A Classification of Finite Groups with Three Automorphism Orbits

Yan Zhou Zhu joint work with Cai Heng Li

Southern Universitiy of Science and Technology

December 19, 2022

Outline

- Backgrounds and Preliminaries
- Suzuki 2-groups and Gross' Conjecture
- 4 UCS p-groups and Representation Theory
- Sketch of Proofs
- 6 References

Outline

- Backgrounds and Preliminaries
- Suzuki 2-groups and Gross' Conjecture
- ${f f 3}$ The Classification of N with three automorphism orbits
- 4 UCS p-groups and Representation Theory
- 5 Sketch of Proofs
- 6 References

Backgrounds and Notations

Let N be a finite group and let $A = \operatorname{Aut}(N)$ be the full automorphism group of N.

The orbits of A acting on N are called *automorphism orbits* (fusion classes).

- $\omega(N)$: the number of automorphism orbits of N;
- $\pi(N)$: the set of orders of elements in N, called the *spectrum* of N

Proposition

Elements in the same automorphism orbits have the same order. Hence $|\pi(N)| \leq \omega(N)$. In particular, it is well-known that

- ① $\omega(N) = 1$ if and only if N = 1;
- ② $\omega(N) = 2$ if and only if N is an elementary abelian p-group.

Backgrounds and Notations

Let N be a finite group and let $A = \operatorname{Aut}(N)$ be the full automorphism group of N.

The orbits of A acting on N are called *automorphism orbits* (fusion classes).

- $\omega(N)$: the number of automorphism orbits of N;
- $\pi(N)$: the set of orders of elements in N, called the *spectrum* of N.

Proposition

Elements in the same automorphism orbits have the same order. Hence $|\pi(N)| \leq \omega(N)$. In particular, it is well-known that

- ① $\omega(N) = 1$ if and only if N = 1;
- ② $\omega(N) = 2$ if and only if N is an elementary abelian p-group.

Backgrounds and Notations

Let N be a finite group and let $A = \operatorname{Aut}(N)$ be the full automorphism group of N.

The orbits of A acting on N are called *automorphism orbits* (fusion classes).

- $\omega(N)$: the number of automorphism orbits of N;
- $\pi(N)$: the set of orders of elements in N, called the *spectrum* of N.

Proposition

Elements in the same automorphism orbits have the same order. Hence $|\pi(N)| \leqslant \omega(N)$. In particular, it is well-known that

- $\omega(N) = 1$ if and only if N = 1;
- **2** $\omega(N) = 2$ if and only if N is an elementary abelian p-group.

The following groups has exactly 3 automorphism orbits:

- ① $N = \mathbb{Z}_{p^2}^n$ for prime p with $\operatorname{Aut}(N) = \operatorname{GL}(n, \mathbb{Z}/p^2\mathbb{Z}) \cong p^{n^2}.\operatorname{GL}(n, p);$
- ② $N = Q_8$ with $\operatorname{Aut}(N) \cong \operatorname{S}_4$ and $\operatorname{Out}(N) \cong \operatorname{S}_3$
- ③ $N=p_-^{1+2n}$ with $\operatorname{Out}(N)\cong\operatorname{CSp}(2n,p)=\operatorname{Sp}(2n,p){:}\mathbb{Z}_{p-1}$.

Example

Let p and q be two primes such that p is a primitive root modulo q (i.e. q-1 is the least natural number e with $p^e\equiv 1\mod q$). Then there exists a unique Frobenius group N isomorphic to $\mathbb{Z}_p^{n(q-1)}:\mathbb{Z}_q$ for positive integer n. Moreover, $\omega(N)=3$.

The following groups has exactly 3 automorphism orbits:

- ① $N = \mathbb{Z}_{p^2}^n$ for prime p with $\operatorname{Aut}(N) = \operatorname{GL}(n, \mathbb{Z}/p^2\mathbb{Z}) \cong p^{n^2}.\operatorname{GL}(n, p)$;
- ② $N = Q_8$ with $\operatorname{Aut}(N) \cong \operatorname{S}_4$ and $\operatorname{Out}(N) \cong \operatorname{S}_3$

Example

Let p and q be two primes such that p is a primitive root modulo q (i.e. q-1 is the least natural number e with $p^e\equiv 1\mod q$). Then there exists a unique Frobenius group N isomorphic to $\mathbb{Z}_p^{n(q-1)}:\mathbb{Z}_q$ for positive integer n. Moreover, $\omega(N)=3$.

The following groups has exactly 3 automorphism orbits:

- ① $N = \mathbb{Z}_{p^2}^n$ for prime p with $\operatorname{Aut}(N) = \operatorname{GL}(n, \mathbb{Z}/p^2\mathbb{Z}) \cong p^{n^2}.\operatorname{GL}(n, p)$;
- $extbf{Q} N = Q_8 \text{ with } \operatorname{Aut}(N) \cong \operatorname{S}_4 \text{ and } \operatorname{Out}(N) \cong \operatorname{S}_3;$

Example

Let p and q be two primes such that p is a primitive root modulo q (i.e. q-1 is the least natural number e with $p^e \equiv 1 \mod q$). Then there exists a unique Frobenius group N isomorphic to $\mathbb{Z}_p^{n(q-1)}:\mathbb{Z}_q$ for positive integer n. Moreover, $\omega(N)=3$.

The following groups has exactly 3 automorphism orbits:

- ① $N = \mathbb{Z}_{p^2}^n$ for prime p with $\operatorname{Aut}(N) = \operatorname{GL}(n, \mathbb{Z}/p^2\mathbb{Z}) \cong p^{n^2}.\operatorname{GL}(n, p)$;
- $extbf{Q} N = Q_8 \text{ with } \operatorname{Aut}(N) \cong \operatorname{S}_4 \text{ and } \operatorname{Out}(N) \cong \operatorname{S}_3;$

Example

Let p and q be two primes such that p is a primitive root modulo q (i.e. q-1 is the least natural number e with $p^e \equiv 1 \mod q$). Then there exists a unique Frobenius group N isomorphic to $\mathbb{Z}_p^{n(q-1)}:\mathbb{Z}_q$ for positive integer n. Moreover, $\omega(N)=3$.

The following groups has exactly 3 automorphism orbits:

- ① $N = \mathbb{Z}_{p^2}^n$ for prime p with $\operatorname{Aut}(N) = \operatorname{GL}(n, \mathbb{Z}/p^2\mathbb{Z}) \cong p^{n^2}.\operatorname{GL}(n, p)$;
- $extbf{Q} N = Q_8 \text{ with } \operatorname{Aut}(N) \cong \operatorname{S}_4 \text{ and } \operatorname{Out}(N) \cong \operatorname{S}_3;$

Example

Let p and q be two primes such that p is a primitive root modulo q (i.e. q-1 is the least natural number e with $p^e \equiv 1 \mod q$). Then there exists a unique Frobenius group N isomorphic to $\mathbb{Z}_p^{n(q-1)}:\mathbb{Z}_q$ for positive integer n. Moreover, $\omega(N)=3$.

The following groups has exactly 3 automorphism orbits:

- ① $N = \mathbb{Z}_{p^2}^n$ for prime p with $\operatorname{Aut}(N) = \operatorname{GL}(n, \mathbb{Z}/p^2\mathbb{Z}) \cong p^{n^2}.\operatorname{GL}(n, p)$;
- $extbf{Q} N = Q_8 \text{ with } \operatorname{Aut}(N) \cong \operatorname{S}_4 \text{ and } \operatorname{Out}(N) \cong \operatorname{S}_3;$

Example

Let p and q be two primes such that p is a primitive root modulo q (i.e. q-1 is the least natural number e with $p^e \equiv 1 \mod q$). Then there exists a unique Frobenius group N isomorphic to $\mathbb{Z}_p^{n(q-1)}:\mathbb{Z}_q$ for positive integer n. Moreover, $\omega(N)=3$.

Example

Let $q = p^n$ with prime p and positive integer n. Define

$$B_p(n)=\left\langle egin{pmatrix} 1&a&b\0&1&a^q\0&0&1 \end{pmatrix}:b+b^q+aa^q=0, ext{ for } a,b\in\mathbb{F}_{q^2}
ight
angle.$$

We remark that $B_p(n)$ is the upper-triangular unipotent subgroup of $\mathrm{SU}(3,q)$ on unitary space \mathbb{F}_q^3 equipped with the unitary form:

$$((x_1, x_2, x_3), (y_1, y_2, y_3)) = x_1y_3 + x_2y_2 + x_3y_1.$$

In particular, $B_p(n)$ is a Sylow *p*-subgroup of SU(3, q).

Example

Let $q = p^n$ with prime p and positive integer n. Define

$$B_p(n)=\left\langle egin{pmatrix} 1&a&b\0&1&a^q\0&0&1 \end{pmatrix}:b+b^q+aa^q=0 ext{, for }a,b\in\mathbb{F}_{q^2}
ight
angle.$$

We remark that $B_p(n)$ is the upper-triangular unipotent subgroup of SU(3,q) on unitary space \mathbb{F}_q^3 equipped with the unitary form:

$$((x_1,x_2,x_3),(y_1,y_2,y_3))=x_1y_3+x_2y_2+x_3y_1.$$

In particular, $B_p(n)$ is a Sylow *p*-subgroup of SU(3, q).

