Two-geodesic transitive graphs of order p^n with n < 3

Speaker: Jun-Jie Huang

Work with Yan-Quan Feng, Jin-Xin Zhou, Fu-Gang Yin

Beijing Jiaotong University

2022.09.26

For a connected, undirected and simple graph \varGamma with vertex set $V(\varGamma)$, let $u,v\in V(\varGamma)$.

- The **girth** of Γ is defined as the length of a shortest cycle in Γ .
- The distance $d_{\varGamma}(u,v)$ between u and v in \varGamma is the smallest length of paths between u and v;
- The **diameter** $\operatorname{diam}(\Gamma)$ of Γ is the maximum distance occurring over all pairs of vertices.
- A geodesic from a vertex u to v in Γ is one of the shortest paths from u to v, and this geodesic is called an s-geodesic if the distance $d_{\Gamma}(u,v)=s$.
- A sequence v_0, v_1, \ldots, v_s of s+1 vertices of Γ is called an s-arc of Γ if v_{i-1}, v_i are adjacent for $1 \leq i \leq s$ and $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s-1$.
- For a positive integer i, denote by $\Gamma_i(u)$ the set of vertices at distance i with vertex u in Γ . In particular, $\Gamma_1(u)$ is also denoted by $\Gamma(u)$.

- Let Γ be vertex transitive graph and let $G \leq \operatorname{Aut}(\Gamma)$. Then
- Γ is said to be (G,s)-arc transitive if G is transitive on the set of all s-arcs of Γ .
- Γ is said to be (G,s)-geodesic transitive if for each $i \leq s$, G is transitive on the set of all i-geodesics of Γ . If $s = \operatorname{diam}(\Gamma)$, then (G,s)-geodesic transitive graph is called G-geodesic transitive.
- Γ is said to be (G,s)-distance-transitive if $s \leq \operatorname{diam}(\Gamma)$, and for each $1 \leq i \leq s$, the group G is transitive on $\Gamma_i(u)$. If $s = \operatorname{diam}(\Gamma)$, then (G,s)-distance transitive graph is called G-distance transitive.
- In particular, if $G = \operatorname{Aut}(\Gamma)$, then (G,s)-arc transitive, (G,s)-geodesic transitive or (G,s)-distance-transitive graph is simply called an s-arc transitive, s-geodesic transitive or s-distance-transitive, respectively.

Let Γ be a 2-arc transitive graph. Then either $\Gamma\cong \mathsf{K}_n$, or Γ has girth at least 4.

Let Γ be a 2-geodesic transitive graph.

- If Γ has girth at least 4, then Γ is 2-arc transitive.
- If Γ has girth 3, then Γ is not 2-arc transitive except K_n .

Let Γ be a 2-distance transitive graph.

- ullet If Γ has girth at least 5, then Γ is 2-arc transitive.
- If Γ has girth 3, then Γ is not 2-arc transitive except K_n .

Let Γ be a 2-arc transitive graph. Then either $\Gamma \cong \mathsf{K}_n$, or Γ has girth at least 4.

Let Γ be a 2-geodesic transitive graph.

- If Γ has girth at least 4, then Γ is 2-arc transitive.
- If Γ has girth 3, then Γ is not 2-arc transitive except K_n .

Let Γ be a 2-distance transitive graph.

- If Γ has girth at least 5, then Γ is 2-arc transitive.
- If Γ has girth 3, then Γ is not 2-arc transitive except K_n .

Let Γ be a 2-arc transitive graph. Then either $\Gamma \cong \mathsf{K}_n$, or Γ has girth at least 4.

Let Γ be a 2-geodesic transitive graph.

- If Γ has girth at least 4, then Γ is 2-arc transitive.
- If Γ has girth 3, then Γ is not 2-arc transitive except K_n .

Let Γ be a 2-distance transitive graph.

- If Γ has girth at least 5, then Γ is 2-arc transitive.
- If Γ has girth 3, then Γ is not 2-arc transitive except K_n .

By definitions, it is clear that we have a hierarchy of conditions:

s-arc transitive $\Rightarrow s$ -geodesic transitive \Rightarrow s-distance transitive \Rightarrow arc transitive.

However, both the inverse are not true.

For a finite group G and an inverse closed subset $S\subseteq G\setminus\{1\}$, the **Cayley graph** $\operatorname{Cay}(G,S)$ on G with respect to S is defined to be the graph with vertex set G and edge set $\{\{g,sg\}\mid g\in G,s\in S\}$.

By definitions, it is clear that we have a hierarchy of conditions:

```
s-arc transitive \Rightarrow s-geodesic transitive \Rightarrow s-distance transitive \Rightarrow arc transitive.
```

However, both the inverse are not true.

For a finite group G and an inverse closed subset $S\subseteq G\setminus\{1\}$, the **Cayley graph** $\operatorname{Cay}(G,S)$ on G with respect to S is defined to be the graph with vertex set G and edge set $\{\{g,sg\}\mid g\in G,s\in S\}$.

Example: arc-transitive but not 2-distance transitive graphs

Let p be an odd prime and let r be a positive integer such that r is a divisor of p-1. Let H and H' denote two disjoint copies of the additive group \mathbb{Z}_p and denote the corresponding elements of H and H' by i and i'. Denote the unique subgroup of order r of the multiplicative group of \mathbb{Z}_p by H(p,r). We define G(2p,r) to be the graph with vertex set $H\cup H'$ and edge set $\{\{i,j'\}\mid i,j\in\mathbb{Z}_p,j-i\in H(p,r)\}$.

