An introduction to EKR properties of permutation groups

Yilin Xie

Department of Mathematics, SUSTech

November 20, 2022

Outline

Erdös-Ko-Rado type problems

Erdös-Ko-Rado properties for permutation groups

Group-theoretic methods

Erdös-Ko-Rado

Theorem (Erdös-Ko-Rado)

Assume $n \ge 2k$ and let $\mathcal F$ be a family of k-subsets of [n] such that any two subsets of $\mathcal F$ intersects. Then

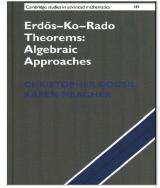
- $\bullet |\mathcal{F}| \le \binom{n-1}{k-1}$
- n > 2k and $|\mathcal{F}| = \binom{n-1}{k-1} \Rightarrow \mathcal{F}$ consists of all k-subsets containing a given point from [n].

Erdös-Ko-Rado (abbreviated as EKR) type problem:

- Objects.
- Definition of two objects "intersects".
- How large can an intersecting family be.

Examples

Objects	Definition of 'intersect'
k-subsets of [n]	two subsets intersect if they intersect as sets
Subspaces of V	$W_1, W_2 \subseteq V$ intersect if $W_1 \cap W_2 \neq (0)$
Permutation group G on Δ	$g_1,g_2\in G$ intersect if $\exists \delta\in\Delta$, $\delta^{g_1}=\delta^{g_2}$



EKR problems for permutation groups

Throughout let G be a transitive permutation group on Δ with stabilizer $H = G_{\delta}$ for some $\delta \in \Delta$.

Let $S \subseteq G$, TFAE

- $\bullet \ \, \text{For any } s_1,s_2\in \mathcal{S} \text{, there exists } \delta\in\Delta \text{ such that } \delta^{s_1}=\delta^{s_2} \text{,}$
- $\textbf{ @ For any } s_1, s_2 \in \textit{S} \text{, there exists } g \in \textit{G} \text{ such that } s_1 s_2^{-1} \in \textit{H}^{\textit{g}} \text{,}$
- $SS^{-1} \subseteq \bigcup_{g \in G} H^g$.

S is called an intersecting subset of G if S satisfies above.

Example

- (Trivial intersecting subsets) H, $H^g H^{g_1}g_2$.
- ② $G = L_2(q), q = p^f$, p is a prime and f is odd. The stabilizer $H \cong C_p$. $S \in \text{Syl}_p(G)$ is an intersecting subset of G.
- \odot S is an intersecting subset Sg, Sg are intersecting subsets

EKR problems for permutation group.

Let $G \leq \operatorname{Sym}(\Delta)$ be transitive and $H = G_{\delta}$.

- EKR property: For any intersecting set S we have $|S| \leq |H|$.
- strict EKR property: "EKR property" + Any intersecting set S with $|S| = |H| \Rightarrow S = H^{g_1}g_2$.

Lemma

G has a regular subgroup \Rightarrow G has the EKR property.

Corollary

Frobenius groups have EKR property.

6/23

Algebraic graph approach-CS bound

The derangement graph Γ_{dG} of G is defined as follows.

- $V(\Gamma_{dG}) = G$
- $g_1 \sim g_2$ if $g_1g_2^{-1}$ fixes no point in Δ , (i.e $g_1g_2^{-1}$ is a **derangement**)

Observation:

- Let $D \subseteq G$ be the sets derangement of G, then $D^G = D$ and $\Gamma_{dG} = \mathsf{Cay}(G, D)$.
- ullet S is an intersecting subset of $G\iff S$ is an independent set in Γ_{dG} .

Lemma

Let Γ be a vertex-transitive graph, let C be a **clique** of Γ and let S be an **independent** set of Γ , then $|C||S| \leq |V(\Gamma)|$

Count $\{(g,c)\mid g\in \operatorname{Aut}(\Gamma), c\in \mathit{C}, c^g\in \mathit{S}\}$ in two ways.

Remark $|C| \ge |\Delta| \Rightarrow G$ has the EKR property.

Further examples

Example

The action of $GL_n(q)$ on $\mathbb{F}_q^n \setminus \{0\}$ has EKR property.

Example

The natural action of S_n on [n] has the EKR property.

Example

The action of $PGL_n(q)$ on 1-spaces of \mathbb{F}_q^n has EKR property.