Example

Let $q = p^n$ with prime p and positive integer n. Define

$$B_p(n)=\left\langle egin{pmatrix} 1&a&b\0&1&a^q\0&0&1 \end{pmatrix}:b+b^q+aa^q=0 ext{, for }a,b\in\mathbb{F}_{q^2}
ight
angle.$$

- ① $|B_p(n)| = q^3 = p^{3n}$, and

Example

Let $q = p^n$ with prime p and positive integer n. Define

$$B_p(n)=\left\langle egin{pmatrix} 1&a&b\0&1&a^q\0&0&1 \end{pmatrix}:b+b^q+aa^q=0 ext{, for }a,b\in\mathbb{F}_{q^2}
ight
angle.$$

- $|B_p(n)| = q^3 = p^{3n}$, and
- ② $Z(B_p(n)) = \left\langle \begin{pmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : b + b^q = 0, \text{ for } b \in \mathbb{F}_{q^2} \right\rangle \cong \mathbb{Z}_p^n$

Example

Let $q = p^n$ with prime p and positive integer n. Define

$$B_p(n)=\left\langle egin{pmatrix} 1&a&b\ 0&1&a^q\ 0&0&1 \end{pmatrix}:b+b^q+aa^q=0, ext{ for } a,b\in\mathbb{F}_{q^2}
ight
angle.$$

 $|B_p(n)| = q^3 = p^{3n}$, and

$$2 Z(B_p(n)) = \left\langle \begin{pmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : b + b^q = 0, \text{ for } b \in \mathbb{F}_{q^2} \right\rangle \cong \mathbb{Z}_p^n.$$

Example

Let $q = p^n$ with prime p and positive integer n. Define

$$B_p(n)=\left\langle egin{pmatrix} 1&a&b\0&1&a^q\0&0&1 \end{pmatrix}:b+b^q+aa^q=0, ext{ for } a,b\in\mathbb{F}_{q^2}
ight
angle.$$

Set
$$M(a,b) = \begin{pmatrix} 1 & a & b \\ 0 & 1 & a^q \\ 0 & 0 & 1 \end{pmatrix}$$
, and set $T = \begin{pmatrix} \lambda^{-q} & 0 & 0 \\ 0 & \lambda^{1-q} & 0 \\ 0 & 0 & \lambda \end{pmatrix}$, where λ is

- ② $b\lambda^{q+1} + (b\lambda^{q+1})^q + (a\lambda)(a\lambda)^q = \lambda^{1+q}(b+b^q+a^{1+q}) = 0.$

Example

Let $q = p^n$ with prime p and positive integer n. Define

$$B_p(n)=\left\langle egin{pmatrix} 1&a&b\0&1&a^q\0&0&1 \end{pmatrix}:b+b^q+aa^q=0, ext{ for } a,b\in\mathbb{F}_{q^2}
ight
angle.$$

Set
$$M(a,b) = \begin{pmatrix} 1 & a & b \\ 0 & 1 & a^q \\ 0 & 0 & 1 \end{pmatrix}$$
, and set $T = \begin{pmatrix} \lambda^{-q} & 0 & 0 \\ 0 & \lambda^{1-q} & 0 \\ 0 & 0 & \lambda \end{pmatrix}$, where λ is

- ② $b\lambda^{q+1} + (b\lambda^{q+1})^q + (a\lambda)(a\lambda)^q = \lambda^{1+q}(b+b^q+a^{1+q}) = 0.$

Example

Let $q = p^n$ with prime p and positive integer n. Define

$$B_p(n)=\left\langle egin{pmatrix} 1 & a & b \ 0 & 1 & a^q \ 0 & 0 & 1 \end{pmatrix}: b+b^q+aa^q=0, ext{ for } a,b\in\mathbb{F}_{q^2}
ight
angle.$$

Set
$$M(a,b) = \begin{pmatrix} 1 & a & b \\ 0 & 1 & a^q \\ 0 & 0 & 1 \end{pmatrix}$$
, and set $T = \begin{pmatrix} \lambda^{-q} & 0 & 0 \\ 0 & \lambda^{1-q} & 0 \\ 0 & 0 & \lambda \end{pmatrix}$, where λ is

- ② $b\lambda^{q+1} + (b\lambda^{q+1})^q + (a\lambda)(a\lambda)^q = \lambda^{1+q}(b+b^q+a^{1+q}) = 0$

Example

Let $q = p^n$ with prime p and positive integer n. Define

$$B_p(n)=\left\langle egin{pmatrix} 1 & a & b \ 0 & 1 & a^q \ 0 & 0 & 1 \end{pmatrix}: b+b^q+aa^q=0, ext{ for } a,b\in\mathbb{F}_{q^2}
ight
angle.$$

Set
$$M(a,b) = \begin{pmatrix} 1 & a & b \\ 0 & 1 & a^q \\ 0 & 0 & 1 \end{pmatrix}$$
, and set $T = \begin{pmatrix} \lambda^{-q} & 0 & 0 \\ 0 & \lambda^{1-q} & 0 \\ 0 & 0 & \lambda \end{pmatrix}$, where λ is

- ② $b\lambda^{q+1} + (b\lambda^{q+1})^q + (a\lambda)(a\lambda)^q = \lambda^{1+q}(b+b^q+a^{1+q}) = 0.$

Example

Let $q = p^n$ with prime p and positive integer n. Define

$$B_p(n)=\left\langle egin{pmatrix} 1&a&b\0&1&a^q\0&0&1 \end{pmatrix}:b+b^q+aa^q=0 ext{, for }a,b\in\mathbb{F}_{q^2}
ight
angle.$$

Note that $|Z(B_p(n))| = q$ amd $|B_p(n)/Z(B_p(n))| = q^2$.

Lemma

For a generator λ of $\mathbb{F}_{q^2}^{\times}$, there exists an automorphism $\xi \in \operatorname{Aut}(B_p(n))$ such that $\xi(M(a,b)) = M(a\lambda, b\lambda^{q+1})$.

- ① $\langle \xi \rangle$ is transitive on $Z(B_p(n))^*$;
- ② $\langle \xi \rangle$ is transitive on $(B_p(n)/Z(B_p(n)))^*$;

Example

Let $q = p^n$ with prime p and positive integer n. Define

$$B_p(n)=\left\langle egin{pmatrix} 1&a&b\0&1&a^q\0&0&1 \end{pmatrix}:b+b^q+aa^q=0 ext{, for }a,b\in\mathbb{F}_{q^2}
ight
angle.$$

Note that $|Z(B_p(n))| = q$ amd $|B_p(n)/Z(B_p(n))| = q^2$.

Lemma

For a generator λ of $\mathbb{F}_{q^2}^{\times}$, there exists an automorphism $\xi \in \operatorname{Aut}(B_p(n))$ such that $\xi(M(a,b)) = M(a\lambda,b\lambda^{q+1})$.

- ① $\langle \xi \rangle$ is transitive on $Z(B_p(n))^*$
- ② $\langle \xi \rangle$ is transitive on $(B_p(n)/Z(B_p(n)))^*$;

Example

Let $q = p^n$ with prime p and positive integer n. Define

$$B_p(n)=\left\langle egin{pmatrix} 1&a&b\0&1&a^q\0&0&1 \end{pmatrix}:b+b^q+aa^q=0 ext{, for }a,b\in\mathbb{F}_{q^2}
ight
angle.$$

Note that $|Z(B_p(n))| = q$ amd $|B_p(n)/Z(B_p(n))| = q^2$.

Lemma

For a generator λ of $\mathbb{F}_{q^2}^{\times}$, there exists an automorphism $\xi \in \operatorname{Aut}(B_p(n))$ such that $\xi(M(a,b)) = M(a\lambda, b\lambda^{q+1})$.

- **1** $\langle \xi \rangle$ is transitive on $Z(B_p(n))^*$;
- $\langle \xi \rangle$ is transitive on $(B_p(n)/Z(B_p(n)))^*$;

Example

Let $q = p^n$ with prime p and positive integer n. Define

$$B_p(n)=\left\langle egin{pmatrix} 1&a&b\0&1&a^q\0&0&1 \end{pmatrix}:b+b^q+aa^q=0 ext{, for }a,b\in\mathbb{F}_{q^2}
ight
angle.$$

Lemma

Suppose that $0 \neq a \in \mathbb{F}_{q^2}$. Then for any two matrices $M_1 = M(a, b_1)$ and $M_2 = M(a, b_2)$ in $B_p(n)$, there exists an inner automorphism ϕ of $B_p(n)$ such that

$$\phi(M_1) = \phi(M_2).$$

In particular, $\omega(B_p(n)) = 3$.