- Observe that $G(2p,1) \cong p\mathsf{K}_2$ and $G(2p,p-1) \cong \mathsf{K}_{p,p}.$
- If 1 < r < p-1 and $(p,r) \neq (7,3)$, (11,5), then G(2p,r) is a connected arc transitive dihedrant and $\operatorname{Aut}(G(2p,r)) \cong (\mathbb{Z}_p \rtimes \mathbb{Z}_r) \rtimes \mathbb{Z}_2$, see [40, Lemma 2.1 and Table 1].
- G(2p,r) is a connected 2-distance transitive graph if and only if Γ is 2-arc transitive and one of the following holds:
 - (i) r=2 and $\Gamma \cong \mathbb{C}_{2p}$;
 - (ii) r = p 1 and $\Gamma \cong \mathsf{K}_{p,p}$;
 - (iii) (p,r)=(7,3) or (11,5), and $\Gamma\cong B(\mathsf{PG}(2,2))$ or $B(H_{11})$.

⁴⁰ Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory Ser. B 42 (1987), 196-211.

Example: arc-transitive but not 2-distance transitive graphs

Let p be an odd prime and let r be a positive integer such that r is a divisor of p-1. Let H and H' denote two disjoint copies of the additive group \mathbb{Z}_p and denote the corresponding elements of H and H' by i and i'. Denote the unique subgroup of order r of the multiplicative group of \mathbb{Z}_p by H(p,r). We define G(2p,r) to be the graph with vertex set $H\cup H'$ and edge set $\{\{i,j'\}\mid i,j\in\mathbb{Z}_p,j-i\in H(p,r)\}$.

- Observe that $G(2p,1) \cong p\mathsf{K}_2$ and $G(2p,p-1) \cong \mathsf{K}_{p,p}.$
- If 1 < r < p-1 and $(p,r) \neq (7,3)$, (11,5), then G(2p,r) is a connected arc transitive dihedrant and $\operatorname{Aut}(G(2p,r)) \cong (\mathbb{Z}_p \rtimes \mathbb{Z}_r) \rtimes \mathbb{Z}_2$, see [40, Lemma 2.1 and Table 1].
- G(2p,r) is a connected 2-distance transitive graph if and only if Γ is 2-arc transitive and one of the following holds:
 - (i) r=2 and $\Gamma\cong \mathbf{C}_{2p}$;
 - (ii) r = p 1 and $\Gamma \cong \mathsf{K}_{p,p}$;
 - (iii) (p,r)=(7,3) or (11,5), and $\Gamma\cong B(\mathsf{PG}(2,2))$ or $B(H_{11})$.

⁴⁰ Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory Ser. B 42 (1987), 196-211.

Example: 2-distance transitive but not 2-geodesic transitive graphs

Let $q = p^e$ be a prime power such that $q \equiv 1 \pmod{4}$. Let F_q be the finite field of order q. The **Paley graph** P(q) is the graph with vertex set F_a , and two vertices u, v are adjacent if and only if u - v is a nonzero square in F_q . Furthermore, let $N=F_q^+\cong \mathbb{Z}_p^e$ be the additive group of F_q , and let ω be a primitive element of F_q . Then $\mathsf{P}(q) \cong \mathsf{Cay}(N,S)$ with $S=\langle\omega^2\rangle$. Moreover, by [3, Theorem 7.1], $\operatorname{Aut}(\mathsf{P}(q))\cong (F_q^+\rtimes\langle\omega^2\rangle).\langle au\rangle\cong (F_q^+\rtimes\langle\omega^2\rangle)$ $(\mathbb{Z}_n^e \rtimes \mathbb{Z}_{(q-1)/2}).\mathbb{Z}_e$, where $\tau: x \mapsto x^p$ for any $x \in F_q$.

Example: 2-distance transitive but not 2-geodesic transitive graphs

Let $q=p^e$ be a prime power such that $q\equiv 1(\bmod 4)$. Let F_q be the finite field of order q. The **Paley graph** $\mathrm{P}(q)$ is the graph with vertex set F_q , and two vertices u,v are adjacent if and only if u-v is a nonzero square in F_q . Furthermore, let $N=F_q^+\cong \mathbb{Z}_p^e$ be the additive group of F_q , and let ω be a primitive element of F_q . Then $\mathrm{P}(q)\cong \mathrm{Cay}(N,S)$ with $S=\langle \omega^2 \rangle$. Moreover, by [3, Theorem 7.1], $\mathrm{Aut}(\mathrm{P}(q))\cong (F_q^+\rtimes \langle \omega^2 \rangle).\langle \tau \rangle\cong (\mathbb{Z}_p^e\rtimes \mathbb{Z}_{(q-1)/2}).\mathbb{Z}_e$, where $\tau:x\mapsto x^p$ for any $x\in F_q$.

[2, Theorem 1.2]

Let $\Gamma={\sf P}(q)$ be defined as above. Then ${\sf diam}(\Gamma)=2$ and Γ is 2-distance transitive, and the following statements are true:

- (1) Γ is 2-arc transitive if and only if p=5 and $P(5)\cong {\bf C}_5$.
- (2) Γ is 2-geodesic transitive but not 2-arc transitive if and only if q=9.

 $^{^2}$ W. Jin, A. Devillers, C. H. Li, C. E. Praeger, On geodesic transitive graphs, Discrete Math. 338 (2015), 168-173.

³W. Peisert, All self-complementary symmetric graphs, J. Algebra 240 (2001), 209-229.

Example: 2-distance transitive but not 2-geodesic transitive graphs

Let p be a prime such that $p\equiv 3(\text{mod }4)$. Let F_q be the finite field of order q, where $q=p^e\equiv 1(\text{mod }4)$ and e is even. Suppose that $N=F_q^+\cong \mathbb{Z}_p^e$ be the additive group of F_q , and λ be a primitive element of F_q . Let

$$S = \{\lambda^i \mid i \equiv 0, 1 (\text{mod } 4)\} = \langle \lambda^4 \rangle \cup \langle \lambda^4 \rangle \lambda.$$

Then the Cayley graph $\operatorname{Cay}(N,S)$ is called a **Peisert graph**, denoted by $\operatorname{Pei}(q)$. Further, $\operatorname{Pei}(q)$ is a connected undirected graph of valency (q-1)/2, girth 3 and diameter 2. Moreover, by [3, Theorem 7.1], $\operatorname{Aut}(\operatorname{Pei}(q)) \cong (F_q^+ \rtimes \langle \lambda^4 \rangle).\langle \tau \rangle \cong (\mathbb{Z}_p^e \rtimes \mathbb{Z}_{(q-1)/4}).\mathbb{Z}_e$, where τ is the Frobenius automorphism of F_q , and $q \neq 3^2, 7^2, 23^2$. In particular, $\operatorname{P}(9) \cong \operatorname{Per}(9)$.

