Random Walks on Vertex-Transitive Graphs with Moderate Growth (A generalisation of a result by P. Diaconis and L. Saloff-Coste)

David Guo

University of Bristol

Group Theory Seminars 2022

Definition

A graph Γ is called vertex-transitive if for any two vertices $u, v \in \Gamma$, there is $f \in Aut(\Gamma)$ such that f(u) = f(v), i.e. $Aut(\Gamma)$ acts transitively on $V(\Gamma)$.

Fact

Every Cayley graph is vertex-transitive, but there exist vertex-transitive graphs that are not Cayley graphs.

Example (Petersen Graph)

Notation

Given a vertex transitive graph Γ , we denote $\gamma = \operatorname{diam}(\Gamma)$ to be the diameter of the graph Γ , and $\beta(j)$ to be the size of the ball of radius j in Γ .

Definition

Given constants A, d, we say a finite vertex-transitive graph Γ has (A, d)-moderate growth if

$$\beta(j) \geq \frac{1}{A} \left(\frac{j}{\operatorname{diam}(\Gamma)} \right)^d |\Gamma| \quad \textit{whenever} \quad 1 \leq j \leq \operatorname{diam}(\Gamma).$$

Example (example of classes of Cayley graphs with moderate growths)

- For $m \in \mathbb{N}$, $\operatorname{Cay}(\mathbb{Z}_m, \{-1, 0, 1\})$ has (1, 1)-moderate growth.
- The Cayley graphs for finite nilpotent groups have (A, d)-moderate growth, where A and d dependent only on the number of generators and the class of nilpotency.
- The Cayley graphs for the finite affine groups over \mathbb{F}_p have (1,2)-moderate growth

Definition

Let G be a finite group with generating set $S \ni 1$. The probability vector q associated with simple random walk on $\Gamma = \operatorname{Cay}(G, S)$ is defined as follows:

$$q(s) = \begin{cases} \frac{1}{|S|} & \text{if } s \in S, \\ 0 & \text{otherwise.} \end{cases}$$

The probability vector u associated with uniform distribution on Γ is defined as $u(g) = \frac{1}{|G|}$, for all $g \in G$.

Theorem (Quadratic mixing time on Cayley graph, P. Diaconis & L. Saloff-Coste, 1994)

Suppose Cay(G,S) has (A,d)-moderate growth with respect to S. Then, for $n = (1+c)|S|\gamma^2, c > 0$, we have

$$\left\| q^{(n)} - u \right\|_{T.V} < Be^{-c}$$

with $B = A^{1/2} 2^{d(d+3)/4}$.

Recall

- A transition system (Γ, P) consist of a graph Γ and a transition matrix P.
- For $u, v \in \Gamma$, we denote by P_u the u-th row of P, this is a probability vector with non-negative entries that add up to 1; the (u, v)th entry of P, denoted by P(u, v), tells us the probability of going from u to v.
- We denote by U the matrix associated with uniform distribution, i.e. $U(u,v) = \frac{1}{|\Gamma|}$ for all $u, v \in V$.

Definition (transitive system)

We define the set of automorphisms on Γ preserved by P to be

```
Aut(\Gamma, P) = \{ \alpha \in Aut(\Gamma) : \forall u, v \in V, P(u, v) = P(\alpha(u), \alpha(v)) \}.
```

We say that the system (Γ, P) is transitive if $Aut(\Gamma, P)$ acts transitively on $V(\Gamma)$.

Lemma

Suppose (Γ, P) is a transitive system, then for $u, v \in \Gamma$, there exist $\alpha \in Aut(\Gamma)$, such that $P(u, w) = P(v, \alpha(w))$ for all $w \in \Gamma$.

Definition

For $\epsilon > 0$ and $1 \le p \le \infty$, the ℓ^p mixing time of system (Γ, P) is

$$\tau_p(\epsilon) = \min\{n \ge 0 : \|(P^n - U)_o\|_p \le \epsilon \|U_o\|_p\}$$

Theorem (Moderate growth implies quadratic mixing time)

Let (Γ, P) be a symmetric transitive system that undergoes (A, d)- moderate growth. Suppose that $\eta = \inf\{P(u, v) : u \sim v\} > 0$ and $\delta = P(o, o) \ge \frac{\eta}{2\gamma^2}$. Then the mixing time for the system (Γ, P) is bounded above by

$$\tau_p(\epsilon) \le \frac{\gamma^2}{\eta} \log \frac{A2^{2+\frac{d+d^2}{2}}e^2}{\epsilon}$$

Lemma

- The mixing time $\tau_p(\epsilon)$ is non-decreasing in p.
- We have $\tau_{\infty}(\epsilon) = 2\tau_2(\sqrt{\epsilon})$.

Lemma (Bound for ℓ^2 mixing time)

Suppose (Γ, P) is a symmetric system. Let $1 = \pi_1 \ge \pi_2 \ge \ldots \ge \pi_N \ge -1$ be the eigenvalues of P and define $\pi_* = \max\{|\pi_2|, |\pi_N|\}$. Then,

- For positive n and m, $||(P^{n+m} U)_o||_2^2 \le P^{2m}(o, o)\pi_*^{2n}$.
- We have $\pi_N \ge -1 + 2 \inf\{P(u, u) | u \in V\}.$
- If Γ is a vertex-transitive graph, π₂ ≤ 1 − inf{P(u, v) : u ~ v}/γ².

Theorem (Bound for return probability)

Let (Γ, P) be a symmetric transitive system with (A, d) - moderate growth. Suppose that $\eta = \inf\{P(u, v) : u \sim v\} > 0$. Then, for $m = \frac{4\gamma^2}{\eta}$,

$$P^{2m}(o,o) \le 2^{2 + \frac{d+d^2}{2}} A / |\Gamma|$$

Theorem (Large diameter implies moderate growth, R. Tessera & M. Tointon 2021)

Let Γ be a finite connected vertex-transitive graph. For every $\delta \geq 0$, there exists $n_0 = n_0(\delta)$ such that if diam $(\Gamma) \geq n_0$ and

$$\operatorname{diam}(\Gamma) \ge \left(\frac{|\Gamma|}{\beta(1)}\right)^{\delta}$$

then Γ has $(\mathcal{O}_{\delta}(1), \mathcal{O}_{\delta}(1))$ moderate growth.

Corollary (Large diameter implies quadratic mixing time)

Let $\delta \geq 0$. Suppose our system (Γ, P) also satisfies the large diameter condition (1), then (Γ, P) has quadratic mixing time, i.e. for $1 \leq p \leq \infty$,

$$\tau_p(\epsilon) = \mathcal{O}_{\delta}\left(\frac{\gamma^2}{\eta}\log\mathcal{O}_{\delta}\left(\frac{1}{\epsilon}\right)\right).$$

(1)

Thank you for listening!