Let $\phi_{\times} \in GL_n(q) : \mathbb{F}_{q^n} \longrightarrow \mathbb{F}_{q^n}$, $a \mapsto ax$, let $\mathbb{F}_{q^n}^{\times} = \langle \zeta \rangle$, and let

$$m = \frac{q^n - 1}{q - 1} = 1 + q + \dots + q^{n-1}$$
. Then

$$\{\mathit{Id},\overline{\phi_{\zeta}},\overline{\phi_{\zeta^2}},\ldots,\overline{\phi_{\zeta^{\mathit{m}-1}}}\}$$

is a clique of the derangement graph of $\mathsf{PGL}_n(q)$ of size $|\Delta|$.

The ratio bound.

Lemma

Let Γ be a k-regular graph with least eigenvalue τ and let $\alpha(\Gamma)$ independence number. Then $\alpha(\Gamma)(1-\frac{k}{\tau}) \leq |V(\Gamma)|$.

Example

The Kneser graph $\Gamma = K(n, k)$ is defined as follows

- $V(\Gamma) = k$ -subsets of $\{1, 2, \dots, n\}$
- $s_1 \sim s_2 \iff s_1 \cap s_2 = \emptyset$

Then \mathcal{F} is intersecting $\iff \mathcal{F}$ is an independent set of K(n, k).

The minimal eigenvalue of Γ is $-\binom{n-k-1}{k-1}$, hence

$$\alpha(\Gamma) \le \frac{\binom{n}{k}}{1 - \binom{n-k}{k} / - \binom{n-k-1}{k-1}} = \binom{n-1}{k-1}$$

The ratio bound

Observation Let $D=\{g\in G\mid g \text{ fixes no point in }\Delta\}\subseteq G$, the adjacency matrix of Γ_{dG} is the matrix of the multiplication of $\sum_{g\in D}g\in Z(\mathbb{C}G)$ on $\mathbb{C}G$ with respect to the basis $\{g\mid g\in G\}$.

Lemma

The eigenvalues of Γ_{dG} are $\eta_{\chi} = \frac{1}{\chi(id)} \sum_{g \in D} \chi(g)$, $\chi \in Irr_{\mathbb{C}}(G)$.

◆ロト ◆個ト ◆差ト ◆差ト を めんぐ

10 / 23

All 2-transitive groups have EKR property.

- If G is 2-transitive then Either G has a regular subgroup, or G is almost simple.
- Let K be a transitive subgroup of G and K has the EKR property, then G has the EKR property (Lem 3.3 of Tiep 2015)
- We may assume G is a simple 2-transitive group.
- Let π be the permutation character of G and χ_0 be the principal character of G, then $\pi=\chi_0+\psi$, where ψ is irreducible and $\psi(g)=\operatorname{fix}(g)-1$.
- The eigenvalues of Γ_{dG} afforded by ψ is $\eta_{\psi} = \frac{1}{n-1}(-1)|D|$.
- If η_{ψ} is the minimal eigenvalue of Γ_{dG} , then we have $\alpha(\Gamma_{dG}) \leq \frac{|G|}{1-\frac{|D|}{\eta_{gh}}} = \frac{|G|}{n}$, then G has the EKR property.

Line	Group S	Degree	Condition on G	Remarks	
1	Alt(n)	n	$Alt(n) \le G \le Sym(n)$	$n \ge 5$	
2	$\mathrm{PSL}_n(q)$	$\frac{q^n-1}{q-1}$	$\operatorname{PSL}_n(q) \le G \le \operatorname{P}\Gamma \operatorname{L}_n(q)$	$n \ge 2, (n,q) \ne (2,2), (2,3)$	
3	$\operatorname{Sp}_{2n}(2)$	$2^{n-1}(2^n-1)$	G = S	$n \ge 3$	
4	$\operatorname{Sp}_{2n}(2)$	$2^{n-1}(2^n+1)$	G = S	$n \ge 3$	
5	$PSU_3(q)$	$q^{3} + 1$	$PSU_3(q) \le G \le P\Gamma U_3(q)$	$q \neq 2$	
6	$\operatorname{Sz}(q)$	$q^{2} + 1$	$Sz(q) \le G \le Aut(Sz(q))$	$q = 2^{2m+1}, m > 0$	
7	Ree(q)	$q^{3} + 1$	$\operatorname{Ree}(q) \le G \le \operatorname{Aut}(\operatorname{Ree}(q))$	$q = 3^{2m+1}, m > 0$	
8	M_n	n	$M_n \le G \le \operatorname{Aut}(M_n)$	$n \in \{11, 12, 22, 23, 24\},\$	
				M_n Mathieu group,	
				G = S or $n = 22$	
9	M_{11}	12	G = S		
10	$PSL_2(11)$	11	G = S		
11	Alt(7)	15	G = S		
12	$PSL_2(8)$	28	$G = P\Sigma L_2(8)$		
13	HS	176	G = S	HS Higman-Sims group	
14	Co_3	276	G = S	Co ₃ third Conway group	

Table 1. Finite 2-transitive groups of almost simple type

12 / 23

The 2-transitive action of Sz(q).