[2, Theorem 1.2]

Let $\Gamma = Pei(q)$ be defined as above. Then Γ is 2-distance transitive but not 2-arc transitive, and Γ is 2-geodesic transitive if and only if q = 9.

 $^{^3}$ W. Peisert, All self-complementary symmetric graphs, J. Algebra 240 (2001), 209-229.

²W. Jin, A. Devillers, C. H. Li, C. E. Praeger, On geodesic transitive graphs, Discrete Math. 338 (2015)

Example: 2-distance transitive but not 2-geodesic transitive graphs

Let p be a prime such that $p\equiv 3(\text{mod }4)$. Let F_q be the finite field of order q, where $q=p^e\equiv 1(\text{mod }4)$ and e is even. Suppose that $N=F_q^+\cong \mathbb{Z}_p^e$ be the additive group of F_q , and λ be a primitive element of F_q . Let

$$S = \{\lambda^i \mid i \equiv 0, 1 (\text{mod } 4)\} = \langle \lambda^4 \rangle \cup \langle \lambda^4 \rangle \lambda.$$

Then the Cayley graph $\operatorname{Cay}(N,S)$ is called a **Peisert graph**, denoted by $\operatorname{Pei}(q)$. Further, $\operatorname{Pei}(q)$ is a connected undirected graph of valency (q-1)/2, girth 3 and diameter 2. Moreover, by [3, Theorem 7.1], $\operatorname{Aut}(\operatorname{Pei}(q)) \cong (F_q^+ \rtimes \langle \lambda^4 \rangle).\langle \tau \rangle \cong (\mathbb{Z}_p^e \rtimes \mathbb{Z}_{(q-1)/4}).\mathbb{Z}_e$, where τ is the Frobenius automorphism of F_q , and $q \neq 3^2, 7^2, 23^2$. In particular, $\operatorname{P}(9) \cong \operatorname{Per}(9)$.

[2, Theorem 1.2]

Let $\Gamma = Pei(q)$ be defined as above. Then Γ is 2-distance transitive but not 2-arc transitive, and Γ is 2-geodesic transitive if and only if q=9.

 $^{^3}$ W. Peisert, All self-complementary symmetric graphs, J. Algebra 240 (2001), 209-229.

²W. Jin, A. Devillers, C. H. Li, C. E. Praeger, On geodesic transitive graphs, Discrete Math. 338 (2015), 168-173.

Example: 2-geodesic transitive but not 2-arc transitive graphs

- (1) $\mathsf{K}_{m[b]}$, the complete multipartite graph consisting $m \geq 3$ parts of size $b \geq 2$.
- (2) H(d, n), the Hamming graph.

[1, Section 9.2] and [2, Proposition 2.2]

Let d,n be two positive integers and $d,n\geq 2$. The Hamming graph H(d,n) is defined as the vertex set \mathbb{Z}_n^d , seen as a module over the ring $\mathbb{Z}_n=[0,n-1]$, and two vertices are adjacent if and only if they have exactly one different coordinate. In particular, H(d,2) is also known as d-cube. H(d,n) has diameter d, valency d(n-1), is distance transitive, geodesic transitive and $\operatorname{Aut}(H(d,n))\cong\operatorname{S}_n\wr\operatorname{S}_d$.

¹A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-regular graphs, Springer Verlag, Berlin, Heidelberg, New York, 1989.

²W. Jin, A. Devillers, C. H. Li, C. E. Praeger, On geodesic transitive graphs, Discrete Math. 338 (2015), 168-173.

Question 1

To construct s-distance transitive but not s-geodesic transitive graphs for $s\geq 2.$

Question 2

To construct s-distance transitive (or s-geodesic transitive) but not s-arc transitive graphs for $s \geq 2$.

- Weiss proved that there are no finite 8-arc-transitive graphs with valency at least three.
- However, there is no upper bound on s for s-geodesic transitivity or s-distance transitivity, for example, H(d,n).

The structure of $[\Gamma(u)]$ of a 2-geodesic transitive graph are determined in [4], and the authors proved that if Γ is a 2-geodesic transitive graph of valency at least 2, then for a vertex u, either

- (1) $[\Gamma(u)] \cong m\mathsf{K}_r$ for some integers $m \geq 2$ and $r \geq 1$; or
- (2) $[\Gamma(u)]$ is a connected vertex transitive graph of diameter 2.
 - A reduction theorem of the locally connected or disconnected 2geodesic transitive graph were given in [5,6], respectively.

⁴A. Devillers, W. Jin, C. H. Li, C. E. Praeger, Local 2-geodesic transitivity and clique graphs, J. Combin. Theory Ser. A 120 (2013), 500-508.

⁵W. Jin, Two-geodesic-transitive graphs which are locally connected, Discrete Math. 340 (2017), 637-643.

⁶W. Jin, Finite s-geodesic transitive graphs which are locally disconnected, Bull. Malays. Math. Sci. Soc., 42 (2019), 909-919.

- The 2-geodesic transitive graphs Γ with $[\Gamma(u)]$ satisfies the following were classified in [5,7,8,9], respectively.
 - (1) $[\Gamma(u)]$ has valency 2, 3 or 4;
 - (2) $[\Gamma(u)] \cong \mathbf{C}_n, \overline{\mathbf{C}_n} \text{ or } \overline{m\mathbf{C}_n};$
 - (3) $[\Gamma(u)]$ is an arc transitive circulant;
 - (4) $[\Gamma(u)]$ is self-complementary.

⁵W. Jin, Two-geodesic-transitive graphs which are locally connected, Discrete Math. 340 (2017), 637-643.