Example

Let $q = p^n$ with prime p and positive integer n. Define

$$B_p(n)=\left\langle egin{pmatrix} 1&a&b\0&1&a^q\0&0&1 \end{pmatrix}:b+b^q+aa^q=0 ext{, for }a,b\in\mathbb{F}_{q^2}
ight
angle.$$

Lemma

Suppose that $0 \neq a \in \mathbb{F}_{q^2}$. Then for any two matrices $M_1 = M(a, b_1)$ and $M_2 = M(a, b_2)$ in $B_p(n)$, there exists an inner automorphism ϕ of $B_p(n)$ such that

$$\phi(M_1)=\phi(M_2).$$

In particular, $\omega(B_p(n)) = 3$.

Observation 1: $|\pi(N)| \leq \omega(N)$.

Hence if $\omega(N) = 3$, then one of the followings holds

- ① N is a (p, q)-group (Solved!);
- N is a p-group of exponent p²;
- \bigcirc N is a p-group of exponent p.

Observation 2: Suppose that $\omega(N) = 3$ and N is a p-group. Then N has exactly three characteristic subgroups:

$$\{id_N\}, \Phi(N) \text{ and } N.$$

Observation 1: $|\pi(N)| \leq \omega(N)$.

Hence if $\omega(N) = 3$, then one of the followings holds:

- N is a (p, q)-group (**Solved!**);
- 2 N is a p-group of exponent p^2 ;
- **3** N is a p-group of exponent p.

Observation 2: Suppose that $\omega(N) = 3$ and N is a p-group. Then N has exactly three characteristic subgroups:

$$\{\mathrm{id}_N\},\ \Phi(N)\ \mathsf{and}\ N.$$

Observation 1: $|\pi(N)| \leq \omega(N)$.

Hence if $\omega(N) = 3$, then one of the followings holds:

- N is a (p, q)-group (**Solved!**);
- 2 N is a p-group of exponent p^2 ;
- **3** N is a p-group of exponent p.

Observation 2: Suppose that $\omega(N) = 3$ and N is a p-group. Then N has exactly three characteristic subgroups:

$$\{\mathrm{id}_{N}\}, \quad \Phi(N) \quad \text{and} \quad N.$$

Observation 1: $|\pi(N)| \leq \omega(N)$.

Hence if $\omega(N) = 3$, then one of the followings holds:

- N is a (p, q)-group (**Solved!**);
- 2 N is a p-group of exponent p^2 ;
- **3** N is a p-group of exponent p.

Observation 2: Suppose that $\omega(N) = 3$ and N is a p-group. Then N has exactly three characteristic subgroups:

$$\{id_N\}, \Phi(N) \text{ and } N.$$

A Primary Classification

Shult [8] proved a p-group for odd prime p, whose elements of order p forms an automorphism orbit, is abelian.

Corollary

Suppose that N is finite group with $\omega(N) = 3$. Then one of the followings holds:

- ① N is a Frobenius group of form $\mathbb{Z}_p^{n(q-1)}:\mathbb{Z}_q$;
- 3 N is a non-abelian 2-group with exponent 4;
- N is a non-abelian p-group with exponent p for odd prime p.

We remark that if N satisfies case (3), then Aut(N) is transitive on the set of involutions of N.

A Primary Classification

Shult [8] proved a p-group for odd prime p, whose elements of order p forms an automorphism orbit, is abelian.

Corollary

Suppose that N is finite group with $\omega(N) = 3$. Then one of the followings holds:

- **1** N is a Frobenius group of form $\mathbb{Z}_p^{n(q-1)}:\mathbb{Z}_q$;
- N is a non-abelian 2-group with exponent 4;
- N is a non-abelian p-group with exponent p for odd prime p.

We remark that if N satisfies case (3), then Aut(N) is transitive on the set of involutions of N.

A Primary Classification

Shult [8] proved a p-group for odd prime p, whose elements of order p forms an automorphism orbit, is abelian.

Corollary

Suppose that N is finite group with $\omega(N) = 3$. Then one of the followings holds:

- **1** N is a Frobenius group of form $\mathbb{Z}_p^{n(q-1)}:\mathbb{Z}_q$;
- N is a non-abelian 2-group with exponent 4;
- N is a non-abelian p-group with exponent p for odd prime p.

We remark that if N satisfies case (3), then $\operatorname{Aut}(N)$ is transitive on the set of involutions of N.

Outline

- Backgrounds and Preliminaries
- Suzuki 2-groups and Gross' Conjecture
- ${f f 3}$ The Classification of N with three automorphism orbits
- 4 UCS p-groups and Representation Theory
- 5 Sketch of Proofs
- 6 References

Suzuki 2-groups

The definition of Suzuki 2-groups is given by Higman in [5].

Definition (Suzuki 2-group)

Let N be a non-abelian 2-group with more than one involution. If there exists a cyclic subgroup of $\operatorname{Aut}(N)$ which is transitive on involutions of N then N is called a Suzuki 2-group.

Higman proved that Suzuki 2-groups are one of four classes given in [5], named from A to D.

Proposition

Suppose that N is a Suzuki 2-group and $M=\langle x^2 \mid x \in \mathsf{N}
angle$. Ther

- ① either N is of type A with |M| = |N/M|, or
- $|M|^2 = |N/M|$

Suzuki 2-groups

The definition of Suzuki 2-groups is given by Higman in [5].

Definition (Suzuki 2-group)

Let N be a non-abelian 2-group with more than one involution. If there exists a cyclic subgroup of $\operatorname{Aut}(N)$ which is transitive on involutions of N then N is called a *Suzuki 2-group*.

Higman proved that Suzuki 2-groups are one of four classes given in [5], named from A to D.

Proposition

Suppose that N is a Suzuki 2-group and $M=\langle x^2 \mid x \in \mathsf{N}
angle$. Ther

- ① either N is of type A with |M| = |N/M|, or
- $|M|^2 = |N/M|$

The definition of Suzuki 2-groups is given by Higman in [5].

Definition (Suzuki 2-group)

Let N be a non-abelian 2-group with more than one involution. If there exists a cyclic subgroup of $\operatorname{Aut}(N)$ which is transitive on involutions of N then N is called a *Suzuki 2-group*.

Higman proved that Suzuki 2-groups are one of four classes given in [5], named from A to D.

Proposition

Suppose that N is a Suzuki 2-group and $M = \langle x^2 \mid x \in N \rangle$. Then

- either N is of type A with |M| = |N/M|, or
- $|M|^2 = |N/M|$.

The Suzuki 2-group of type A can be represent as (3×3) -matrix groups. Zhang [11] proved that Suzuki 2-group of type A has exactly 3 automorphism orbits.

Lemma

Suppose that N is a Suzuki 2-group of Type A with $|M| = |N/M| = 2^n$. Then there exists $1 \neq \theta \in \operatorname{Gal}(\mathbb{F}_{2^n}/\mathbb{F}_2)$ of odd order such that

$$N\cong A_2(n,\theta)=\left\{egin{pmatrix}1&a&b\\0&1&a^\theta\\0&0&1\end{pmatrix}:a,b\in\mathbb{F}_{2^n}
ight\}.$$

In particular, $\omega(N) = 3$.

We remark that the definition of $A_2(n,\theta)$ can be extended to any prime p and any field automorphism θ , denoted by $A_p(n,\theta)$.

The Suzuki 2-group of type A can be represent as (3×3) -matrix groups. Zhang [11] proved that Suzuki 2-group of type A has exactly 3 automorphism orbits.

Lemma

Suppose that N is a Suzuki 2-group of Type A with $|M| = |N/M| = 2^n$. Then there exists $1 \neq \theta \in \operatorname{Gal}(\mathbb{F}_{2^n}/\mathbb{F}_2)$ of odd order such that

$$N\cong A_2(n, heta)=\left\{egin{pmatrix}1&a&b\0&1&a^{ heta}\0&0&1\end{pmatrix}:a,b\in\mathbb{F}_{2^n}
ight\}.$$

In particular, $\omega(N) = 3$.

We remark that the definition of $A_2(n,\theta)$ can be extended to any prime p and any field automorphism θ , denoted by $A_p(n,\theta)$.

The Suzuki 2-group of type A can be represent as (3×3) -matrix groups. Zhang [11] proved that Suzuki 2-group of type A has exactly 3 automorphism orbits.

Lemma

Suppose that N is a Suzuki 2-group of Type A with $|M| = |N/M| = 2^n$. Then there exists $1 \neq \theta \in \operatorname{Gal}(\mathbb{F}_{2^n}/\mathbb{F}_2)$ of odd order such that

$$N\cong A_2(n, heta)=\left\{egin{pmatrix}1&a&b\0&1&a^{ heta}\0&0&1\end{pmatrix}:a,b\in\mathbb{F}_{2^n}
ight\}.$$

In particular, $\omega(N) = 3$.

We remark that the definition of $A_2(n,\theta)$ can be extended to any prime p and any field automorphism θ , denoted by $A_p(n,\theta)$.

- A Sylow 2-subgroup $B_2(n)$ of $SU(3,2^n)$ is a Suzuki 2-group of type B.
- Dornhoff [2] constructed the following group N and proved that $\omega(N)=3$.