Let
$$G = \mathsf{Sz}(q)$$
 where $q = 2^e$, let $r = \sqrt{2q}$, $C_4 \cong \langle \rho \rangle \in G$, $C_{q-1} \cong \langle \xi_0 \rangle \leq G$, $C_{q+r+1} \cong \langle \xi_1 \rangle \leq G$, $C_{q-r+1} \cong \langle \xi_2 \rangle \leq G$

	1	ρ^2	ρ	ρ^{-1}	ξ_0^t	ξ_1^t	ξ_2^t
X	q^2	0	0	0	-	-1	-1
X_i	$q^2 + 1$	1	1	1	$\epsilon_0^i(\xi_0^t)$	0	0
Y_{j}	(q-r+1)(q-1)	r-1	-1	-1	0	$-\epsilon_1^j(\xi_1^t)$	0
Z_k	(q+r+1)(q-1)	-r - 1	-1	-1	0	0	$-\epsilon_2^{\it k}(\xi_2^{\it t})$
W_{ℓ}	$\frac{r(q-1)}{2}$	$\frac{-r}{2}$	$\frac{r\sqrt{-1}}{2}$	$\frac{r\sqrt{-1}}{2}$	0	1	-1

Table: Character table of Sz(q)

$$\text{ where } \epsilon_0^i(\xi_0^t) = \zeta_{q-1}^{it} + \zeta_{q-1}^{-it}, \ t \in \{1,2,\dots,q-2\} \\ \epsilon_1^j(\xi_1^t) = \zeta_{q+r+1}^{jt} + \zeta_{q+r+1}^{jtq} + \zeta_{q+r+1}^{-jt} + \zeta_{q+r+1}^{-jtq}, \ t \in \{1,2,\dots,q+r\} \\ \epsilon_1^k(\xi_2^t) = \zeta_{q-r+1}^{kt} + \zeta_{q-r+1}^{ktq} + \zeta_{q-r+1}^{-kt} + \zeta_{q-r+1}^{-ktq}, \ t \in \{1,2,\dots,q-r\}$$

◆ロト ◆団ト ◆豆ト ◆豆ト ・豆 ・ 夕久(*)

13 / 23

Math. SUSTech Group Theory Seminar November 20, 2022

Permutation groups without EKR property

Theorem (K.Maegher, A Sarobidy Razafimahatratra 2021)

The action of $AGL_2(q)$ on affine lines does not have the EKR property.

Observation: A block system of affine lines: ℓ_1, ℓ_2 is in the same block $\iff \ell_1 \parallel \ell_2$.

- Let $\mathsf{AGL}_2(q)_B$ be the kernel of $\mathsf{AGL}_2(q)$ on blocks, $\mathsf{AGL}_2(q)_B = \{(\lambda I_d, z) \mid \lambda \in \mathbb{F}_q^{\times}, z \in \mathbb{F}_q^2\}$
- $AGL_2(q)_B$ is an intersecting set
- If $(M, z) \in AGL_2(q)$ fixes two blocks, then (M, z) fixes a line.
- let S be a 2-intersecting set of $AGL_2(q)$ on blocks. (i.e $s_1s_2^{-1}$ fixes 2 blocks of) Then

$$\bigcup_{s \in S} \mathsf{AGL}_2(q)_B s$$

is an intersecting set of $AGL_2(q)$.

• There is a 2 intersecting set with size larger than $\frac{3q-5}{q^2}$.

Math. SUSTech Group Theory Seminar

$L_2(\emph{p}^\emph{f})$ with stabilizer $\emph{C}_\emph{p}$

Let $G = L_2(p^f)$ with stabilizer $H \cong C_p$

- f is odd or $p=2 \Rightarrow \mathbb{F}_{p^f}^+ \cong Q \in \mathrm{Syl}_p(G)$ is an intersecting subgroup of G.
- If p is odd and f is even, we identify Q with $\mathbb{F}_{p^f}^+$, let Q_1 be $\mathbb{F}_{p^{f/2}}^+$ under this identification, Q_1 is an intersecting subgroup of G.