⁷A. Devillers, W. Jin, C. H. Li, C. E. Praeger, Line graphs and geodesic transitivity, Ars Math. Contemp. 6(2013), 13-20.

 $^{^{8}}$ W. Jin, L. Tan, Two-geodesic-transitive graphs which are neighbor cubic or neighbor tetravalent, Filomat 32 (2018), 2483-2488.

 $^{^{9}}$ W. Jin, L. Tan, Two-geodesic-transitive graphs which are locally self-complementary, Discrete Math. 345 (2022), 112900.

- The distance transitive graphs of valency $3 \le k \le 13$ are listed in [1, Section 7.5].
- The 2-distance transitive but not 2-arc transitive graphs of valency $k \leq 7$ are classified in [10,11,12].
- The 2-geodesic transitive but not 2-arc transitive graphs of valency 6, p,2p or 3p, with p a prime, are classified in [13,14,15,16].
- The 3-geodesic transitive but not 3-arc transitive graphs of valency 3,4 or 5 are classified in [17,18].

¹ A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-regular graphs, Springer Verlag, Berlin, Heidelberg, New York, 1989.

¹⁰B. P. Corr, W. Jin, C. Schneider, Finite 2-distance transitive graphs, J. Graph Theory, 86 (2017), 78-91.

¹¹ W. Jin, T. Li, Finite two-distance-transitive graphs of valency 6, Ars Math. Contemp. 11,(2016) 49-58.

¹² W. Jin, L. Tan, Two-distance-transitve graphs of valency 7, Ars Combin. 126 (2016), 211-220.

¹³ W. Jin, W. J. Liu, S. J. Xu, Two-geodesic transitive graphs of six, Discrete Math. 340 (2017) 192-200.

¹⁴ A. Devillers, W. Jin, C.H. Li, C.E. Praeger, Finite 2-geodesic transitive graphs of prime valency, J. Graph Theory 80 (1) (2015) 18-27.

¹⁵ W. Jin, Finite 2-geodesic-transitive graphs of valency twice a prime, European J. Combin. 49 (2015) 117-125.

 $^{^{16}}$ W. Jin, Finite 2-geodesic transitive graphs of valency 3p, Ars Combin. 120 (2015) 417-425.

¹⁷W. Jin, Finite 3-geodesic transitive but not 3-arc transitive graphs, Bull. Aust. Math. Soc. 91 (2015) 183-190.

¹⁸W. Jin, The pentavalent three-geodesic-transitive graphs, Discrete Math. 341 (2018) 1344-1349.

The 2-distance transitive, 2-geodesic transitive, 2-arc transitive circulants are classified in [19,20,21], respectively.

Let \varGamma be a connected 2-distance transitive circulant. Then the following statements holds.

- (1) If Γ is 2-arc transitive, then Γ is one of the following graphs: K_n with $n\geq 1$, \mathbf{C}_n with $n\geq 4$, $\mathsf{K}_{\frac{n}{2},\frac{n}{2}}$ with $n\geq 6$, $\mathsf{K}_{\frac{n}{2},\frac{n}{2}}-\frac{n}{2}\mathsf{K}_2$ with $\frac{n}{2}\geq 5$ odd.
- (2) If Γ is 2-geodesic transitive but not 2-arc transitive, then $\Gamma \cong \mathsf{K}_{m[b]}$ for some $m \geq 3, b \geq 2$.
- (3) If Γ is not 2-geodesic transitive, then Γ is the Paley graph P(p), where p is a prime and $p \equiv 1 \pmod{4}$.

J. Y. Chen, W. Jin and C. H. Li, On 2-distance-transitive circulants, J. Algebraic Combin. 49 (2019), 179-191.
 W. Jin, W. J. Liu and C. Q. Wang, Finite 2-geodesic transitive abelian Cayley graphs, Graphs Combin. 32 (2016), 713-720.

²¹B. Alspach, M. D. E. Conder, M. Y. Xu, A classification of 2-arc-transitive circulants, J. Algebraic Combin. 5 (1996), 83-86.

[19, Question 1.2]

Is there a normal Cayley graph which is 2-distance-transitive, but neither distance-transitive nor 2-arc-transitive?

[22, Theorem 1.2]

For an odd prime p, let $G=\langle a,b,c\mid a^p=b^p=c^p=1, [a,b]=c, [c,a]=[c,b]=1\rangle$ and $S=\{a^i,b^i\mid 1\leq i\leq p-1\}.$ Then $\mathrm{Cay}(G,S)$ is a 2-distance-transitive normal Cayley graph that is neither distance-transitive nor 2-arc-transitive. In particular, $\mathrm{Aut}(\mathrm{Cay}(G,S))\cong R(G)\rtimes ((\mathbb{Z}_{p-1}\times\mathbb{Z}_{p-1})\rtimes\mathbb{Z}_2).$

¹⁹ J. Y. Chen, W. Jin and C. H. Li, On 2-distance-transitive circulants, J. Algebraic Combin. 49 (2019), 179-191.
²² J.J. Huang, Y.Q. Feng, J.X. Zhou, Two-distance transitive normal Cayley graphs, Ars Math. Contemp. 22 (2022) p.#2.02.

[19, Question 1.2]

Is there a normal Cayley graph which is 2-distance-transitive, but neither distance-transitive nor 2-arc-transitive?

[22, Theorem 1.2]

For an odd prime p, let $G=\langle a,b,c\mid a^p=b^p=c^p=1, [a,b]=c, [c,a]=[c,b]=1\rangle$ and $S=\{a^i,b^i\mid 1\leq i\leq p-1\}.$ Then $\mathrm{Cay}(G,S)$ is a 2-distance-transitive normal Cayley graph that is neither distance-transitive nor 2-arc-transitive. In particular, $\mathrm{Aut}(\mathrm{Cay}(G,S))\cong R(G)\rtimes ((\mathbb{Z}_{p-1}\times\mathbb{Z}_{p-1})\rtimes\mathbb{Z}_2).$

J. Y. Chen, W. Jin and C. H. Li, On 2-distance-transitive circulants, J. Algebraic Combin. 49 (2019), 179-191.
 J.J. Huang, Y.Q. Feng, J.X. Zhou, Two-distance transitive normal Cayley graphs, Ars Math. Contemp. 22 (2022) p. #2.02.

