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Introduction

A regular map at first glance is a graph embedded in a compact 2−manifold, such
that every face is homeomorphic to a disk and its automorphism group acts
regularly on flags (edge, vertex, face tuples). Here regularly means that there is
exactly one automorphism mapping any flag to any other.
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Examples

Likely the first examples found were the platonic solids which are all regular maps
on the sphere.

Regularity implies we can associate a unique automorphism to every flag of the
map, so maps are in a way the Cayley graph of their own automorphism group.
Furthermore any maps automorphism group is 3 generated by reflections.

So given a map we can construct its automorphism group and given the group we
can construct the associated map.
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Triangle groups

Regular maps have another description in terms of triangle groups. Which are
groups generated by 3 reflections in the plane of angles (πl ,

π
k ,

π
m ) so we denote

such a group by

△(l, k,m) = ⟨x, y, z | x2 = y2 = z2 = (xy)l = (yz)k = (zx)m = 1⟩

These groups fall into 3 categories. Spherical, Euclidean or Hyperbolic. This
corresponds to whether 1

k + 1
l +

1
m is greater than (Spherical) equal to (Elliptic)

or less than 1 (Hyperbolic).
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Triangle groups
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Triangle group quotients are maps

Now take a triangle group △(2,m, k) i.e a right triangle tiling of some space. A
regular map is simply a quotient of such a group by a torsion free normal
subgroup which preserves the orders m and k.

To explicitly construct the edge and vertex connections we take the right cosets of
the images of ⟨xy⟩, ⟨yz⟩ , ⟨zx⟩ in the quotient with incidence given by non empty
intersection.

From this perspective the theory of regular maps is exactly equivalent to the
theory of ”smooth” quotients of {2,m, k} triangle groups. Here smooth means
that the quotient preserves the order of yz, zx, xy.

G = ⟨x, y, z|x2 = y2 = z2 = (yz)k = (zx)m = (xy)2 = · · · = 1⟩
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Reflexible and Chiral

Let M be a map then we denote its automorphism group by Aut(M) and we
denote its orientation preserving automorphisms by Aut+(M). Note that
Aut+(M) has index at most 2 in Aut(M).

Sometimes maps admit an automorphism which is a reflection, i.e non orientation
preserving then [Aut(M) : Aut+(M)] = 2 and we call such a map reflexible
otherwise we call it chiral.
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A useful formula

We now derive a necessary condition for a {k,m} map to exist

|G| = 4E = 2mF = 2kV

Euler’s formula 2− 2g = V − E + F gives us the equation,

2− 2g =
|G|
2

(
1

k
+

1

m
− 1

2

)

Or for the orientation preserving case

2− 2g = |G+|
(
1

k
+

1

m
− 1

2

)
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Hurwitz maps

To get some examples we can look at one interesting family of maps, the so called
Hurwitz maps. These come from the realisation by Hurwitz that the order of the
conformal orientation preserving automorphism group of any surface of genus g is
bounded above by 84(g − 1).

2− 2g = |G+|
(
1

k
+

1

m
− 1

2

)

(2− 2g)

(
1

k
+

1

m
− 1

2

)−1

= |G+|

Now 1
2 − 1

k − 1
m is minimised when m = 3 and k = 7 when its value is 1

42 hence,

84(g − 1) ≤ |G+|

Darius Young February 18, 2023 12 / 20



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Hurwitz maps

To get some examples we can look at one interesting family of maps, the so called
Hurwitz maps. These come from the realisation by Hurwitz that the order of the
conformal orientation preserving automorphism group of any surface of genus g is
bounded above by 84(g − 1).

2− 2g = |G+|
(
1

k
+

1

m
− 1

2

)

(2− 2g)

(
1

k
+

1

m
− 1

2

)−1

= |G+|

Now 1
2 − 1

k − 1
m is minimised when m = 3 and k = 7 when its value is 1

42 hence,

84(g − 1) ≤ |G+|

Darius Young February 18, 2023 12 / 20



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Hurwitz maps

To get some examples we can look at one interesting family of maps, the so called
Hurwitz maps. These come from the realisation by Hurwitz that the order of the
conformal orientation preserving automorphism group of any surface of genus g is
bounded above by 84(g − 1).

2− 2g = |G+|
(
1

k
+

1

m
− 1

2

)

(2− 2g)

(
1

k
+

1

m
− 1

2

)−1

= |G+|

Now 1
2 − 1

k − 1
m is minimised when m = 3 and k = 7 when its value is 1

42 hence,

84(g − 1) ≤ |G+|

Darius Young February 18, 2023 12 / 20



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Hurwitz maps

To get some examples we can look at one interesting family of maps, the so called
Hurwitz maps. These come from the realisation by Hurwitz that the order of the
conformal orientation preserving automorphism group of any surface of genus g is
bounded above by 84(g − 1).

