On finite of 2-arc-transitive Graphs

Speaker: Xiaoqian Zhang

Supervisor: Professor Jing Jian Li

Central South University, Changsha, 410083 Email: zhangxq1110@163.com

All graphs here are finite, simple, connected and undirected. Let Γ be a graph with vertex set $V\Gamma$ and edge set $E\Gamma$.

For a vertex
$$\alpha \in V\Gamma$$
 and a group G of Γ ,
neighborhood: $\Gamma(\alpha) = \{\gamma \in V\Gamma \mid \{\alpha, \gamma\} \in E\Gamma\}$,
vertex-stabilizer: $G_{\alpha} = \{g \in G \mid \alpha^{g} = \alpha\}$,
arc-stabilizer: $G_{\alpha\beta} = G_{\alpha} \cap G_{\beta}, \beta \in \Gamma(\alpha)$.

All graphs here are finite, simple, connected and undirected. Let Γ be a graph with vertex set $V\Gamma$ and edge set $E\Gamma$.

For a vertex
$$\alpha \in V\Gamma$$
 and a group G of Γ ,
neighborhood: $\Gamma(\alpha) = \{\gamma \in V\Gamma \mid \{\alpha, \gamma\} \in E\Gamma\}$,
vertex-stabilizer: $G_{\alpha} = \{g \in G \mid \alpha^{g} = \alpha\}$,
arc-stabilizer: $G_{\alpha\beta} = G_{\alpha} \cap G_{\beta}, \beta \in \Gamma(\alpha)$.

An automorphism of Γ is a permutation π on $V\Gamma$ s.t. $\{u, v\} \in E\Gamma \Leftrightarrow \{u^{\pi}, v^{\pi}\} \in E\Gamma$.

All automorphisms of Γ form a permutation group on $V\Gamma$, called the full automorphism group of Γ , denoted by $Aut(\Gamma)$.

Frucht theorem (Frucht, Composition Math.1938)

For every abstract finite group G, there is a graph Γ such that $Aut(\Gamma) \cong G$.

Frucht theorem (Frucht, Composition Math.1938)

For every abstract finite group G, there is a graph Γ such that $Aut(\Gamma) \cong G$.

The work of Frucht stimulated a great deal of research (groups and graphs).

Frucht theorem (Frucht, Composition Math.1938)

For every abstract finite group G, there is a graph Γ such that $Aut(\Gamma) \cong G$.

The work of Frucht stimulated a great deal of research (groups and graphs).

The largest automorphism group is S_n , while the smallest automorphism group is the identity group.

Frucht theorem (Frucht, Composition Math.1938)

For every abstract finite group G, there is a graph Γ such that $Aut(\Gamma) \cong G$.

The work of Frucht stimulated a great deal of research (groups and graphs).

The largest automorphism group is S_n , while the smallest automorphism group is the identity group.

Almost all graphs have the trivial automorphism group (see (Blollobás, Random Graphs, 1985)).

Let Γ be a graph. An (s + 1)-sequence $(\alpha_0, \alpha_1, \dots, \alpha_s)$ of vertices of Γ is called an *s*-arc if $\{\alpha_{i-1}, \alpha_i\} \in E\Gamma$ for $1 \le i \le s$ and $\alpha_{i-1} \ne \alpha_{i+1}$ for $1 \le i \le s - 1$.

Let Γ be a graph. An (s + 1)-sequence $(\alpha_0, \alpha_1, \cdots, \alpha_s)$ of vertices of Γ is called an *s*-arc if $\{\alpha_{i-1}, \alpha_i\} \in E\Gamma$ for $1 \le i \le s$ and $\alpha_{i-1} \ne \alpha_{i+1}$ for $1 \le i \le s - 1$.

Denote by $Aut(\Gamma)$ the full automorphism group of the graph Γ , and a subgroup G of $Aut(\Gamma)$ is called a group of Γ . A group G of Γ is called

vertex-transitive: G acts transitively on $V\Gamma$, edge-transitive: G acts transitively on $E\Gamma$, arc-transitive: G acts transitively on arcs, s-arc-transitive: G acts transitively on s-arcs,

Let Γ be a graph. An (s + 1)-sequence $(\alpha_0, \alpha_1, \cdots, \alpha_s)$ of vertices of Γ is called an *s*-arc if $\{\alpha_{i-1}, \alpha_i\} \in E\Gamma$ for $1 \le i \le s$ and $\alpha_{i-1} \ne \alpha_{i+1}$ for $1 \le i \le s - 1$.

Denote by $Aut(\Gamma)$ the full automorphism group of the graph Γ , and a subgroup G of $Aut(\Gamma)$ is called a group of Γ . A group G of Γ is called

vertex-transitive: G acts transitively on $V\Gamma$, edge-transitive: G acts transitively on $E\Gamma$, arc-transitive: G acts transitively on arcs, s-arc-transitive: G acts transitively on s-arcs, locally transitive: G_{α} acts transitively on $\Gamma(\alpha)$ for all $\alpha \in V\Gamma$, locally primitive: G_{α} acts primitively on $\Gamma(\alpha)$ for all $\alpha \in V\Gamma$.

Normal quotients and covers:

Let Γ be a connected graph, G be locally primitive on Γ , $N \leq G$. Suppose that N is intransitive on every G-orbit and has at least 3 orbits on $V\Gamma$. Write $\bar{\alpha} = \alpha^N$ for $\alpha \in V\Gamma$. Let $V\Gamma_N = \{\bar{\alpha} | \alpha \in V\Gamma\}$, and $\bar{G} := G^{V\Gamma_N}$.