Question 3

To construct s-distance transitive but not distance transitive and s-arc transitive graphs for $s \geq 2$.

Question 4

Classify 2-distance transitive graphs of order p^n .

[23, Theorem 1.2] and [24, Theorem 1.3]

For a prime p and a positive integer n, let Γ be a connected 2-geodesic but not 2-arc transitive graph of order p^n , and let $\operatorname{Aut}(\Gamma)$ be quasiprimitive on $V(\Gamma)$. Then $\operatorname{Aut}(\Gamma)$ is primitive on $V(\Gamma)$ and one of the following holds:

- (1) Γ is the Schläfli graph or its complement;
- (2) Γ is the Hamming graph $H(s,p^t)$ with $p^t\geq 5$ and st=n, or $\overline{H(2,p^t)}$ with $p^t\geq 5$;
- (3) Γ is a normal Cayley graph on \mathbb{Z}_p^n .

[23, Problem 1.4]

Let Γ be a 2-geodesic transitive graph of prime power order which is not 2-arc transitive. Classify such graphs where $\operatorname{Aut}(\Gamma)$ acts quasiprimitively on $V(\Gamma)$ of affine type.

²³ W. Jin, Two-geodesic transitive graphs of prime power order, Bull. Iranian Math. Soc. 43 (2017) 1645-1655.

²⁴W. Jin, Vertex quasiprimitive two-geodesic transitive graphs, https://arxiv.org/abs/2106.12357.

[23, Theorem 1.2] and [24, Theorem 1.3]

For a prime p and a positive integer n, let Γ be a connected 2-geodesic but not 2-arc transitive graph of order p^n , and let $\operatorname{Aut}(\Gamma)$ be quasiprimitive on $V(\Gamma)$. Then $\operatorname{Aut}(\Gamma)$ is primitive on $V(\Gamma)$ and one of the following holds:

- (1) Γ is the Schläfli graph or its complement;
- (2) Γ is the Hamming graph $H(s,p^t)$ with $p^t \geq 5$ and st=n, or $\overline{H(2,p^t)}$ with $p^t \geq 5$;
- (3) Γ is a normal Cayley graph on \mathbb{Z}_p^n .

[23, Problem 1.4]

Let Γ be a 2-geodesic transitive graph of prime power order which is not 2-arc transitive. Classify such graphs where $\operatorname{Aut}(\Gamma)$ acts quasiprimitively on $V(\Gamma)$ of affine type.

 $^{^{23}}$ W. Jin, Two-geodesic transitive graphs of prime power order, Bull. Iranian Math. Soc. 43 (2017) 1645-1655.

²⁴W. Jin, Vertex quasiprimitive two-geodesic transitive graphs, https://arxiv.org/abs/2106.12357.

Two-geodesic transitive graphs of order p^n with $n \leq 3$

[25, Theorem 1.2]

Let p be a prime and let Γ be a connected 2-geodesic transitive but not 2-arc transitive normal Cayley graph on \mathbb{Z}_p^n with $n \leq 3$. Then $\operatorname{Aut}(\Gamma)$ is primitive on $V(\Gamma)$ if and only if $\Gamma \cong H(2,3)$ or H(3,3).

[25, Theorem 1.4]

Let p be a prime and let Γ be a connected arc-transitive graph of order p^2 . Then Γ is 2-geodesic transitive if and only if one of the following holds:

- (1) If Γ is 2-arc transitive, then Γ is isomorphic to \mathbf{C}_{p^2} or K_{p^2} ;
- (2) If Γ is not 2-arc transitive, then Γ is isomorphic to $\mathsf{K}_{p[p]}$, the Hamming graph H(2,p) or its complement $\overline{H(2,p)}$, where $p\geq 3$.

 $^{^{25}}$ J. J. Huang, Y. Q. Feng, J. X. Zhou, F. G. Yin, Two-geodesic transitive graphs of order p^n with $n \leq 3$, https://arxiv.org/abs/2207.10919.

Two-geodesic transitive graphs of order p^n with $n \leq 3$

[25, Theorem 1.5]

Let p be a prime and let Γ be a connected arc transitive graph of order p^3 . Then Γ is 2-geodesic transitive if and only if one of the following holds:

- (1) If Γ is 2-arc transitive, then Γ is isomorphic to H(3,2), ${\rm K}_{4,4}$, ${\bf C}_{p^3}$ or ${\rm K}_{p^3}$;
- (2) If Γ is not 2-arc transitive, then Γ is isomorphic to one of the following graphs:
 - (i) the Schläfli graph or its complement;
 - (ii) $\mathsf{K}_{p^2[p]}$ with $p \geq 2$, or $\mathsf{K}_{p[p^2]}$ with $p \geq 3$;
 - (iii) the Hamming graph H(3,p) with $p \geq 3$;
 - (iv) the normal Cayley graph $\operatorname{Cay}(G,S_i)$ with i=1,2, where $G=\langle a,b,c \mid a^p=b^p=c^p=1,[a,b]=c,[a,c]=[b,c]=1\rangle$ with $p\geq 3$, $S_1=\{a^i,b^i\mid i\in\mathbb{Z}_p^*\}$ and $S_2=\{a^i,b^i,(b^jab^j)^i\mid i,j\in\mathbb{Z}_p^*\}.$

 $^{^{25}}$ J. J. Huang, Y. Q. Feng, J. X. Zhou, F. G. Yin, Two-geodesic transitive graphs of order p^n with $n \leq 3$, https://arxiv.org/abs/2207.10919.

• Marušič [41, Theorem 3.4] proved that a vertex transitive graph of order p^n , with $n \leq 3$, is a Cayley graph, and 2-arc transitive Cayley graphs of order p^2 were classified by Marušič [42,Corollary 2.3]. This, together with [43, Corollary 1.3 and 3.5], enables us to obtain the following result.