Example

Let ϵ is a multiplicative generator in \mathbb{F}_{2^6} and let

$$N = P(\epsilon) = \{ (a, x) \in \mathbb{F}_{2^6} \times \mathbb{F}_{2^3} \mid (a, x)(b, y)$$

= $(a + b, x + y + ab^2\epsilon + a^8b^{16}\epsilon^8) \}.$

Lemma (Li & Zhu, 2022+)

For any two generator ϵ_1 and ϵ_2 , two groups $P(\epsilon_1)$ and $P(\epsilon_2)$ are isomorphic. Set $N = P(\epsilon_1)$ and $M = Z(N) \cong \mathbb{Z}_2^3$.

$$\operatorname{Aut}(N)^{N/M} \cong \mathbb{Z}_7:\mathbb{Z}_9 \quad \operatorname{Aut}(N)^M \cong \mathbb{Z}_7:\mathbb{Z}_3.$$

- A Sylow 2-subgroup $B_2(n)$ of $SU(3,2^n)$ is a Suzuki 2-group of type B.
- Dornhoff [2] constructed the following group N and proved that $\omega(N) = 3$.

Example

Let ϵ is a multiplicative generator in \mathbb{F}_{2^6} and let

$$N = P(\epsilon) = \{(a, x) \in \mathbb{F}_{2^6} \times \mathbb{F}_{2^3} \mid (a, x)(b, y)$$

= $(a + b, x + y + ab^2\epsilon + a^8b^{16}\epsilon^8)\}.$

Lemma (Li & Zhu, 2022+)

For any two generator ϵ_1 and ϵ_2 , two groups $P(\epsilon_1)$ and $P(\epsilon_2)$ are isomorphic. Set $N = P(\epsilon_1)$ and $M = Z(N) \cong \mathbb{Z}_2^3$.

 $\operatorname{Aut}(N)^{N/M} \cong \mathbb{Z}_7:\mathbb{Z}_9 \quad \operatorname{Aut}(N)^M \cong \mathbb{Z}_7:\mathbb{Z}_3.$

- A Sylow 2-subgroup $B_2(n)$ of $SU(3,2^n)$ is a Suzuki 2-group of type B.
- Dornhoff [2] constructed the following group N and proved that $\omega(N) = 3$.

Example

Let ϵ is a multiplicative generator in \mathbb{F}_{2^6} and let

$$N = P(\epsilon) = \{(a, x) \in \mathbb{F}_{2^6} \times \mathbb{F}_{2^3} \mid (a, x)(b, y)$$

= $(a + b, x + y + ab^2\epsilon + a^8b^{16}\epsilon^8)\}.$

Lemma (Li & Zhu, 2022+)

For any two generator ϵ_1 and ϵ_2 , two groups $P(\epsilon_1)$ and $P(\epsilon_2)$ are isomorphic. Set $N = P(\epsilon_1)$ and $M = Z(N) \cong \mathbb{Z}_2^3$.

$$\operatorname{Aut}(N)^{N/M} \cong \mathbb{Z}_7:\mathbb{Z}_9 \quad \operatorname{Aut}(N)^M \cong \mathbb{Z}_7:\mathbb{Z}_3.$$

Gross [4] extended the definition of Suzuki 2-groups.

Definition

If N is a 2-group with more than 1 involutions and all its involutions form an automorphism orbits, then N is called a 2-automorphic 2-group.

Then he proved the following theorem.

Theorem (Gross, 1967)

- N is homocyclic,
- ② N has exponent 4 and nilpotent class 2, $|N| = |M|^2$ or $|M|^3$, where M = N' = Z(N);
- 3 N has exponent 8 with nilpotent class 3.

Gross [4] extended the definition of Suzuki 2-groups.

Definition

If N is a 2-group with more than 1 involutions and all its involutions form an automorphism orbits, then N is called a 2-automorphic 2-group.

Then he proved the following theorem.

Theorem (Gross, 1967)

- N is homocyclic;
- ② N has exponent 4 and nilpotent class 2, $|N| = |M|^2$ or $|M|^3$, where M = N' = Z(N);
- 3 N has exponent 8 with nilpotent class 3.

Theorem (Gross, 1967)

Suppose N is a 2-automorphic 2-group, then $M = \Omega_1(Z(N))$ contains all the involutions of N. One of the followings holds:

- N is homocyclic;
- ② N has exponent 4 and nilpotent class 2, $|N| = |M|^2$ or $|M|^3$, where M = N' = Z(N);
- **1** N has exponent 8 with nilpotent class 3.

Gross conjectured that

- (a) the groups N in the case (2) are Suzuki 2-groups;
- (b) there is no group N satisfying case (3).

Theorem (Gross, 1967)

Suppose N is a 2-automorphic 2-group, then $M = \Omega_1(Z(N))$ contains all the involutions of N. One of the followings holds:

- N is homocyclic;
- ② N has exponent 4 and nilpotent class 2, $|N| = |M|^2$ or $|M|^3$, where M = N' = Z(N);
- 3 N has exponent 8 with nilpotent class 3.

Gross conjectured that

- (a) the groups N in the case (2) are Suzuki 2-groups;
- (b) there is no group N satisfying case (3).

Theorem (Gross, 1967)

- N is homocyclic;
- ② N has exponent 4 and nilpotent class 2, $|N| = |M|^2$ or $|M|^3$, where M = N' = Z(N);
- 3 N has exponent 8 with nilpotent class 3.
- Wilkens [10] proved that all 2-automorphic 2-group is of class at most 2, and hence case (2) does not exist.
- Bryukhanova [1] proved that the groups in case (2) with $|N| = |M|^3$ are Suzuki 2-groups.

Theorem (Gross, 1967)

- N is homocyclic;
- ② N has exponent 4 and nilpotent class 2, $|N| = |M|^2$ or $|M|^3$, where M = N' = Z(N);
- 3 N has exponent 8 with nilpotent class 3.
 - Wilkens [10] proved that all 2-automorphic 2-group is of class at most 2, and hence case (2) does not exist.
 - Bryukhanova [1] proved that the groups in case (2) with $|N| = |M|^3$ are Suzuki 2-groups.

Theorem (Gross, 1967)

- N is homocyclic;
- ② N has exponent 4 and nilpotent class 2, $|N| = |M|^2$ or $|M|^3$, where M = N' = Z(N);
- 3 N has exponent 8 with nilpotent class 3.
 - Wilkens [10] proved that all 2-automorphic 2-group is of class at most 2, and hence case (2) does not exist.
 - Bryukhanova [1] proved that the groups in case (2) with $|N| = |M|^3$ are Suzuki 2-groups.

Theorem (Li & Zhu, 2022+)

Suppose that N is a 2-group with M=Z(N)=N' and exponent 4 such that |M|=|N/M| and involutions of N forms an automorphism orbits. Then $\omega(N)=3$ and N is a Suzuki 2-group of type A.

Together with results of Wilkens and Bryukhanova, the Gross' conjecture is proved.

Theorem

Suppose that N is a non-abelian 2-group with at least 2 involutions and all involutions form an automorphism orbits. Then N is a Suzuki 2-group and $\operatorname{Aut}(N)$ is solvable.

Theorem (Li & Zhu, 2022+)

Suppose that N is a 2-group with M = Z(N) = N' and exponent 4 such that |M| = |N/M| and involutions of N forms an automorphism orbits. Then $\omega(N) = 3$ and N is a Suzuki 2-group of type A.

Together with results of Wilkens and Bryukhanova, the Gross' conjecture is proved.

Theorem

Suppose that N is a non-abelian 2-group with at least 2 involutions and all involutions form an automorphism orbits. Then N is a Suzuki 2-group and $\operatorname{Aut}(N)$ is solvable.

Outline

- Backgrounds and Preliminaries
- 2 Suzuki 2-groups and Gross' Conjecture
- 4 UCS p-groups and Representation Theory
- 5 Sketch of Proofs
- 6 References

Classification on 2-groups

Corollary

Suppose that N is finite group with $\omega(N) = 3$. Then one of the followings holds:

- **1** N is a Frobenius group of form $\mathbb{Z}_p^{n(q-1)}:\mathbb{Z}_q$;
- N is a non-abelian 2-group with exponent 4;
- N is a non-abelian p-group with exponent p for odd prime p.

The group N in case (3) is isomorphic to Q_8 or is a Suzuki 2-group, and $\operatorname{Aut}(N)$ is solvable. Finite group N with $\omega(N)=3$ and $\operatorname{Aut}(N)$ solvable are known by Dornhoff [2]. Immediately, we obtain the following result.

Theorem (Li & Zhu, 2022+)

Suppose that N is a non-abelian 2-group with $\omega(N)=3$. Then $N\cong A_2(n,\theta)$ with $1\neq \theta$ of odd order, $B_2(n)$ or $P(\epsilon)$.

Classification on 2-groups

Corollary

Suppose that N is finite group with $\omega(N) = 3$. Then one of the followings holds:

- **1** N is a Frobenius group of form $\mathbb{Z}_p^{n(q-1)}:\mathbb{Z}_q$;
- N is a non-abelian 2-group with exponent 4;
- N is a non-abelian p-group with exponent p for odd prime p.

