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The length

G : finite group

The length of G, denoted `(G), is the largest m ∈ N for which
there are H0, . . . ,Hm 6 G with

H0 > H1 > · · · > Hm.

We can take H0 = G and Hm = 1.

Example
If G = 1, then `(G) = 0.
If G = Cn, then `(G) = Ω(n) (# prime factors in n, counted
with multiplicity).

In general, `(G) 6 Ω(|G|) 6 log2 |G|.
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Facts about the length

G : finite group

Lemma
1 If H 6 G, then `(H ) 6 `(G).
2 If N E G, then `(G) = `(N ) + `(G/N ).

Corollary
If G is soluble, then `(G) = Ω(|G|).
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The length of Sn

We know the length of the symmetric groups exactly:

`(Sn) =

⌊
3n − 1

2

⌋
− bn 6

3
2

n − 2 (n > 2),

where bn is the number of ones in the base-2 expansion of n.

This was conjectured by Babai in 1986 and proved by Cameron,
Solomon & Turull in 1989.

On the other hand,

log2(|Sn |) = log2(n!) ≈ n log2 n.



Chains of subgroups Bases Sn and An

The stabiliser length

∆ : finite set
G : permutation group on ∆, i.e. subgroup of Sym(∆)

Given Σ ⊆ ∆, let G(Σ) be the subgroup of elements in G that fixes
Σ pointwise.

The “stabiliser length” `S(G,∆) of G on ∆ is the largest m ∈ N
for which there are subsets Σ0, . . . ,Σm ⊆ ∆ with

G(Σ0) > G(Σ1) > · · · > G(Σm).

Clearly, `S(G,∆) 6 `(G).
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The length and the stabiliser length

∆ : finite set
G : permutation group on ∆, i.e. subgroup of Sym(∆)

Earlier we saw:
Lemma

1 If H 6 G, then `(H ) 6 `(G).
2 If N E G, then `(G) = `(N ) + `(G/N ).

There are analogous results for the stabiliser length:

Lemma
1 If H 6 G, then `S(H ,∆) 6 `S(G,∆).
2 If N E G, then `S(G,∆) 6 `S(N ,∆) + `(G/N ).
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Examples of the stabiliser length

∆ : finite set
G : permutation group on ∆, i.e. subgroup of Sym(∆)

Example
Let ∆ := {1, . . . ,n}.

If G = 1, then `S(G,∆) = 0.
If G = 〈(1 2 · · · n)〉, then `S(G,∆) = 1.
If G = Sym(n), then `S(G,∆) = n − 1.
If G = Alt(n), then `S(G,∆) = n − 2.

What about other faithful action of Sym(n) and Alt(n)? We will
come back to this.
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Bases

∆ : finite set
G : permutation group on ∆, i.e. subgroup of Sym(∆)

A base for G is a subset Σ of ∆ such that G(Σ) = 1.

The minimum size of a base for G (on ∆) is called the base size
of G and denoted b(G,∆).

Example (Burness, Guralnick & Saxl, 2011)
Let G 6 Sym(∆) is isomorphic to Sn to An. Suppose G is
primitive1with point stabiliser H and H is primitive on {1, . . . ,n}.
If n > 13, then b(G,∆) = 2.

1A transitive permutation group G is primitive if and only if any point
stabiliser is a maximal subgroup of G.
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Motivation
Lemma
Suppose Σ ⊆ ∆ is a base for G and x, y ∈ G. Then x = y if and
only if δx = δy for all δ ∈ Σ.

To determine an element, it suffices to know what the element
does to a base. This helps optimise memory and storage when
doing computations involving permutation groups.

How do we find a base?
1 Find a point δ1 that G does not fix.
2 Find a point δ2 that Gδ1 does not fix.
3 Iterate until Gδ1,...,δm = 1.
4 Return δ1, . . . , δm, which is a base.

Can this process be optimal? How large can m be?
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Irredundant bases

An irredundant base for G is a base Σ whose elements can be
ordered, say as δ1, . . . , δm, such that

G > Gδ1 > Gδ1,δ2 > · · · > Gδ1,...,δm = 1.

The maximum size of an irredundant base for G (on ∆) is called
the maximum irredundant base size of G and denoted I(G,∆).

Clearly, b(G,∆) 6 I(G,∆) 6 `S(G,∆).
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Connecting the dots

We have I(G,∆) 6 `S(G,∆).
Let’s prove that I(G,∆) = `S(G,∆).

Let m := `S(G,∆). Then there is a chain:

G(Σ0) > G(Σ1) > · · · > G(Σm).

Since m is maximal, G(Σ0) = G and G(Σm) = 1.
Furthermore, the subset Σ0 can be replaced with ∅.
Since G(Σi) fixes Σi−1 pointwise, we may replace Σi with
Σi−1 ∪ {δi} for each 1 6 i 6 m.
The sequence δ1, . . . , δm is an irredundant base.

Thus, I(G,∆) > `S(G,∆). Therefore I(G,∆) = `S(G,∆).
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Transitive permutation groups

Suppose G is transitive. Then:

we can choose a point stabiliser H < G;
for every Σ ⊆ ∆, the pointwise stabiliser G(Σ) is an
intersection of conjugates of H in G;
write I(G,H ) := I(G,∆).