For an odd prime p, a connected 2-arc transitive graph of order p^2 is \mathbf{C}_{p^2} or K_{p^2} , and a connected 2-arc transitive graph of order p^3 is \mathbf{C}_{p^3} , K_{p^3} , or a cover of a complete graph.

 Appealing to the main result of [44] we obtain the classification of 2-arc transitive graph with order prime-cube.

Let p be a prime and let Γ be a connected 2-arc transitive graph of order p^3 . Then Γ is isomorphic to H(3,2), $\mathsf{K}_{4,4}$, \mathbf{C}_{p^3} or K_{p^3} .

D. Marušič, Vertex transitive graphs and digraphs of order p^k , Ann. Discrete Math. 27 (1985) 115-128.

⁴²D. Marušič, P. Potočnic, Classifying 2-arc-transitive graphs of oder a product of two primes, Discrete Math. 244 (2002) 331-338.

 $^{^{43}}$ C.H. Li, Finite s-arc transitive graphs of prime-power order, Bull. London Math. Soc. 33 (2001) 129-137.

⁴⁴S.F. Du, D. Marušič, A.O. Waller, On 2-arc-transitive covers of complete graphs, J. Combin. Theory Ser. B 74 (1998) 276-290.

Primitive Case

A Cayley graph $\operatorname{Cay}(G,S)$ is called a **normal** (X,2)-geodesic transitive if it is (X,2)-geodesic transitive for a group X such that $R(G) \leq X \leq R(G) \rtimes \operatorname{Aut}(G,S)$.

[26, Theorem 1.2]

Let $\Gamma={\rm Cay}(G,S)$ be a connected normal (X,2)-geodesic transitive Cayley graph. Then one of the following holds:

- (1) $\Gamma \cong \mathbf{C}_r$ and $G \cong \mathbb{Z}_r$ for some $r \geq 4$;
- (2) $\Gamma \cong \mathsf{K}_{4[2]}$ and $G \cong \mathsf{Q}_8$, the quaternion group, with $S = G \setminus Z(G)$;
- (3) There is a prime q and an integer m such that for all $a \in S$, a has order q with $\langle a \rangle^* \subseteq S$ and $\langle a \rangle^* \neq S$, and b has order m for each $b \in S^2 \setminus (S \cup \{1\})$.

²⁶ A. Devillers, W. Jin, C.H. Li, C.E. Praeger, On normal 2-geodesic transitive Cayley graphs, J. Algebr. Comb. 39 (2014) 903-918.

Lemma 5.2

Let $\Gamma=\operatorname{Cay}(\mathbb{Z}_p^n,S)$ be a connected 2-geodesic but not 2-arc transitive normal Cayley graph on \mathbb{Z}_p^n , where p is a prime and $n\geq 1$. Then

- (1) $\operatorname{Aut}(\mathbb{Z}_p^n,S)$ contains the center of $\operatorname{Aut}(\mathbb{Z}_p^n)$, and for every positive integer m, if $x\in \Gamma_m(1)$ then $\langle x\rangle^*\subseteq \Gamma_m(1)$;
- (2) Let K_1 and K_2 be subgroups of \mathbb{Z}_p^n . Assume that the induced subgroups $[K_1]$ and $[K_2]$ of Γ are complete graphs and every vertex in K_1 is adjacent to every vertex in K_2 . Then the induced subgraph $[K_1K_2]$ of Γ is a complete graph;
- (3) \mathbb{Z}_p^n has a subgroup H such that $H^*\subseteq S$ and [H] is a maximal clique of $\Gamma.$

• A complete list of all connected symmetric graphs with orders from 2 to 30 was given in [31]. By Magma, we can obtain all 2-geodesic transitive graphs of order 4,8,9,25 or 27.

³¹M.D.E. Conder, A complete list of all connected symmetric graphs of order 2 to 30, https://www.math.auckland.ac.nz/~conder/symmetricgraphs~orderupto30.txt.

Lemma 5.3

Let $p\geq 5$ be a prime and let $\Gamma=\operatorname{Cay}(\mathbb{Z}_p^2,S)$ be a connected 2-geodesic but not 2-arc transitive normal Cayley graph. Then $\operatorname{Aut}(\Gamma)$ cannot be primitive on $V(\Gamma)$.

Outline of a proof of Lemma 5.3:

- Let $\overline{S} = \{\langle s \rangle^\# \mid s \in S\}$ and let $\ell = |\overline{S}|$.
- Let $\overline{A_1}$ be the permutation group of A_1 acting on \overline{S} .
- Then $\overline{A_1} \leq \mathsf{PGL}(2,p)$ and $\overline{A_1}$ is transitive on \overline{S} .
- Moreover, $3 \le \ell \le p-2$, $3(p-2) \le \ell(p+1-\ell)$ and

$$\ell(p+1-\ell) \mid |\overline{A_1}_{p'}|.$$

[27, P. 392-418] and [28, Theorem 2]

Let $p \geq 5$ be a prime.

- (1) If $M < \mathsf{PGL}(2,p)$, then M is one of the following groups: $\mathsf{PSL}(2,p)$, $\mathbb{Z}_p \rtimes \mathbb{Z}_{p-1}$, $\mathsf{D}_{2(p-1)}$ with $p \neq 5$, $\mathsf{D}_{2(p+1)}$, or S_4 with $p \equiv \pm 3 (\bmod{\,8})$;
- (2) If $M \lessdot \mathsf{PSL}(2,p)$, then M is one of the following groups: $\mathbb{Z}_p \rtimes \mathbb{Z}_{(p-1)/2}$, D_{p-1} with $p \geq 13$, D_{p+1} with $p \neq 7$, A_4 with $p \equiv \pm 3 \pmod{8}$ and $p \equiv \pm 3 \pmod{10}$, S_4 with $p \equiv \pm 1 \pmod{8}$, or A_5 with $p \equiv \pm 1 \pmod{10}$.

²⁷ M. Suzuki, Group Theory I, Springer, New York, 1982.