The group N in case (3) is isomorphic to Q_8 or is a Suzuki 2-group, and $\operatorname{Aut}(N)$ is solvable. Finite group N with $\omega(N)=3$ and $\operatorname{Aut}(N)$ solvable are known by Dornhoff [2]. Immediately, we obtain the following result.

Theorem (Li & Zhu, 2022+)

Suppose that N is a non-abelian 2-group with $\omega(N)=3$. Then $N\cong A_2(n,\theta)$ with $1\neq \theta$ of odd order, $B_2(n)$ or $P(\epsilon)$.

Classification on 2-groups

Corollary

Suppose that N is finite group with $\omega(N) = 3$. Then one of the followings holds:

- **1** N is a Frobenius group of form $\mathbb{Z}_p^{n(q-1)}:\mathbb{Z}_q$;
- N is a non-abelian 2-group with exponent 4;
- N is a non-abelian p-group with exponent p for odd prime p.

The group N in case (3) is isomorphic to Q_8 or is a Suzuki 2-group, and $\operatorname{Aut}(N)$ is solvable. Finite group N with $\omega(N)=3$ and $\operatorname{Aut}(N)$ solvable are known by Dornhoff [2]. Immediately, we obtain the following result.

Theorem (Li & Zhu, 2022+)

Suppose that N is a non-abelian 2-group with $\omega(N)=3$. Then $N\cong A_2(n,\theta)$ with $1\neq \theta$ of odd order, $B_2(n)$ or $P(\epsilon)$.

An Extension of Extraspecial p-groups

Recall that extraspecial p-group p_{-}^{1+2n} of exponent p with odd prime p is the central product of Sylow p-subgroup of $\mathrm{SL}(3,p)$.

Example

Set Q the unipotent subgroup of SL(3, q) consists of upper-triangular matrices with 1's in the diagonal.

Define $N(m,q)=Q\circ Q\circ \cdots \circ Q$ be the central product of m copies of Q

Lemma (Li & Zhu, 2022+)

Let N = N(m, q) for $q = p^n$ with odd prime p, then $\omega(N) = 3$. Set M = Z(N), then

 $\operatorname{Aut}(N)^{N/M} \cong \operatorname{C}\Gamma\operatorname{Sp}(2m,q)$ and $\operatorname{Aut}(N)^M \cong \Gamma\operatorname{L}(1,q)$.

An Extension of Extraspecial *p*-groups

Recall that extraspecial p-group p_{-}^{1+2n} of exponent p with odd prime p is the central product of Sylow p-subgroup of $\mathrm{SL}(3,p)$.

Example

Set Q the unipotent subgroup of $\mathrm{SL}(3,q)$ consists of upper-triangular matrices with 1's in the diagonal.

Define $N(m,q)=Q\circ Q\circ \cdots \circ Q$ be the central product of m copies of Q.

Lemma (Li & Zhu, 2022+)

Let N = N(m, q) for $q = p^n$ with odd prime p, then $\omega(N) = 3$. Set M = Z(N), then

 $\operatorname{Aut}(N)^{N/M} \cong \operatorname{C}\Gamma\operatorname{Sp}(2m,q)$ and $\operatorname{Aut}(N)^M \cong \Gamma\operatorname{L}(1,q)$.

An Extension of Extraspecial *p*-groups

Recall that extraspecial p-group p_{-}^{1+2n} of exponent p with odd prime p is the central product of Sylow p-subgroup of $\mathrm{SL}(3,p)$.

Example

Set Q the unipotent subgroup of $\mathrm{SL}(3,q)$ consists of upper-triangular matrices with 1's in the diagonal.

Define $N(m,q)=Q\circ Q\circ \cdots \circ Q$ be the central product of m copies of Q.

Lemma (Li & Zhu, 2022+)

Let N = N(m, q) for $q = p^n$ with odd prime p, then $\omega(N) = 3$. Set M = Z(N), then

 $\operatorname{Aut}(N)^{N/M} \cong \operatorname{C}\Gamma\operatorname{Sp}(2m,q)$ and $\operatorname{Aut}(N)^M \cong \Gamma\operatorname{L}(1,q)$.

Classification on p-groups of odd prime p

Lemma (Li & Zhu, 2022+)

Suppose that p is an odd prime and $q = p^n$. Then a Sylow p-subgroup of SL(3,q) is isomorphic to $B_p(n)$, a Sylow p-subgroup of SU(3,q).

Then we obtain the following classification

Theorem (Li & Zhu, 2022+)

Suppose that N is a non-abelian p-group with odd prime p such that $\omega(N) = 3$. Then N is isomorphic to one of the followings:

- ① $A_p(n,\theta)$ with odd prime p such that $3 \mid n$ and $|\theta| = 3$;
- ② N(m,q)/U for $q=p^n$ and odd prime p, where $U \leq N(m,q)'$ contains no subfield hyperplanes of $N(m,q)' \cong F^n$ for $F=\mathbb{F}_p$, and there exists $L < \Gamma L(1,q)$ such that $U^g=U$ for each $g \in L$ and L is transitive on non-zero elements of N(m,q)'/U.

Classification on p-groups of odd prime p

Lemma (Li & Zhu, 2022+)

Suppose that p is an odd prime and $q = p^n$. Then a Sylow p-subgroup of SL(3,q) is isomorphic to $B_p(n)$, a Sylow p-subgroup of SU(3,q).

Then we obtain the following classification.

Theorem (Li & Zhu, 2022+)

Suppose that N is a non-abelian p-group with odd prime p such that $\omega(N) = 3$. Then N is isomorphic to one of the followings:

- **1** $A_p(n,\theta)$ with odd prime p such that $3 \mid n$ and $|\theta| = 3$;
- ③ N(m,q)/U for $q=p^n$ and odd prime p, where $U \leq N(m,q)'$ contains no subfield hyperplanes of $N(m,q)' \cong F^n$ for $F=\mathbb{F}_p$, and there exists $L < \Gamma L(1,q)$ such that $U^g = U$ for each $g \in L$ and L is transitive on non-zero elements of N(m,q)'/U.

Theorem (Li & Zhu, 2022+)

A finite group N has exactly three automorphism orbits if and only if N is isomorphic to one of the followings:

- **1** a Frobenius group of form $\mathbb{Z}_p^{t(q-1)}:\mathbb{Z}_q$;
- 2 $\mathbb{Z}_{p^2} \times \mathbb{Z}_{p^2} \times \cdots \times \mathbb{Z}_{p^2}$ for some prime p;
- **3** $A_2(n,\theta)$, the Suzuki 2-group of type A;
- $B_2(n)$, a Sylow 2-subgroup of $SU(3, 2^n)$;
- **1** $P(\epsilon)$, a group of order 2^9 ;
- **1** $A_p(n,\theta)$ with odd prime p such that $3 \mid n$ and $|\theta| = 3$;
- $N(m,q) = B_p(n) \circ \cdots \circ B_p(n)$, the central product of m copies of Sylow p-subgroup of SU(3,q), with $q=p^n$ and p an odd prime;
- N(m,q)/U for $q=p^n$ and odd prime p, where $U \le N(m,q)'$ contains no subfield hyperplanes of $N(m,q)' \cong F^n$ for $F=\mathbb{F}_p$, and there exists $L < \Gamma L(1,q)$ such that $U^g=U$ for each $g \in L$ and L is transitive on non-zero elements of N(m,q)'/U.

Outline

- Backgrounds and Preliminaries
- Suzuki 2-groups and Gross' Conjecture
- ${f f 3}$ The Classification of N with three automorphism orbits
- 4 UCS p-groups and Representation Theory
- Sketch of Proofs
- 6 References

- Then N has a unique non-trivial proper characteristic subgroup $M = Z(N) = N' = \Phi(N)$.
- Taunt [9] named such groups by UCS groups.
- The UCS *p*-groups are studied by Glasby and Pálfy and Schneider in [3], and they provide a tool in representation theory to study such groups.

- Then N has a unique non-trivial proper characteristic subgroup $M = Z(N) = N' = \Phi(N)$.
- Taunt [9] named such groups by UCS groups.
- The UCS *p*-groups are studied by Glasby and Pálfy and Schneider in [3], and they provide a tool in representation theory to study such groups.

- Then N has a unique non-trivial proper characteristic subgroup $M = Z(N) = N' = \Phi(N)$.
- Taunt [9] named such groups by UCS groups.
- The UCS *p*-groups are studied by Glasby and Pálfy and Schneider in [3], and they provide a tool in representation theory to study such groups.

- Then N has a unique non-trivial proper characteristic subgroup $M = Z(N) = N' = \Phi(N)$.
- Taunt [9] named such groups by UCS groups.
- The UCS *p*-groups are studied by Glasby and Pálfy and Schneider in [3], and they provide a tool in representation theory to study such groups.

Suppose that N is a non-abelian p-group with $\omega(N)=3$, and set M=N'.