I(G,H ) is equal to the largest m ∈ N for which there are
K0, . . . ,Km 6 G that are intersections of G-conjugates of H
satisfying

K0 > K1 > · · · > Km.

We can take K0 = G, K1 = H and Km = 1.

Clearly, I(G,H ) 6 `(H ) + 1.
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Recap

We have seen the following so far:

`(G), the length of a group G.
b(G,∆), the base size of a permutation group G on ∆.
I(G,∆), the maximum irredundant base size of a permutation
group G on ∆.
b(G,∆) 6 I(G,∆) 6 `(G).
If G is transitive with point stabiliser H , then
I(G,H ) 6 `(H ) + 1.
If N E G, then I(G,∆) 6 I(N ,∆) + `(G/N ).

We now focus on the symmetric and the alternating groups.
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The symmetri/alternating groups

From now on, let G be Sn and An (n > 5) acting primitively on a
set ∆.

The following are known:

`(Sn) =
⌊3n−1

2
⌋
− bn 6 3

2n − 2.
`(An) =

⌊3n−3
2
⌋
− bn 6 3

2n − 3.
b(G,∆) = 2 if n > 13 and G is primitive on ∆ with the point
stabiliser primitive on {1, . . . ,n}.

What can we say about I(G,∆)?

How different is I(G,∆) from b(G,∆), `(H ) + 1, and `(G)?
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Primitive actions of the symmetric/alternating groups
Theorem (Scott, 1980; Aschbacher & Scott, 1985; Liebeck,
Praeger & Saxl, 1987)
Let G be Sn or An (n > 5). Every maximal subgroup (other than
An) of G is one of the following (up to conjugacy):

(intransitive case) (Sm ×Sk) ∩ G (n = m + k and m 6= k),
(imprimitive case) (Sm oSk) ∩ G (n = mk, m > 2, k > 2),
(affine case) AGLd(p) ∩ G (n = pd , p prime),
(diagonal case) (T k · (Out(T)× Sk)) ∩ G (n = |T |k−1, T
non-abelian simple),
(wreath case) (Sm oSk) ∩ G (n = mk , m > 5, k > 2),
(almost simple case) an almost simple group acting primitively
with socle T < An.

In each of the last 4 cases, the maximal subgroup is primitive on
{1, . . . ,n}.
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Primitive actions of the alternating groups

Suppose G = An. The point stabiliser H is a maximal subgroup of
G. We make the following distinction of cases:

1 H = An ∩M , where M is a maximal subgroup of Sn. Then
the action of An with point stabiliser H is the restriction of
the action of Sn with point stabiliser M . By previous lemmas,

I(Sn,M )− 1 6 I(An,H ) 6 I(Sn,M ).

2 all other cases, e.g. n = 2d and H = AGLd(2) < An.
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Building a chain with intersections of conjugates of H

Let G = Sn (n > 5) and H 6= An a maximal subgroup of Sn. Let
J be an intersection of Sn-conjugates of H .

Which proper subgroups of J can be written as J ∩ J x for some
x ∈ Sn?

Once we have an answer, we can continue to find J ∩ J x ∩ J x′ or
replace J with J ∩ J x and ask the above question again.
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The affine case

Let G = Sn where n = pd with d > 2 and
p > 3.
Let V = Fd

p and identify G ∼= Sym(V ).
Let H = AGLd(p) = V ·GL(V ).
Let K be the subgroup of GL(V ) that
stabilises setwise some proper,non-trivial
subspace W ⊆ V .
Let α ∈ F×

p \ {1} be a primitive element
and define a function x : V → V with

vx :=

{
αv, if v ∈ W ,

v, otherwise

Then K = H ∩ H x .

0 1 α α2 α3
0
1
α
α2
α3

Figure: The three
orbits of a subspace
stabiliser in GL2(F5)
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Primitive actions of the symmetric groups (affine case)

G Sn

H
AGLd(p)

(n = pd , p prime > 2)
d = 1 d > 2

b(G,H ) 2 †1

I(G,H ) Ω(p − 1)− ε+ 2 †2 > d(d−1)
2 + (Ω(p − 1)− ε)d †2

`(H ) + 1 Ω(p − 1) + 2 > d(d−1)
2 +Ω(p − 1)d

`(G) ≈ 3
2pd

If p = 5, then ε = 1; otherwise, ε = 0.

†1 except when n = 5 or 9; Burness, Guralnick & Saxl, 2011
†2 W.
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Primitive actions of the symmetric groups (intransitive and
imprimitive cases)

G Sn

H
Sm ×Sk

(n = m + k,
m 6= k)

Sm oSk

(n = mk,
m > 2, k > 2)

b(G,H ) > log n †1 6 max{5, dlogk(m + 3)e} †3

I(G,H )
n − 1 if m | n

n − 2 otherwise
†2 > (m − 1)k (exact?)

`(H ) + 1 6 3
2n − 4 6 3

2(m − 1)k + k − 1
`(G) ≈ 3

2n

†1 Burness, Guralnick & Saxl, 2011
†2 Gill & Lodà, 2021 (arXiv)
†3 Morris & Spiga, 2021
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To-dos

I(Sn,H ) for the remaining maximal groups H .
I(An,H ) where H is not induced from a maximal subgroup of
Sn.
Bounds on I(Sn,H ) and I(An,H ) in terms of n.
Bounds on I(Sn,H ) and I(An,H ) in terms of |∆| = the index
of H .