 $^{^{28}}$ P.J. Cameron, G.R. Omidi, B. Tayfeh-Rezaie, 3-Designs from PGL(2,q), Electron. J. Combin. 13 (2006) #R50.

Lemma 5.4

Let $p\geq 5$ be a prime and let $\Gamma=\operatorname{Cay}(\mathbb{Z}_p^3,S)$ be a connected 2-geodesic but not 2-arc transitive normal Cayley graph. Then $\operatorname{Aut}(\Gamma)$ cannot be primitive on $V(\Gamma)$.

Outline of a proof of Lemma 5.4:

- Let $\overline{S} = \{\langle s \rangle^\# \mid s \in S\}$ and let $\ell = |\overline{S}|$.
- Let $\overline{A_1}$ be the permutation group of A_1 acting on \overline{S} .
- $\bullet \ \ {\rm Then} \ \overline{A_1} \leq {\rm PGL}(3,p) \ \ {\rm and} \ \ \overline{A_1} \ \ {\rm is} \ \ {\rm transitive} \ \ {\rm on} \ \ \overline{S}.$

Case 1: $H \cong \mathbb{Z}_p^2$.

• In the case, $\overline{A_1} \leq \mathsf{PGL}(3,p), \ 7 \leq p+2 \leq \ell \leq p^2+p-3$, and $f(\ell,p) := \ell(p^2+p+1-\ell) \text{ is a divisor of } |\overline{A_1}|.$

[29, Tables 8.3 and 8.4] and [30, Chapter 4]

Let $p \ge 5$ be a prime and let d = (3, p - 1).

- (1) If $M \lessdot \mathsf{PGL}(3,p)$, then M is one of the following groups: $\mathsf{PSL}(3,p)$, $\mathbb{Z}_p^2 : \mathsf{GL}(2,p)$, $(\mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1}) : \mathsf{S}_3$, $\mathbb{Z}_{p^2+p+1} : \mathbb{Z}_3$, and $(\mathbb{Z}_3^2 : \mathsf{Q}_8).\mathbb{Z}_3$ with $p \equiv 1 (\text{mod } 3)$ and $p \not\equiv 1 (\text{mod } 9)$;
- (2) If $M \in \mathsf{PSL}(3,p)$, then M is one of the following groups: $\mathbb{Z}_p^2: \frac{1}{d}\mathsf{GL}(2,p), \; (\mathbb{Z}_{(p-1)/d} \times \mathbb{Z}_{p-1}) : \mathsf{S}_3, \; \mathbb{Z}_{(p^2+p+1)/d} : \mathbb{Z}_3, \; (\mathbb{Z}_3^2: \mathsf{Q}_8).\mathbb{Z}_{\frac{(p-1,9)}{3}} \; \text{with} \; p \equiv 1 (\mathsf{mod}\; 3), \; \mathsf{PGL}(2,p), \; \mathsf{PSL}(2,7) \; \text{with} \; p \equiv 1,2,4 (\mathsf{mod}\; 7), \; \mathsf{and} \; \mathsf{A}_6 \; \mathsf{with} \; p \equiv 1,4 (\mathsf{mod}\; 15).$
 - The notation $\frac{1}{d}\mathsf{GL}(2,p)$ is the factor group of $\mathsf{GL}(2,p)$ by the subgroup of order d in $Z(\mathsf{GL}(2,p))$.

³⁰P.B. Kleidman, M.W. Liebeck, The Subgroup Structure of the Finite Classical Groups, London Mathematical Society Lecture Note Series 129, Cambridge University Press, Cambridge, 1990.

²⁹ J.N. Bray, D.F. Holt, C.M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, Cambridge Univ. Press, 2013.

Case 2: $H \cong \mathbb{Z}_p$.

- In the case, $\overline{A_1} \leq \mathsf{PGL}(3,p)$, and $\overline{A_1}$ is 2-transitive on \overline{S} .
- If $[\overline{S}]$ is a complete graph. Then $\ell \geq 3(p+1)/2$.
- \bullet If $[\overline{S}]$ is a non-complete graph. Then $\ell(\ell-1)(p-1)$ is a divisor of $|\overline{A_1}|.$

Lemma 2.5

Let $p\geq 5$ be a prime. Assume that $X\leq \mathsf{PGL}(3,p)$ has a 2-transitive action on Ω with $n=|\Omega|\geq 4$. Let K be the kernel of X on Ω . If $\mathsf{soc}(X/K)$ is elementary abelian, then either

- (1) $(n,X/K)=(4,\mathsf{A}_4)$, $(4,\mathsf{S}_4)$, $(p,\mathsf{AGL}(1,p))$, or (9,L) with $L\leq (\mathbb{Z}_3^2:\mathsf{Q}_8).\mathbb{Z}_3$ and $1\equiv (\mathsf{mod}\ 3)$; or
- (2) $n=p^2$ and $X/K \leq \mathsf{AGL}(2,p)$.

If soc(X/K) is nonabelian simple, then one of the following holds:

- (1) $(n,X/K)=(5,\mathsf{A}_5), (6,\mathsf{A}_6), (10,\mathsf{A}_6), (8,\mathsf{PSL}(2,7))$ or $(11,\mathsf{PSL}(2,11)),$ and if $X/K=\mathsf{A}_6,$ $\mathsf{PSL}(2,7)$ or $\mathsf{PSL}(2,11)$ then $p\equiv 1,4(\mathsf{mod}\ 15),$ $p\equiv 1,2,4(\mathsf{mod}\ 7)$ or p=11, respectively;
- (2) n = p + 1, and X/K = PSL(2, p) or PGL(2, p);
- (3) $n = p^2 + p + 1$, and X/K = PSL(3, p) or PGL(3, p).

