andersen et al.:

1. classification and local structure of E in the algebraic group
PGLn(C) (Theorem 8.5)
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Theorem 8.5 (Andersen et al.)

G = PGLn(C), n = pr k.

There is a one-to-one correspondence between the conjugacy classes of the
nontoral E of G, and the conjugacy classes of the toral Ā of PGLk (C):


nontoral E =

Γ̄r × Ā

in PGLn(C)

 ↔


toral
Ā

in PGLk (C)

 . (2)
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An example of PGL6(C)

Table: Nontoral elementary abelian 2-subgroups of G = PGL6(C)

Nontoral E CG(E) CG(E)/CG(E)◦ NG(E)/CG(E)
Γ̄1 Γ̄1 × PGL3(C) Γ̄1 Sp2(2)

Γ̄1 × 2 Γ̄1 × (SL2(C) ◦2 T1) Γ̄1

(
Sp2(2) 0
∗1×2 1

)
� S4

Γ̄1 × 22 Γ̄1 × T2 Γ̄1

(
Sp2(2) 0
∗2×2 S3

)
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What we have done

an algorithm for the class distribution of nontoral E in PGLn(C)

classification and local structure of the maximal nontoral
elementary abelian 2-subgroups in PGLn(q) for q a power of a
prime ` where ` ≡ 1 (mod 4).
classification and local structure of the nonmaximal nontoral
elementary abelian 2-subgroups in PGLn(q) for q a power of a
prime ` where ` ≡ 1 (mod 4).
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What we have done

Here are some more details.

G = PGLn(C), n = 2r k. r ≥ 1 and n is not a power of 2.
The maximal nontoral 2-subgroups

E = Γ̄r × 2m,m = k − 1

CG(E) = Γ̄r × Tm; NG(E)/CG(E) =
(
Sp2r (2) 0
∗m×2r Sm+1

)
.

——————————————————————————
GF = PGLn(q) for q a power of a prime ` where ` ≡ 1 (mod 4).
We see F centralizes

NG(E)/CG(E)◦ � Γ̄r .
(
Sp2r (2) 0
∗m×2r Sm+1

)
and there are two F-classes in NG(E)/CG(E)◦ contained in
CG(E)/CG(E)◦ � Γ̄r .
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What we have done

Nonmaximal nontoral

Let Emax = Γ̄r × Āmax be a maximal nontoral elementary abelian
2-subgroup of G where Āmax is maximal toral in PGLk(C) and has
rank m where m = k − 1. Let E1 = Γ̄r × Āin be a nontoral elementary
abelian 2-subgroup of G where Āin < Āmax . Here

NG(E1)/CG(E1)◦ =

Γ̄r × CPGLk (C)(Āin)/CPGLk (C)(Āin)◦.
(

Sp2r (2) 0
∗rk Āin×2r WPGLk (C)(Āin)

)
,

NG(Emax)/CG(Emax)◦ = Γ̄r .
(
Sp2r (2) 0
∗m×2r Sm+1

)
.
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What we have done

Theorem

In G = PGLn(C) where n = 2r k and r ≥ 1, let E1 = Γ̄r × Āin be a nontoral elementary
abelian 2-subgroup and let Emax = Γ̄r × Āmax be a maximal nontoral elementary
abelian 2-subgroup. Here Āmax , maximal toral in PGLk (C), has rank m where
m = k − 1 and Āin < Āmax .

There exists U1 ≤ N1 such that u ∈ NG(E1) \ CG(E1) for each nontrivial u ∈ U1 and
U1CG(E1)/CG(E1) is the subgroup Uin of WG(E1).



What we have done

Consequently, as is in the maximal nontoral case, NG(E1)/CG(E1)◦ is
centralised by F for every nonmaximal nontoral elementary abelian
2-subgroup E1 of G and for q a power of a prime ` where
` ≡ 1(mod 4).
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What we have done

We next descend to the finite groups.

Case 1. Ā is nontrivial nonmaximal toral in PGLk(C) with
CPGLk (C)(Ā) connected.

E = Γ̄r × Ā

CG(E) = Γ̄r × CPGLk (C)(Ā)

NG(E)/CG(E) �
(

Sp2r (2) 0
∗rk Āin×2r WPGLk (C)(Āin)

)
CG(E)/CG(E)◦ � Γ̄r

NG(E)/CG(E)◦ � Γ̄r .
(

Sp2r (2) 0
∗rk Āin×2r WPGLk (C)(Āin)

)
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What we have done

Case 1. Ā is nontrivial nonmaximal toral in PGLk(C) with
CPGLk (C)(Ā) connected.

Hence there are two F-classes of NG(E)/CG(E)◦ in CG(E)/CG(E)◦,
and correspondingly, there are two GF -conjugacy classes of
elementary abelian 2-subgroups.
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What we have done

Case 2. Ā is nontrivial nonmaximal toral in PGLk(C) with
CPGLk (C)(Ā) disconnected.

CG(E)/CG(E)◦ � Γ̄r × CPGLk (C)(Ā)/CPGLk (C)(Ā)◦

NG(E)/CG(E)◦ � Γ̄r×CPGLk (C)(Ā)/CPGLk (C)(Ā)◦.
(
Sp2r (2) 0
∗rk Ā×2r WPGLk (C)(Ā)

)
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What we have done

Theorem

For n = 2s × t with gcd (2, t) = 1 and s ≥ 1, the conjugacy classes of the toral
elementary abelian 2-subgroups of G = PGLn(C) with disconnected centralisers have
representatives D = Dr × Ā for 1 ≤ r ≤ s, n = 2r × k and Ā is trivial or a representative
of a conjugacy class of the toral elementary abelian 2-subgroups of PGLk (C) with
CPGLk (C)(Ā) connected.
And

CG(D)/CG(D)◦ � Br .

NG(D)/CG(D) �
(

GLr (2) 0
∗rk Ā × r WPGL2s−r t (C)(Ū1)

)
.
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What we have done

There are three F-classes of NG(E)/CG(E)◦ in CG(E)/CG(E)◦ and
correspondingly, there are three GF -conjugacy classes of elementary
abelian 2-subgroups.
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An example of PGL6(C)

Table: Nontoral elementary abelian 2-subgroups of G = PGL6(C)
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What we will do next

Extend the condition of q being a power of a prime ` where ` ≡ 1
(mod 4) to ` ≡ 3 (mod 4).

Extend to the elementary abelian p-subgroups of classical groups
of type A for p odd.
Explore whether the above method can be applied to classify the
elementary abelian 2-subgroups and the local structure in
classical groups of type C; if not, then establish new methods to
accomplish this.
Classify the elementary abelian p-subgroups and the local
structure in classical groups of types B and D.
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Thank you for listening!