- Both N/M and M are elementary abelian p-groups
- Let $v, u, w \in N \setminus M$, then $[v, w] \in Z(N)$, and hence

$$[v, u] = [u, v]^{-1}$$
 and $[vu, w] = [v, w]^{u}[u, w] = [v, w][u, w]$.

Recall the exterior square of FG-module V

$$\Lambda_F^2(V) = (V \otimes_F V)/S \text{ where } S = \langle v \otimes v \mid v \in V \rangle.$$

Lemma

Let $G = \operatorname{Aut}(N)^{N/M}$ and let $F = \mathbb{F}_p$. Then both M and N/M are FG-modules, and M is isomorphic to a quotient FG-module of $\Lambda^2_F(N/M)$

Suppose that N is a non-abelian p-group with $\omega(N)=3$, and set M=N'.

- Both N/M and M are elementary abelian p-groups;
- Let $v, u, w \in N \setminus M$, then $[v, w] \in Z(N)$, and hence

$$[v, u] = [u, v]^{-1}$$
 and $[vu, w] = [v, w]^{u}[u, w] = [v, w][u, w]$.

Recall the exterior square of FG-module V

$$\Lambda_F^2(V) = (V \otimes_F V)/S \text{ where } S = \langle v \otimes v \mid v \in V \rangle.$$

Lemma

Let $G = \operatorname{Aut}(N)^{N/M}$ and let $F = \mathbb{F}_p$. Then both M and N/M are FG-modules, and M is isomorphic to a quotient FG-module of $\Lambda^2_F(N/M)$.

Suppose that N is a non-abelian p-group with $\omega(N)=3$, and set M=N'.

- Both N/M and M are elementary abelian p-groups;
- Let $v, u, w \in N \setminus M$, then $[v, w] \in Z(N)$, and hence

$$[v, u] = [u, v]^{-1}$$
 and $[vu, w] = [v, w]^{u}[u, w] = [v, w][u, w].$

Recall the exterior square of FG-module V

$$\Lambda_F^2(V) = (V \otimes_F V)/S$$
 where $S = \langle v \otimes v \mid v \in V \rangle$.

Lemma

Let $G = \operatorname{Aut}(N)^{N/M}$ and let $F = \mathbb{F}_p$. Then both M and N/M are FG-modules, and M is isomorphic to a quotient FG-module of $\Lambda^2_F(N/M)$

Suppose that N is a non-abelian p-group with $\omega(N)=3$, and set M=N'.

- Both N/M and M are elementary abelian p-groups;
- Let $v, u, w \in N \setminus M$, then $[v, w] \in Z(N)$, and hence

$$[v, u] = [u, v]^{-1}$$
 and $[vu, w] = [v, w]^{u}[u, w] = [v, w][u, w]$.

Recall the exterior square of FG-module V:

$$\Lambda_F^2(V) = (V \otimes_F V)/S \text{ where } S = \langle v \otimes v \mid v \in V \rangle.$$

Lemma

Let $G = \operatorname{Aut}(N)^{N/M}$ and let $F = \mathbb{F}_p$. Then both M and N/M are FG-modules, and M is isomorphic to a quotient FG-module of $\Lambda^2_F(N/M)$

Suppose that N is a non-abelian p-group with $\omega(N)=3$, and set M=N'.

- Both N/M and M are elementary abelian p-groups;
- Let $v, u, w \in N \setminus M$, then $[v, w] \in Z(N)$, and hence

$$[v, u] = [u, v]^{-1}$$
 and $[vu, w] = [v, w]^{u}[u, w] = [v, w][u, w].$

Recall the exterior square of FG-module V:

$$\Lambda_F^2(V) = (V \otimes_F V)/S \text{ where } S = \langle v \otimes v \mid v \in V \rangle.$$

Lemma

Let $G = \operatorname{Aut}(N)^{N/M}$ and let $F = \mathbb{F}_p$. Then both M and N/M are FG-modules, and M is isomorphic to a quotient FG-module of $\Lambda_F^2(N/M)$.

Transitive Modules with Transitive Quotient of its Exterior Square

We say V is a *transitive FG*-module if G acts transitively on non-zero vectors of V.

Theorem (Li & Zhu, 2022+)

Suppose that V is a faithful transitive FG-module for $F = \mathbb{F}_p$ where G is nonsolvable. If there exists a transitive quotient FG-module W of $\Lambda_F^2(V)$, then one of the followings holds:

- \bigcirc dim_F W=1;
- ② G contains a normal subgroup $G_0 = SL(3, q)$ for $q = p^n$ where $\dim_F V = \dim_F W = 3n$ and W is the dual FG_0 -module of V;
- **③** G contains a normal subgroup $G_0 = \operatorname{Sp}(2m, q)$ or $G_2(q)$ for $q = p^n$ such that W is a trivial FG₀-module and is a faithful transitive quotient FH-module of F^n where $H = G/G_0 \lesssim \Gamma L(1, q)$.

Transitive Modules with Transitive Quotient of its Exterior Square

We say V is a *transitive FG*-module if G acts transitively on non-zero vectors of V.

Theorem (Li & Zhu, 2022+)

Suppose that V is a faithful transitive FG-module for $F = \mathbb{F}_p$ where G is nonsolvable. If there exists a transitive quotient FG-module W of $\Lambda_F^2(V)$, then one of the followings holds:

- ② G contains a normal subgroup $G_0 = SL(3, q)$ for $q = p^n$ where $\dim_F V = \dim_F W = 3n$ and W is the dual FG_0 -module of V;
- **3** G contains a normal subgroup $G_0 = \mathrm{Sp}(2m,q)$ or $\mathrm{G}_2(q)$ for $q = p^n$ such that W is a trivial FG₀-module and is a faithful transitive quotient FH-module of F^n where $H = G/G_0 \lesssim \Gamma \mathrm{L}(1,q)$.

Outline

- Backgrounds and Preliminaries
- 2 Suzuki 2-groups and Gross' Conjecture
- ${\color{red} oldsymbol{3}}$ The Classification of ${\color{red} N}$ with three automorphism orbits
- 4 UCS p-groups and Representation Theory
- Sketch of Proofs
- 6 References

Suppose that N is a non-abelian 2-automorphic 2-group with |N'| = |N/N'|. Set M = N' and set $G = \operatorname{Aut}(N)^{N/M}$.

- If G is solvable, then N is a Suzuki 2-group by Shaw's Theorem [7]
- If G is nonsolvable, then $\omega(N)=3$ with |M|=|N/M|. Hence $G_0\cong \mathrm{SL}(3,q)\lhd G$ and N/M is FG_0 -isomorphic to the dual FG_0 -module of M.
 - Let $v \in N \setminus M$ and let \overline{v} be the image of v in N/M, then $(G_0)_{\overline{v}} = (G_0)_{v^2}$.
 - Thus M cannot be the dual FG_0 -module of N/M, a contradiction

Suppose that N is a non-abelian 2-automorphic 2-group with |N'| = |N/N'|. Set M = N' and set $G = \operatorname{Aut}(N)^{N/M}$.

- If G is solvable, then N is a Suzuki 2-group by Shaw's Theorem [7].
- If G is nonsolvable, then $\omega(N)=3$ with |M|=|N/M|. Hence $G_0\cong \mathrm{SL}(3,q)\lhd G$ and N/M is FG_0 -isomorphic to the dual FG_0 -module of M.
 - Let $v \in N \setminus M$ and let \overline{v} be the image of v in N/M, then $(G_0)_{\overline{v}} = (G_0)_{v^2}$.
 - Thus M cannot be the dual FG_0 -module of N/M, a contradiction

Suppose that N is a non-abelian 2-automorphic 2-group with |N'| = |N/N'|. Set M = N' and set $G = \operatorname{Aut}(N)^{N/M}$.

- If G is solvable, then N is a Suzuki 2-group by Shaw's Theorem [7].
- If G is nonsolvable, then $\omega(N)=3$ with |M|=|N/M|. Hence $G_0\cong \mathrm{SL}(3,q)\lhd G$ and N/M is FG_0 -isomorphic to the dual

Let $v \in N \setminus M$ and let \overline{v} be the image of v in N/M, then $(G_0)_{\overline{v}} = (G_0)_{v,2}$.

Thus M cannot be the dual FG_0 -module of N/M, a contradiction

Suppose that N is a non-abelian 2-automorphic 2-group with |N'| = |N/N'|. Set M = N' and set $G = \operatorname{Aut}(N)^{N/M}$.

- If G is solvable, then N is a Suzuki 2-group by Shaw's Theorem [7].
- If G is nonsolvable, then $\omega(N)=3$ with |M|=|N/M|. Hence $G_0\cong \mathrm{SL}(3,q)\lhd G$ and N/M is FG_0 -isomorphic to the dual FG_0 -module of M.

Let $v \in N \setminus M$ and let \overline{v} be the image of v in N/M, then $(G_0)_{\overline{v}} = (G_0)_{v^2}$.

Thus M cannot be the dual FG_0 -module of N/M, a contradiction

Suppose that N is a non-abelian 2-automorphic 2-group with |N'| = |N/N'|. Set M = N' and set $G = \operatorname{Aut}(N)^{N/M}$.