Imprimitive Case

- For a vertex-transitive graph Γ and a set of $\operatorname{Aut}(\Gamma)$ -invariant partitions $\mathcal B$ of $V(\Gamma)$, the **quotient graph** $\Gamma_{\mathcal B}$ of Γ is the graph whose vertex set is the set $\mathcal B$ such that two elements $B_i, B_j \in \mathcal B$ are adjacent in $\Gamma_{\mathcal B}$ if and only if there exist $x \in B_i$ and $y \in B_j$ such that x,y are adjacent in Γ .
- The graph Γ is called a **cover** of $\Gamma_{\mathcal{B}}$ if, for each edge $\{B_i, B_j\}$ of $\Gamma_{\mathcal{B}}$ and $v \in B_i$, the vertex v is adjacent to exactly one vertex in B_j .
- Whenever the blocks in $\mathcal B$ are the N-orbits, for some nontrivial normal subgroup N of $\operatorname{Aut}(\varGamma)$, we write $\varGamma_{\mathcal B}=\varGamma_N$.

[32, Lemma 5.3]

Let Γ be a connected locally (G, s)-distance transitive graph with $s \geq 2$. Let $1 \neq N \triangleleft G$ be intransitive on $V(\Gamma)$, and let \mathcal{B} be the set of N-orbits on $V(\Gamma)$. Then one of the following holds:

- (1) $|\mathcal{B}| = 2$;
- (2) Γ is bipartite, $\Gamma_N \cong \mathsf{K}_{1,r}$ with $r \geq 2$ and G is intransitive on $V(\Gamma)$;
- (3) s=2, $\Gamma \cong \mathsf{K}_{m[b]}$, $\Gamma_N \cong \mathsf{K}_m$, where $m \geq 3$ and $b \geq 2$;
- (4) N is semiregular on $V(\Gamma)$, Γ is a cover of Γ_N , $|V(\Gamma_N)| <$ $|V(\Gamma)|$ and Γ_N is locally (G/N, s')-distance transitive, where s' = $\min\{s, \mathsf{diam}(\Gamma_N)\}.$

 $^{^{32}}$ A. Devillers, M. Giudici, C.H. Li, C.E. Praeger, Locally s-distance transitive graphs, J. Graph Theory 69 (2012) 176-197.

[32, Proposition 4.2]

Let Γ be a connected locally (G,s)-distance transitive graph with $s\geq 2$. Then there exists no nontrivial $N\lhd G$ such that Γ is a cover of Γ_N and $\Gamma_N\cong \mathsf{K}_{m[b]}$ for some $m\geq 3$ and $b\geq 2$.

Lemma 6.1

For an odd prime p, let Γ be a connected 2-geodesic but not 2-arc transitive graph of order p^2 or p^3 , and let $A=\operatorname{Aut}(\Gamma)$. Let $1\neq N\lhd A$ be intransitive on $V(\Gamma)$ and let Γ be a cover of Γ_N . Then $\Gamma_N\not\cong \mathsf{K}_p$.

2-geodesic transitive graph of order p^2 : Either $\Gamma \cong \mathsf{K}_{p[p]}$, or Γ is a cover of Σ , where $\Sigma \cong \mathsf{K}_p$.

 $^{^{32}}$ A. Devillers, M. Giudici, C.H. Li, C.E. Praeger, Locally s-distance transitive graphs, J. Graph Theory 69 (2012) 176-197.

Theorem 4.3

For an odd prime p, let $G=\langle a,b,c\mid a^p=b^p=c^p=[a,c]=[b,c]=1, c=[a,b]\rangle$, and let $S=\langle b\rangle^*\cup_{i\in\mathbb{Z}_p}\langle b^iab^i\rangle^*$. Then $\mathrm{Cay}(G,S)$ is 2-geodesic and distance transitive, but not 2-arc transitive, and $\mathrm{Aut}(G,S)\cong\mathrm{GL}(2,p)$. Furthermore,

- (1) For every $m \mid (p-1)$, the unique subgroup of index m in $\operatorname{Aut}(E(p^3),S)$ has 2m+2 orbits: one orbit has length 1, one orbit has length p^2-1 , namely S, m orbits have length (p-1)/m, and m orbits have length $(p^2-1)(p-1)/m$;
- (2) $\operatorname{Aut}(E(p^3), S)' \cong \operatorname{SL}(2, p)$ has orbit-set $\{\{c^i\}, c^i S \mid i \in \mathbb{Z}_p\}$;
- (3) $|SS| = p^2 + (p^2 1)(p 1)$, where $SS = \{s_1s_2 \mid s_1, s_2 \in S\}$.

2-geodesic transitive graph of order p^3

- Now, A has a nontrivial maximal intransitive normal subgroup N and so A/N is quasiprimitive on $V(\Gamma_N)$.
- Furthermore, either $\Gamma \cong \mathsf{K}_{p^2[p]}$ or $\mathsf{K}_{p[p^2]}$; or N is semiregular on $V(\Gamma)$ and Γ is a cover of Γ_N .
- $\bullet \ \ \text{In particular, } \Gamma_N \cong \mathbf{C}_p, \mathsf{K}_p, \mathbf{C}_{p^2}, \mathsf{K}_{p^2}, H(2,p) \ \text{or} \ \overline{H(2,p)}.$
- $\Gamma \cong \operatorname{Cay}(M,S)$ and $\Gamma_N \cong \operatorname{Cay}(M/N,SN/N)$, where $M \cong \mathbb{Z}_p^3$ or $\langle a,b,c \mid a^p=b^p=c^p=[a,c]=[b,c]=1,c=[a,b] \rangle$.
- It is proved that $M\cong \langle a,b,c\mid a^p=b^p=c^p=[a,c]=[b,c]=1,c=[a,b]\rangle.$
- In this case, $\Gamma_N \ncong \overline{H(2,p)}$. Further, $\Gamma \cong \operatorname{Cay}(M,\langle a \rangle^* \cup \langle b \rangle^*)$ if $\Gamma_N \cong H(2,p)$, and $\Gamma \cong \operatorname{Cay}(M,\langle b \rangle^* \cup_{i \in \mathbb{Z}_p} \langle b^i a b^i \rangle^*)$ if $\Gamma_N \cong \operatorname{K}_{p^2}$.

Thank you!