Normal quotients and covers:

Let Γ be a connected graph, G be locally primitive on Γ , $N \leq G$. Suppose that N is intransitive on every G-orbit and has at least 3 orbits on $V\Gamma$. Write $\bar{\alpha} = \alpha^N$ for $\alpha \in V\Gamma$. Let $V\Gamma_N = \{\bar{\alpha} | \alpha \in V\Gamma\}$, and $\bar{G} := G^{V\Gamma_N}$.

• N is semiregular on VГ, $\overline{G} \cong G/N$.

•
$$G_{ar{lpha}} = N
times G_{lpha}$$
, yielding $ar{G}_{ar{lpha}} \cong G_{lpha}$.

• $[\bar{\alpha}]_{\Gamma}$ is empty, $[\bar{\alpha}, \bar{\beta}]_{\Gamma}$ is either empty or a perfect matching.

Γ_N = (VΓ_N, EΓ_N), EΓ_N = {{ā, β} | {α, β} ∈ EΓ}, called a normal quotient of Γ. The graph Γ is a cover of Γ_N, called a normal cover of Γ_N.

Γ_N = (VΓ_N, EΓ_N), EΓ_N = {{ā, β} | {α, β} ∈ EΓ}, called a normal quotient of Γ. The graph Γ is a cover of Γ_N, called a normal cover of Γ_N.

 α and $\overline{\alpha}$ have same valency, and \overline{G} is locally primitive on Γ_N ; \overline{G} is vertex-transitive iff G is vertex-transitive;

 \overline{G} is 2-arc-transitive iff G is 2-arc-transitive.

- Γ_N = (VΓ_N, EΓ_N), EΓ_N = {{ā, β} | {α, β} ∈ EΓ}, called a normal quotient of Γ. The graph Γ is a cover of Γ_N, called a normal cover of Γ_N.
 - α and $\bar{\alpha}$ have same valency, and \bar{G} is locally primitive on Γ_N ; \bar{G} is vertex-transitive iff G is vertex-transitive;
 - \overline{G} is 2-arc-transitive iff G is 2-arc-transitive.
- basic 2-arc-transitive graph: if G ≤ Aut(Γ) acts transitively on the set of 2-arcs of Γ, and every minimal normal subgroup of G has at most two orbits on VΓ.

 Bipartite graph: A graph Γ is called bipartite graph if Γ is vertex-transitive and its automorphism group has a normal subgroup which has two orbits on VΓ.

- Bipartite graph: A graph Γ is called bipartite graph if Γ is vertex-transitive and its automorphism group has a normal subgroup which has two orbits on VΓ.
- Let Γ be a bipartite graph and G ≤ Aut(Γ) is transitive on VΓ.
 G has a subgroup G⁺ of index 2 with two orbits on VΓ, say Δ₁ and Δ₂ the two parts of the bipartition of VΓ.

- Bipartite graph: A graph Γ is called bipartite graph if Γ is vertex-transitive and its automorphism group has a normal subgroup which has two orbits on VΓ.
- Let Γ be a bipartite graph and G ≤ Aut(Γ) is transitive on VΓ.
 G has a subgroup G⁺ of index 2 with two orbits on VΓ, say Δ₁ and Δ₂ the two parts of the bipartition of VΓ.
- Γ is called G-bi-primitive graph, if G⁺ is primitive and faithful on each of Δ₁ and Δ₂, further, if Aut(Γ) = G, then Γ is called bi-primitive graph.

 bi-Cayley graph: The bi-Cayley graph over H with respect to S, denoted by BiCay(H, S), is defined as a graph whose vertex set is the union of following two copies of H:

$$H_0 = \{h_0 \mid h \in H\}, H_1 = \{h_1 \mid h \in H\},\$$

and whose edge set is

$$\{\{h_0, (sh)_1\} \mid h_0 \in H_0, h_1 \in H_1, s \in S\}.$$

 bi-Cayley graph: The bi-Cayley graph over H with respect to S, denoted by BiCay(H, S), is defined as a graph whose vertex set is the union of following two copies of H:

$$H_0 = \{h_0 \mid h \in H\}, H_1 = \{h_1 \mid h \in H\},\$$

and whose edge set is

$$\{\{h_0, (sh)_1\} \mid h_0 \in H_0, h_1 \in H_1, s \in S\}.$$

Normal bi-Cayley graph: If H ≤ Aut(Γ), then Γ is called a normal bi-Cayley graph of H.

Theorem

Let Γ be an *s*-arc transitive graph.

• If Γ is cubic, then $s \leq 5$ (Tutte 1947);

• If Γ is of valency at least 3, then $s \leq 7$ (Weiss 1981).

Theorem

Let Γ be an *s*-arc transitive graph.

• If Γ is cubic, then $s \leq 5$ (Tutte 1947);

• If Γ is of valency at least 3, then $s \leq 7$ (Weiss 1981).

This led to one of the central problems in symmetrical graph theory:

Problem

For large values of s, say $s \ge 2$,

• characterize *s*-arc transitive graphs,

• characterize *s*-arc transitive Cayley graphs.

Image: A matrix and a matrix

- Brian Alspach, Marston D.E. Conder, Dragan Marusic, