Irredundant bases for the primitive actions of the symmetric and the alternating groups

Peiran Wu

University of St Andrews

SUSTech Group Theory Seminars 2022-10-24

 S_n and A_n

Irredundant bases for the primitive actions of the symmetric and the alternating groups

 S_n and A_n

Irredundant bases for the primitive actions of the symmetric and the alternating groups

The length

G : finite group

The **length of** G, denoted $\ell(G)$, is the largest $m \in \mathbb{N}$ for which there are $H_0, \ldots, H_m \leqslant G$ with

 $H_0 > H_1 > \cdots > H_m.$

We can take $H_0 = G$ and $H_m = 1$.

Example

• If
$$G = 1$$
, then $\ell(G) = 0$.

• If $G = C_n$, then $\ell(G) = \Omega(n)$ (# prime factors in n, counted with multiplicity).

In general, $\ell(G) \leq \Omega(|G|) \leq \log_2 |G|$.

Facts about the length

G : finite group

Lemma

- If $H \leq G$, then $\ell(H) \leq \ell(G)$.
- $If N \trianglelefteq G, then \ell(G) = \ell(N) + \ell(G/N).$

Corollary

If G is soluble, then $\ell(G) = \Omega(|G|)$.

The length of S_n

We know the length of the symmetric groups exactly:

$$\ell(\mathbf{S}_n) = \left\lfloor \frac{3n-1}{2} \right\rfloor - b_n \leqslant \frac{3}{2}n - 2 \ (n \geqslant 2),$$

where b_n is the number of ones in the base-2 expansion of n.

This was conjectured by Babai in 1986 and proved by Cameron, Solomon & Turull in 1989.

On the other hand,

$$\log_2(|\mathbf{S}_n|) = \log_2(n!) \approx n \log_2 n.$$

The stabiliser length

- Δ : finite set
- G : permutation group on $\Delta,$ i.e. subgroup of $\mathrm{Sym}(\Delta)$

Given $\Sigma\subseteq\Delta,$ let $G_{(\Sigma)}$ be the subgroup of elements in G that fixes Σ pointwise.

The "stabiliser length" $\ell_S(G, \Delta)$ of G on Δ is the largest $m \in \mathbb{N}$ for which there are subsets $\Sigma_0, \ldots, \Sigma_m \subseteq \Delta$ with

$$G_{(\Sigma_0)} > G_{(\Sigma_1)} > \cdots > G_{(\Sigma_m)}.$$

Clearly, $\ell_{\mathrm{S}}(G, \Delta) \leqslant \ell(G)$.

The length and the stabiliser length

- Δ : finite set
- G : permutation group on $\Delta,$ i.e. subgroup of $\mathrm{Sym}(\Delta)$

Earlier we saw:

Lemma 1 If $H \leq G$, then $\ell(H) \leq \ell(G)$. 2 If $N \leq G$, then $\ell(G) = \ell(N) + \ell(G/N)$.

There are analogous results for the stabiliser length:

Lemma

- If $H \leq G$, then $\ell_{\mathcal{S}}(H, \Delta) \leq \ell_{\mathcal{S}}(G, \Delta)$.
- $\label{eq:rescaled} \textbf{0} \ \ \text{If} \ N \trianglelefteq G \text{, then} \ \ell_{\mathrm{S}}(G,\Delta) \leqslant \ell_{\mathrm{S}}(N,\Delta) + \ell(G/N).$

Examples of the stabiliser length

- Δ : finite set
- G : permutation group on $\Delta,$ i.e. subgroup of $\mathrm{Sym}(\Delta)$

Example

Let $\Delta \coloneqq \{1, \ldots, n\}$.

• If
$$G = 1$$
, then $\ell_{\mathrm{S}}(G, \Delta) = 0$.

• If $G = \langle (1 \ 2 \ \cdots \ n) \rangle$, then $\ell_{\mathrm{S}}(G, \Delta) = 1$.

• If
$$G = \text{Sym}(n)$$
, then $\ell_{S}(G, \Delta) = n - 1$.

• If
$$G = \operatorname{Alt}(n)$$
, then $\ell_{\mathrm{S}}(G, \Delta) = n - 2$.

What about other faithful action of Sym(n) and Alt(n)? We will come back to this.

Irredundant bases for the primitive actions of the symmetric and the alternating groups

1 Chains of subgroups

- Δ : finite set
- G : permutation group on $\Delta,$ i.e. subgroup of $\mathrm{Sym}(\Delta)$

A base for G is a subset Σ of Δ such that $G_{(\Sigma)} = 1$.

The minimum size of a base for G (on Δ) is called the **base size** of G and denoted $b(G, \Delta)$.

Example (Burness, Guralnick & Saxl, 2011)

Let $G \leq \text{Sym}(\Delta)$ is isomorphic to S_n to A_n . Suppose G is primitive¹ with point stabiliser H and H is primitive on $\{1, \ldots, n\}$. If $n \geq 13$, then $b(G, \Delta) = 2$.

¹A transitive permutation group G is primitive if and only if any point stabiliser is a maximal subgroup of G.

Motivation

Lemma

Suppose $\Sigma \subseteq \Delta$ is a base for G and $x, y \in G$. Then x = y if and only if $\delta^x = \delta^y$ for all $\delta \in \Sigma$.

To determine an element, it suffices to know what the element does to a base. This helps optimise memory and storage when doing computations involving permutation groups.

How do we find a base?

- **()** Find a point δ_1 that G does not fix.
- **2** Find a point δ_2 that G_{δ_1} does not fix.
- 3 Iterate until $G_{\delta_1,...,\delta_m} = 1$.
- Return $\delta_1, \ldots, \delta_m$, which is a base.

Can this process be optimal? How large can m be?

Irredundant bases

An **irredundant base** for G is a base Σ whose elements can be ordered, say as δ_1,\ldots,δ_m , such that

$$G > G_{\delta_1} > G_{\delta_1,\delta_2} > \cdots > G_{\delta_1,\dots,\delta_m} = 1.$$

The maximum size of an irredundant base for G (on Δ) is called the **maximum irredundant base size of** G and denoted I(G, Δ).

Clearly, $b(G, \Delta) \leq I(G, \Delta) \leq \ell_S(G, \Delta)$.

Connecting the dots

We have
$$I(G, \Delta) \leq \ell_S(G, \Delta)$$
.
Let's prove that $I(G, \Delta) = \ell_S(G, \Delta)$.

Let $m \coloneqq \ell_{\mathbf{S}}(G, \Delta)$. Then there is a chain:

$$G_{(\Sigma_0)} > G_{(\Sigma_1)} > \cdots > G_{(\Sigma_m)}.$$

- Since m is maximal, $G_{(\Sigma_0)} = G$ and $G_{(\Sigma_m)} = 1$.
- Furthermore, the subset Σ_0 can be replaced with \emptyset .
- Since $G_{(\Sigma_i)}$ fixes Σ_{i-1} pointwise, we may replace Σ_i with $\Sigma_{i-1} \cup \{\delta_i\}$ for each $1 \leq i \leq m$.
- The sequence $\delta_1, \ldots, \delta_m$ is an irredundant base.

Thus, $I(G, \Delta) \ge \ell_S(G, \Delta)$. Therefore $I(G, \Delta) = \ell_S(G, \Delta)$.

Transitive permutation groups

Suppose G is transitive. Then:

- we can choose a point stabiliser H < G;
- for every $\Sigma \subseteq \Delta$, the pointwise stabiliser $G_{(\Sigma)}$ is an intersection of conjugates of H in G;

• write
$$I(G, H) \coloneqq I(G, \Delta)$$
.

I(G, H) is equal to the largest $m \in \mathbb{N}$ for which there are $K_0, \ldots, K_m \leqslant G$ that are intersections of *G*-conjugates of *H* satisfying

$$K_0 > K_1 > \cdots > K_m.$$

We can take $K_0 = G$, $K_1 = H$ and $K_m = 1$.

Clearly, $I(G, H) \leq \ell(H) + 1$.

Recap

We have seen the following so far:

- $\ell(G)$, the length of a group G.
- $b(G, \Delta)$, the base size of a permutation group G on Δ .
- $I(G, \Delta)$, the maximum irredundant base size of a permutation group G on Δ .
- $b(G, \Delta) \leq I(G, \Delta) \leq \ell(G)$.
- If G is transitive with point stabiliser H, then $I(G, H) \leq \ell(H) + 1.$
- If $N \trianglelefteq G$, then $I(G, \Delta) \leqslant I(N, \Delta) + \ell(G/N)$.

We now focus on the symmetric and the alternating groups.

 $\mathbf{S}_n \text{ and } \mathbf{A}_n$

Irredundant bases for the primitive actions of the symmetric and the alternating groups

The symmetri/alternating groups

From now on, let G be S_n and A_n $(n \ge 5)$ acting primitively on a set Δ .

The following are known:

•
$$\ell(\mathbf{S}_n) = \lfloor \frac{3n-1}{2} \rfloor - b_n \leqslant \frac{3}{2}n - 2.$$

•
$$\ell(\mathbf{A}_n) = \left\lfloor \frac{3n-3}{2} \right\rfloor - b_n \leqslant \frac{3}{2}n - 3$$

• $b(G, \Delta) = 2$ if $n \ge 13$ and G is primitive on Δ with the point stabiliser primitive on $\{1, \ldots, n\}$.

What can we say about $I(G, \Delta)$?

How different is $I(G, \Delta)$ from $b(G, \Delta)$, $\ell(H) + 1$, and $\ell(G)$?

Primitive actions of the symmetric/alternating groups

Theorem (Scott, 1980; Aschbacher & Scott, 1985; Liebeck, Praeger & SaxI, 1987)

Let G be S_n or A_n $(n \ge 5)$. Every maximal subgroup (other than A_n) of G is one of the following (up to conjugacy):

- (intransitive case) $(S_m \times S_k) \cap G$ $(n = m + k \text{ and } m \neq k)$,
- (imprimitive case) $(S_m \wr S_k) \cap G$ ($n = mk, m \ge 2, k \ge 2$),
- (affine case) $AGL_d(p) \cap G$ ($n = p^d$, p prime),
- (diagonal case) (T^k · (Out(T) × S_k)) ∩ G (n = |T|^{k-1}, T non-abelian simple),
- (wreath case) $(\mathbf{S}_m \wr \mathbf{S}_k) \cap G$ $(n = m^k, m \ge 5, k \ge 2)$,
- (almost simple case) an almost simple group acting primitively with socle $T < A_n$.

In each of the last 4 cases, the maximal subgroup is primitive on $\{1, \ldots, n\}$.

Primitive actions of the alternating groups

Suppose $G = A_n$. The point stabiliser H is a maximal subgroup of G. We make the following distinction of cases:

• $H = A_n \cap M$, where M is a maximal subgroup of S_n . Then the action of A_n with point stabiliser H is the restriction of the action of S_n with point stabiliser M. By previous lemmas,

$$I(S_n, M) - 1 \leq I(A_n, H) \leq I(S_n, M).$$

2 all other cases, e.g. $n = 2^d$ and $H = AGL_d(2) < A_n$.

Building a chain with intersections of conjugates of ${\cal H}$

Let $G = S_n$ ($n \ge 5$) and $H \ne A_n$ a maximal subgroup of S_n . Let J be an intersection of S_n -conjugates of H.

Which proper subgroups of J can be written as $J\cap J^x$ for some $x\in \mathbf{S}_n?$

Once we have an answer, we can continue to find $J \cap J^x \cap J^{x'}$ or replace J with $J \cap J^x$ and ask the above question again.

The affine case

- Let $G = S_n$ where $n = p^d$ with $d \ge 2$ and $p \ge 3$.
- Let $V = \mathbb{F}_p^d$ and identify $G \cong \text{Sym}(V)$. Let $H = \text{AGL}_d(p) = V \cdot \text{GL}(V)$.
- Let K be the subgroup of GL(V) that stabilises setwise some proper,non-trivial subspace $W \subseteq V$.
- Let $\alpha \in \mathbb{F}_p^{\times} \setminus \{1\}$ be a primitive element and define a function $x: V \to V$ with

$$\mathbf{v}^x \coloneqq \begin{cases} lpha \mathbf{v}, & \text{if } \mathbf{v} \in W, \\ \mathbf{v}, & \text{otherwise} \end{cases}$$

• Then $K = H \cap H^x$.

Figure: The three orbits of a subspace stabiliser in $GL_2(\mathbb{F}_5)$

Primitive actions of the symmetric groups (affine case)

G	S _n	
	$\operatorname{AGL}_d(p)$	
Н	$(n=p^d,\ p \ {\sf prime}>2)$	
	d = 1	$d \geqslant 2$
b(G,H)	$2^{\dagger 1}$	
I(G,H)	$\Omega(p-1) - \epsilon + 2^{\dagger 2}$	$\geqslant \frac{d(d-1)}{2} + (\Omega(p-1) - \epsilon)d^{\dagger 2}$
$\ell(H) + 1$	$\Omega(p-1)+2$	$\geqslant \frac{d(d-1)}{2} + \Omega(p-1)d$
$\ell(G)$	$pprox rac{3}{2}p^d$	

If p = 5, then $\epsilon = 1$; otherwise, $\epsilon = 0$.

†1 except when n = 5 or 9; Burness, Guralnick & Saxl, 2011 †2 W.

Primitive actions of the symmetric groups (intransitive and imprimitive cases)

G	\mathbf{S}_n	
Н	$\mathrm{S}_m imes \mathrm{S}_k$	$\mathbf{S}_m\wr\mathbf{S}_k$
	(n = m + k,	(n = mk,
	$m \neq k$)	$m \geqslant 2$, $k \geqslant 2$)
b(G,H)	$\geq \log n^{\dagger 1}$	$\leqslant \max\{5, \lceil \log_k(m+3) \rceil\}^{\dagger 3}$
I(G,H)	$n-1$ if $m \mid n_{\dagger 2}$	> (m-1)k (exact?)
	n-2 otherwise	$\gg (m-1)\kappa$ (exact:)
$\ell(H) + 1$	$\leq \frac{3}{2}n - 4$	$\leqslant \frac{3}{2}(m-1)k+k-1$
$\ell(\overline{G})$		$\approx \frac{3}{2}n$

- †1 Burness, Guralnick & Saxl, 2011
- †2 Gill & Lodà, 2021 (arXiv)
- $\dagger 3$ Morris & Spiga, 2021

- $I(S_n, H)$ for the remaining maximal groups H.
- ${\rm I}({\rm A}_n,H)$ where H is not induced from a maximal subgroup of ${\rm S}_n.$
- Bounds on $I(S_n, H)$ and $I(A_n, H)$ in terms of n.
- Bounds on $I(S_n, H)$ and $I(A_n, H)$ in terms of $|\Delta|$ = the index of H.