- If G is solvable, then N is a Suzuki 2-group by Shaw's Theorem [7].
- If G is nonsolvable, then $\omega(N)=3$ with |M|=|N/M|. Hence $G_0\cong \mathrm{SL}(3,q)\lhd G$ and N/M is FG_0 -isomorphic to the dual FG_0 -module of M.

Let $v \in N \setminus M$ and let \overline{v} be the image of v in N/M, then $(G_0)_{\overline{v}} = (G_0)_{v^2}$.

Thus M cannot be the dual FG_0 -module of N/M, a contradiction

Suppose that N is a non-abelian 2-automorphic 2-group with |N'| = |N/N'|. Set M = N' and set $G = \operatorname{Aut}(N)^{N/M}$.

- If G is solvable, then N is a Suzuki 2-group by Shaw's Theorem [7].
- If G is nonsolvable, then $\omega(N)=3$ with |M|=|N/M|. Hence $G_0\cong \mathrm{SL}(3,q)\lhd G$ and N/M is FG_0 -isomorphic to the dual FG_0 -module of M.

Let $v \in N \setminus M$ and let \overline{v} be the image of v in N/M, then $(G_0)_{\overline{v}} = (G_0)_{v^2}$.

Thus M cannot be the dual FG_0 -module of N/M, a contradiction.

- If N is not a p-group, then N is a (p,q)-group. In this case, N is a Frobenius group of form $\mathbb{Z}_p^{n(q-1)}:\mathbb{Z}_q$.
- Suppose that N is an abelian p-group. Then $\Omega_1(N) = \mho_1(N)$, and hence $N = \mathbb{Z}_{p^2}^n$.
- Suppose that N is a non-abelian 2-group. Then N is a Suzuki 2-group with Aut(N) solvable. With classification given by Dornhoff [2], N is isomorphic to one of the followings:
 - ① $N = A_2(n, \theta)$ for $1 \neq \theta$ of odd order;
 - ② $B_2(n)$, the Sylow 2-subgroup of $SU(3, 2^n)$;
 - Θ $P(\epsilon)$

- If N is not a p-group, then N is a (p,q)-group. In this case, N is a Frobenius group of form $\mathbb{Z}_p^{n(q-1)}:\mathbb{Z}_q$.
- Suppose that N is an abelian p-group. Then $\Omega_1(N) = \mho_1(N)$, and hence $N = \mathbb{Z}_{p^2}^n$.
- Suppose that N is a non-abelian 2-group. Then N is a Suzuki 2-group with Aut(N) solvable. With classification given by Dornhoff [2], N is isomorphic to one of the followings:
 - ① $N = A_2(n, \theta)$ for $1 \neq \theta$ of odd order
 - ② $B_2(n)$, the Sylow 2-subgroup of $SU(3, 2^n)$;
 - $\Theta P(\epsilon)$

- If N is not a p-group, then N is a (p,q)-group. In this case, N is a Frobenius group of form $\mathbb{Z}_p^{n(q-1)}:\mathbb{Z}_q$.
- Suppose that N is an abelian p-group. Then $\Omega_1(N) = \mho_1(N)$, and hence $N = \mathbb{Z}_{p^2}^n$.
- Suppose that N is a non-abelian 2-group. Then N is a Suzuki 2-group with Aut(N) solvable. With classification given by Dornhoff [2], N is isomorphic to one of the followings:
 - **1** $N = A_2(n, \theta)$ for $1 \neq \theta$ of odd order;
 - 2 $B_2(n)$, the Sylow 2-subgroup of $SU(3, 2^n)$;
 - $P(\epsilon)$

- Let V and W be transitive FG-modules of N/M and M respectively. Then W is isomorphic to a quotient of $\Lambda_F^2(V)$.
- Suppose that G is solvable. Then $G \cong 3^{1+4}_- \cong N(2,3)$ or $B_p(n) = N(1,p^n)$ due to classification from Dornhoff [2].
- Suppose that G is nonsolvable with dim_F W=1. Then $N=p_{-}^{1+2m}\cong N(m,p)$.
- Suppose that G is nonsolvable with $G_0 \cong \mathrm{SL}(3,p^n) \lhd G$. Then $N \cong A_p(3n,\theta)$ with $|\theta|=3$.
- Suppose that G is nonsolvable with $G_0 \cong \operatorname{Sp}(2m, p^n) \triangleleft G$. Then N is a quotient of $N(m, p^n) = B_p(n) \circ \cdots B_p(n)$.
 - ① $N = N(m, p^n)$ if and only if $G = C\Gamma Sp(2m, p^n)$;
 - $() N = N(m, p^n)/U$ for some suitable U in the last case of the classification.

- Let V and W be transitive FG-modules of N/M and M respectively. Then W is isomorphic to a quotient of $\Lambda^2_F(V)$.
- Suppose that G is solvable. Then $G \cong 3^{1+4}_- \cong N(2,3)$ or $B_p(n) = N(1,p^n)$ due to classification from Dornhoff [2].
- Suppose that G is nonsolvable with $\dim_F W = 1$. Then $N = p_-^{1+2m} \cong N(m,p)$.
- Suppose that G is nonsolvable with $G_0 \cong \mathrm{SL}(3,p^n) \triangleleft G$. Then $N \cong A_p(3n,\theta)$ with $|\theta|=3$.
- Suppose that G is nonsolvable with $G_0 \cong \operatorname{Sp}(2m, p^n) \triangleleft G$. Then N is a quotient of $N(m, p^n) = B_p(n) \circ \cdots B_p(n)$.
 - ① $N = N(m, p^n)$ if and only if $G = C\Gamma Sp(2m, p^n)$;
 - ② $N = N(m, p^n)/U$ for some suitable U in the last case of the classification.

- Let V and W be transitive FG-modules of N/M and M respectively. Then W is isomorphic to a quotient of $\Lambda^2_F(V)$.
- Suppose that G is solvable. Then $G \cong 3^{1+4}_- \cong N(2,3)$ or $B_p(n) = N(1, p^n)$ due to classification from Dornhoff [2].
- Suppose that G is nonsolvable with $\dim_F W = 1$. Then $N = p_-^{1+2m} \cong N(m, p)$.
- Suppose that G is nonsolvable with $G_0 \cong \mathrm{SL}(3,p^n) \lhd G$. Then $N \cong A_p(3n,\theta)$ with $|\theta|=3$.
- Suppose that G is nonsolvable with $G_0 \cong \operatorname{Sp}(2m, p^n) \triangleleft G$. Then N is a quotient of $N(m, p^n) = B_p(n) \circ \cdots B_p(n)$.
 - ① $N = N(m, p^n)$ if and only if $G = C\Gamma Sp(2m, p^n)$;
 - $N = N(m, p^n)/U$ for some suitable U in the last case of the classification.

- Let V and W be transitive FG-modules of N/M and M respectively. Then W is isomorphic to a quotient of $\Lambda^2_F(V)$.
- Suppose that G is solvable. Then $G \cong 3^{1+4}_- \cong N(2,3)$ or $B_p(n) = N(1, p^n)$ due to classification from Dornhoff [2].
- Suppose that G is nonsolvable with $\dim_F W = 1$. Then $N = p_-^{1+2m} \cong N(m, p)$.
- Suppose that G is nonsolvable with $G_0 \cong \mathrm{SL}(3,p^n) \triangleleft G$. Then $N \cong A_p(3n,\theta)$ with $|\theta|=3$.
- Suppose that G is nonsolvable with $G_0 \cong \operatorname{Sp}(2m, p^n) \triangleleft G$. Then N is a quotient of $N(m, p^n) = B_p(n) \circ \cdots \circ B_p(n)$.
 - ① $N = N(m, p^n)$ if and only if $G = C\Gamma Sp(2m, p^n)$;
 - $N = N(m, p^n)/U$ for some suitable U in the last case of the classification.

- Let V and W be transitive FG-modules of N/M and M respectively. Then W is isomorphic to a quotient of $\Lambda^2_F(V)$.
- Suppose that G is solvable. Then $G \cong 3^{1+4}_- \cong N(2,3)$ or $B_p(n) = N(1, p^n)$ due to classification from Dornhoff [2].
- Suppose that G is nonsolvable with $\dim_F W = 1$. Then $N = p_-^{1+2m} \cong N(m, p)$.
- Suppose that G is nonsolvable with $G_0 \cong \mathrm{SL}(3, p^n) \triangleleft G$. Then $N \cong A_p(3n, \theta)$ with $|\theta| = 3$.
- Suppose that G is nonsolvable with $G_0 \cong \operatorname{Sp}(2m, p^n) \triangleleft G$. Then N is a quotient of $N(m, p^n) = B_p(n) \circ \cdots B_p(n)$.
 - ① $N = N(m, p^n)$ if and only if $G = C\Gamma Sp(2m, p^n)$;
 - ② $N = N(m, p^n)/U$ for some suitable U in the last case of the classification.