Maximal intersecting set: An intersecting set with maximal cardinality. Intersecting density: $\rho(G) = \frac{|S|}{|G_\delta|}$ with S a maximal intersecting set .

Lemma (Something like Ademir Hujdurović Theorem 7.2, 2022)

- f is odd or $p = 2 \Rightarrow \rho(G) = p^{f-1}$,
- f is even, p is odd and $f > 2 \Rightarrow \rho(G) = p^{f/2-1}$.

◆ロト→□ト→直ト→直 りへ()

$L_2(p^f)$ with stabilizer C_p

Lemma

f is odd or $p=2 \Rightarrow \rho(G)=p^{f-1}$. f is even, p is odd and $f>2 \Rightarrow \rho(G)=p^{f/2-1}$

proof: Let $P_1, P_2, \dots, P_{p^f+1}$ be $p^f + 1$ Sylow-p subgroup of G, assume

$$P_1 = \left\{ egin{array}{c|c} \hline 1 & x \ 0 & 1 \end{bmatrix} \mid x \in \mathbb{F}_{p^f}
ight\}$$
, and $P_2 = \left\{ egin{array}{c|c} \hline 1 & 0 \ y & 1 \end{bmatrix} \mid y \in \mathbb{F}_{p^f}
ight\}$

- Let S be a maximal intersecting set and $1 \in S$, we assume $P_1 \cap S \neq 1$ and $1 \neq X = \overline{\begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix}} \in P_1 \cap S$ up to a conjugation of S.
- $Y \in S \Rightarrow Y^p = 1 \Rightarrow$ the preimage of Y in $SL_2(p^f)$ is of trace ± 2 .
- Assume $Y \in S \setminus P_1$ and $Y = \begin{bmatrix} a & b \\ c & 2-a \end{bmatrix}$, $p \neq 2$, $YX^{-1} \in S \Rightarrow Tr(\begin{bmatrix} a & b-ax \\ c & 2-a-cx \end{bmatrix}) = -2 \Rightarrow c = 4/x \Rightarrow |S \cap P_1 \setminus 1| \leq 1$.

Math. SUSTech Group Theory Seminar November 20, 2022

16/23

$L_2(p^f)$ with stabilizer C_p

- p = 2, $YX^{-1} \in S \Rightarrow Y \in P_1 \Rightarrow S \subseteq P_1$.
- $p \neq 2, S \nsubseteq P_1 \Rightarrow |(S \cap P_i) \setminus 1| \leq 1$, if $|S| \geq 3$, up to a conjugation we may assume $S \cap P_1 \neq 1$ and $S \cap P_2 \neq 1$.
- We may assume $X=\begin{bmatrix}1&x\\0&1\end{bmatrix}\in S\cap P_1$ and $Y=\begin{bmatrix}1&0\\4/x&1\end{bmatrix}\in S\cap P_2.$
- $Z \in S \setminus (X \cap Y \cap 1)$, we may assume $Z = \begin{bmatrix} a & b \\ 4/x & 2-a \end{bmatrix}$, $Z \notin P_1, Z \notin P_2$ and $ZY^{-1} \in S \Rightarrow b = x$.
- $\begin{bmatrix} a & x \\ 4/x & 2-a \end{bmatrix} \in \operatorname{SL}_2(q) \Rightarrow Z$ has at most 2 choices and $|S| \leq 5$,
- $|S| \leq 5$ or $S \subseteq P_1$

$L_2({\it p}^{\it f})$ with stabilizer ${\it C_p}$

Assume $S \subseteq P_1$

- ullet f is odd, all cyclic subgroup of $G=\mathrm{L}_2(p^f)$ are conjugate and $S=P_1$
- f is even, there are two G classes of cyclic subgroup of order p C_1 , C_2 with $C_1 \cap P_1 = \left\{ egin{array}{c} 1 & x \\ 0 & 1 \end{bmatrix} \mid 0 \neq x \in \mathbb{F}_{p^f}^\square \right\}$
- If f is even, $\mathbb{F}_{p^{f/2}}^{\times}$ contains all square elements of $\mathbb{F}_{p^f}^{\times}$, therefore $S = \left\{ \overline{\begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix}} \mid x \in \mathbb{F}_{p^{f/2}} \right\} \text{ is an intersecting subset of } G.$
- If f is even, recall Paley graph $P(p^f)$ is defined by $V(P(p^f)) = \mathbb{F}_{p^f}$, $x_1 \sim x_2$ in $P(p^f)$ if $x_1 x_2 \in \mathbb{F}_{p^f}^{\square}$.
- S is a clique of $P(p^f)$, $|S| \le \omega(P(p^f)) = p^{f/2}$, where $\omega(P(p^f))$ is the clique number of $P(p^f)$.