2− 2g = |G+|
(
1

k
+

1

m
− 1

2

)

(2− 2g)

(
1

k
+

1

m
− 1

2

)−1

= |G+|

Now 1
2 − 1

k − 1
m is minimised when m = 3 and k = 7 when its value is 1

42 hence,

84(g − 1) ≤ |G+|

Darius Young February 18, 2023 12 / 20



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Hurwitz maps

To get some examples we can look at one interesting family of maps, the so called
Hurwitz maps. These come from the realisation by Hurwitz that the order of the
conformal orientation preserving automorphism group of any surface of genus g is
bounded above by 84(g − 1).

2− 2g = |G+|
(
1

k
+

1

m
− 1

2

)

(2− 2g)

(
1

k
+

1

m
− 1

2

)−1

= |G+|

Now 1
2 − 1

k − 1
m is minimised when m = 3 and k = 7 when its value is 1

42 hence,

84(g − 1) ≤ |G+|

Darius Young February 18, 2023 12 / 20



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Finding Hurwitz maps

Hurwitz maps are therefore the maps for which this bound is attained, i.e when
|G+| = 84(g − 1). But do any even exist?

Yes! the smallest genus Hurwitz map is the automorphism group of the Klein
quartic, given by the zero set of x3y + y3z + z3x. This group has order
168 = 84(3− 1) so is genus 3.

⟨R,S | R3 = (RS)2 = S7 = (RS−2)4 = 1⟩
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Finding more Huwitz maps

Let G be a Hurwitz group of genus g which corresponds to a normal subgroup K
of index 84(g − 1) in △(2, 3, 7). Then take the subgroup L=[K,K] ·Km this is
the subgroup generated by commutators and mth powers in K. This subgroup is
clearly characteristic (invariant under automorphism) and therefore is normal in
△(2, 3, 7).

Since K must be a surface group it has presentation in terms of 2g generators
Ai, Bi for i ∈ {1, . . . , g} with one relation

∏
i≤g[Ai, Bi]. Quotenting by L has the

effect of making these generators commute and have order m so

K/L ∼= Z/mZ× Z/mZ× · · · × Z/mZ

where there are 2g factors of Z/mZ. So [K : L] = m2g. Meaning that also
[△(2, 3, 7) : L] = 84(g − 1) ·m2g hence

|△(2, 3, 7)/L| = 84(m2g(g − 1) + 1)

Darius Young February 18, 2023 14 / 20
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[△(2, 3, 7) : L] = 84(g − 1) ·m2g hence

|△(2, 3, 7)/L| = 84(m2g(g − 1) + 1)
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The same trick for soluble maps

The above technique called the ’Macbeath Trick’ & is surprisingly useful, it can
also be used to show that there are for example infinitely many soluble maps.

Let G be a soluble regular map of genus g which corresponds to a normal
subgroup K of index n in T = △(2,m, k). Then again take the subgroup
L = [K,K] ·Kd. Again we have that K/L is abelian (and therefore soluble) and
T/L is a regular map.

We want to show that T/L is soluble. But this becomes clear once we apply the
2nd group isomorphism theorem which tells us that

(T/L)/(K/L) ∼= T/K ∼= G

Therefore since both G and K/L are soluble then T/L must also be soluble and
we have constructed another soluble quotient of △(2,m, k). Then simply vary d
to obtain infinitely many soluble quotients.
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Density of Regular Maps

The density of a set of positive integers X ⊆ N is defined as follows,

Let Xn = X ∩ {1, 2, 3, . . . , n} then the density δ(X) of X is the limit

δ(X) = lim
n→∞

|X|
n

if this limit does not exist we may replace it with either limsup or liminf.
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Density of Regular Maps

Conjecture (Thomas Tucker)
Let Xm,k ⊆ N be the set of genera of surfaces for which admit a regular map of
type {m, k}. Then,

δ(Xm,k) = 0.

Or by abuse of notation δ(m, k).

Or equivalently, the density of the set of indexes of torsion free quotients of
triangle groups is zero.
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Progress so far

By a result of Bertram (1976) we can prove that for m, k, 2 relatively prime then
δ(m, k) = 0.

Theorem (Bertram’s Theorem)
Let B be the set of numbers b such that any group G of order b has a normal
cyclic sylow p−subgroup. Then δ(B) = 1.

Using some reasonably elementary group theory we can show that no regular map
with m, k and 2 relatively prime is a Bertram group and therefore the density of
their orders and therefore by the Euler-Poincare formula the density of there
genera is zero.
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Density of soluble regular maps

Another density related conjecture (though this time we refer to density of certain
types of maps within the set of regular maps as opposed to density of genus in the
naturals) is about the density of soluble regular maps, it has been checked
computationally by Marston Conder that about 95% of all orientably-regular maps
of genus below 301 are soluble.

The reason for this is not at all obvious and though it is conjectured that this
abundance of soluble maps continues for higher genus there is not much
theoretical evidence to support this yet. Using the Macbeath trick we showed that
if there exists one soluble map of type {m, k} then there are infinitely many. It is
a small part of my PhD project to prove that one soluble map exists for any
hyperbolic map of type {m, k} we have a method to construct soluble quotients
that we believe will always work but the proof is not yet complete.
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Thank you!
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