- Let V and W be transitive FG-modules of N/M and M respectively. Then W is isomorphic to a quotient of $\Lambda^2_F(V)$.
- Suppose that G is solvable. Then $G \cong 3^{1+4}_- \cong N(2,3)$ or $B_p(n) = N(1, p^n)$ due to classification from Dornhoff [2].
- Suppose that G is nonsolvable with $\dim_F W = 1$. Then $N = p_-^{1+2m} \cong N(m, p)$.
- Suppose that G is nonsolvable with $G_0 \cong \mathrm{SL}(3, p^n) \triangleleft G$. Then $N \cong A_p(3n, \theta)$ with $|\theta| = 3$.
- Suppose that G is nonsolvable with $G_0 \cong \operatorname{Sp}(2m, p^n) \triangleleft G$. Then N is a quotient of $N(m, p^n) = B_p(n) \circ \cdots B_p(n)$.
 - ① $N = N(m, p^n)$ if and only if $G = C\Gamma Sp(2m, p^n)$;
 - ② $N = N(m, p^n)/U$ for some suitable U in the last case of the classification.

- Let V and W be transitive FG-modules of N/M and M respectively. Then W is isomorphic to a quotient of $\Lambda_F^2(V)$.
- Suppose that G is solvable. Then $G \cong 3^{1+4}_- \cong N(2,3)$ or $B_p(n) = N(1, p^n)$ due to classification from Dornhoff [2].
- Suppose that G is nonsolvable with $\dim_F W = 1$. Then $N = p_-^{1+2m} \cong N(m, p)$.
- Suppose that G is nonsolvable with $G_0 \cong \mathrm{SL}(3, p^n) \triangleleft G$. Then $N \cong A_p(3n, \theta)$ with $|\theta| = 3$.
- Suppose that G is nonsolvable with $G_0 \cong \operatorname{Sp}(2m, p^n) \triangleleft G$. Then N is a quotient of $N(m, p^n) = B_p(n) \circ \cdots B_p(n)$.
 - **1** $N = N(m, p^n)$ if and only if $G = C\Gamma Sp(2m, p^n)$;
 - ② $N = N(m, p^n)/U$ for some suitable U in the last case of the classification.

Subfield Hyperplane

Suppose that $H=\langle x\rangle:\langle y\rangle\cong \Gamma\mathrm{L}(1,p^n)$ acts naturally on $W=\mathbb{F}_p^n$.

Definition (Subfield Hyperplane)

An (n-d)-dimensional subspace U of W is called a *subfield hyperplane* if $d \mid n$ and $W^{x^\ell} = W$ for $\ell = \frac{p^n-1}{p^d-1}$.

Example

Let $W=\mathbb{F}_{3^4}^+$ and let λ be a generator of $\mathbb{F}_{3^4}^\times$ with minimal polynomial $\lambda^4-\lambda^3-1=0$. Set $H=\langle x\rangle:\langle y\rangle\cong\Gamma\mathrm{L}(1,3^4)$ with x admitted by multiplying λ and y admitted by Frobenius automorphism $a\mapsto a^3$. Let $L=\langle xy\rangle$, then $W=U_1\oplus U_2$ with transitive \mathbb{F}_3L -submodules

$$U_1 = \langle 1 + \lambda^2, \ 2\lambda + \lambda^2 + 2\lambda^3 \rangle$$
 and $U_2 = \langle 2 + \lambda, \ 1 + \lambda + \lambda^2 \rangle$

Neither of them is a subfield hyperplane.

Subfield Hyperplane

Suppose that $H=\langle x\rangle:\langle y\rangle\cong \Gamma\mathrm{L}(1,p^n)$ acts naturally on $W=\mathbb{F}_p^n$.

Definition (Subfield Hyperplane)

An (n-d)-dimensional subspace U of W is called a *subfield hyperplane* if $d \mid n$ and $W^{\times^\ell} = W$ for $\ell = \frac{p^n-1}{p^d-1}$.

Example

Let $W=\mathbb{F}_{3^4}^+$ and let λ be a generator of $\mathbb{F}_{3^4}^\times$ with minimal polynomial $\lambda^4-\lambda^3-1=0$. Set $H=\langle x\rangle:\langle y\rangle\cong\Gamma\mathrm{L}(1,3^4)$ with x admitted by multiplying λ and y admitted by Frobenius automorphism $a\mapsto a^3$. Let $L=\langle xy\rangle$, then $W=U_1\oplus U_2$ with transitive \mathbb{F}_3L -submodules

$$U_1 = \langle 1 + \lambda^2, \ 2\lambda + \lambda^2 + 2\lambda^3 \rangle$$
 and $U_2 = \langle 2 + \lambda, \ 1 + \lambda + \lambda^2 \rangle$.

Neither of them is a subfield hyperplane.

Case 8 in the Classification

We remark that the center (commutator subgroup) of a Sylow p-subgroup of $SL(3, p^n)$ is isomorphic to $\mathbb{F}_{p^n}^+$. Thus

$$\mathcal{N}(m,q)'=\left\{egin{pmatrix}1&0&b\0&1&0\0&0&1\end{pmatrix}:b\in\mathbb{F}_{p^n}
ight\}\cong\mathbb{F}_p^+.$$

Then N(m,q)' is a natural $\mathbb{F}_p\Gamma L(1,p^n)$ -module.

Case 8

N(m,q)/U for $q=p^n$ and odd prime p, where $U\leqslant N(m,q)'$ contains no subfield hyperplanes of $N(m,q)'\cong F^n$ for $F=\mathbb{F}_p$, and there exists $L<\Gamma L(1,q)$ such that $U^g=U$ for each $g\in L$ and L is transitive on non-zero elements of N(m,q)'/U.

Case 8 in the Classification

We remark that the center (commutator subgroup) of a Sylow p-subgroup of $SL(3, p^n)$ is isomorphic to $\mathbb{F}_{p^n}^+$. Thus

$$\mathcal{N}(m,q)'=\left\{egin{pmatrix}1&0&b\0&1&0\0&0&1\end{pmatrix}:b\in\mathbb{F}_{p^n}
ight\}\cong\mathbb{F}_p^+.$$

Then N(m,q)' is a natural $\mathbb{F}_p\Gamma L(1,p^n)$ -module.

Case 8

N(m,q)/U for $q=p^n$ and odd prime p, where $U\leqslant N(m,q)'$ contains no subfield hyperplanes of $N(m,q)'\cong F^n$ for $F=\mathbb{F}_p$, and there exists $L<\Gamma L(1,q)$ such that $U^g=U$ for each $g\in L$ and L is transitive on non-zero elements of N(m,q)'/U.

An example of Case 8

Example

Let $N = N(1, 3^4)/U$ where $N(1, 3^4)$ is the upper-triangular unipotent subgroup of $\mathrm{SL}(3, 3^4)$ and

$$U = \left\langle \begin{pmatrix} 1 & 0 & 1 + \lambda^2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 2\lambda + \lambda^2 + 2\lambda^3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\rangle,$$

where λ is a generator of $\mathbb{F}_{3^4}^{\times}$ with minimal polynomial $\lambda^4 - \lambda^3 - 1 = 0$. Then $|N| = 3^{10}$, $\omega(N) = 3$ and $\operatorname{Aut}(N)^{N/N'} \cong \operatorname{Sp}(2, 3^4): \mathbb{Z}_8$

Outline

- Backgrounds and Preliminaries
- Suzuki 2-groups and Gross' Conjecture
- \bigcirc The Classification of N with three automorphism orbits
- 4 UCS p-groups and Representation Theory
- 5 Sketch of Proofs
- 6 References

References I

Automorphism groups of 2-automorphic 2-groups.

Algebra i Logika, 20(1):5-21, 123, 1981.

Larry Dornhoff.

On imprimitive solvable rank 3 permutation groups.

Illinois Journal of Mathematics, 14:692-707, 1970.

S. P. Glasby, P. P. Pálfy, and Csaba Schneider.

p-groups with a unique proper non-trivial characteristic subgroup.

Journal of Algebra, 348:85–109, 2011.

Fletcher Gross.

2-automorphic 2-groups.

Journal of Algebra, 40(2):348-353, 1976.

References II

Suzuki 2-groups.

Illinois Journal of Mathematics, 7:79–96, 1963.

Thomas J. Laffey and Desmond MacHale.

Automorphism orbits of finite groups.

Australian Mathematical Society. Journal. Series A. Pure Mathematics and Statistics, 40(2):253–260, 1986.

David L. Shaw.

The Sylow 2-subgroups of finite soluble groups with a single class of involutions.

Journal of Algebra, 16:14-26, 1970.

Ernest E. Shult.

On finite automorphic algebras.

Illinois Journal of Mathematics, 13:625-653, 1969.

References III

D. R. Taunt.

Finite groups having unique proper characteristic subgroups. I. Proceedings of the Cambridge Philosophical Society, 51:25–36, 1955.

Bettina Wilkens.

A note on 2-automorphic 2-groups. Journal of Algebra, 184(1):199–206, 1996.

Ji Ping Zhang.

On finite groups all of whose elements of the same order are conjugate in their automorphism groups.

Journal of Algebra, 153(1):22-36, 1992.

Thanks!