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・恵 ・ 夕久で

Permutation groups without EKR property

Example

Let $G \cong Sz(q)$ with stabilizer $H \cong C_4$, then the Sylow-2 group of G is an intersecting subset of G.

Example (Ademir Hujdurović et. al 2022)

Let $G \cong L_2(p^e)$ where $p^e \equiv 1 \pmod 3$ and $H \cong C_3$, then $\rho(G) = 4/3$ if $p \neq 5$ and $\rho(G) = 5$ if p = 5.

About the strict EKR property

Groups with the strict EKR property.

- The natural action of S_n , A_n (Cameron 2003, B. Ahmadi K. Maegher 2014)
- ullet $L_2({\it q})$ on 1-spaces of $\mathbb{F}_{\it q}^2$. (Q. Xiang et. al 2018)
- $G = GL_2(q)$ or $G = SL_2(q)$, $H = \{\text{upper triangular unipotent matrices}\}$. (M. Bardestani, K. Mallahi-Karai Theorem 5, 2014)

Groups with the EKR property and without the strict EKR property

$$G \text{ is the Heisenberg group } G = \left\{ \eta(x,y,z) := \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} := x,y,z \in \mathbb{F}_p \right\},$$

 $H=\{\eta(x,0,0):x\in\mathbb{F}_p\}, S:=\{\eta(x,0,x^2):x\in\mathbb{F}_p\}$ is an intersecting subset . (example from M. Bardestani, K. Mallahi-Karai, 2014)

4□▶ 4□▶ 4 □ ▶ 4 □ ▶ 9 0 0

About the strict EKR property

 $\mathsf{GL}_2(q)$ on $\mathbb{F}_q^2 \setminus (0)$ does not have the strict EKR property.

$$\mathbf{H} = \left\{ \begin{bmatrix} 1 & \mathbf{a} \\ 0 & \mathbf{b} \end{bmatrix} \mid \mathbf{b} \in \mathbb{F}_q^{\times} \right\}$$

is a stabilizer,

$$S = \left\{ \begin{bmatrix} 1 & 0 \\ a & b \end{bmatrix} \mid b \in \mathbb{F}_q^{\times} \right\}$$

is an intersecting set.

Math. SUSTech

Intersecting subgroups and the weak EKR property

An intersecting subgroup of G is an intersecting subset that is also a subgroup of G, TFAE

- $K \leq G$ is an intersecting subgroup.
- $K \subseteq \bigcup_{g \in G} H^g$.
- K contains no derangement of G.

Example

- $G = \mathsf{P}\Gamma\mathsf{L}_2(2^f)$, where f is odd, $H = (D_{2(2^f-1)}):\langle\phi\rangle$, $\mathcal{K} = (2^f:(2^f-1)):\langle\phi\rangle$ is an intersecting subgroup of G.
- $G = \mathsf{P}\Gamma\mathsf{L}_2(2^f)$ where f is even, $H = (D_{2(2^f-1)}):\langle\phi\rangle$, $K = \mathsf{L}_2(2^{f/2}):\langle\phi\rangle$ is an intersecting subgroup of G.

Problem For almost simple primitive permutation group G, characterize intersecting subgroups K such that $|K| \ge |H|$.

Thank you!

- A. Hujdurović, I. Kovács, K. Kutnar, D. Marušič, *Intersection density of transitive groups with cyclic point stabilizers*, arXiv:2201.11015 [math.CO].
- K. Meagher, A. Sarobidy Razafimahatratra *Erdős-Ko-Rado results for the general linear group, the special linear group and the affine general linear group*, arXiv:2110.08972 [math.CO]
 - B. Mohammad , M-K. Keivan *On the Erdős-Ko-Rado property for finite groups*. (English summary) J. Algebraic Combin. **42** (2015), no. 1, 111–128.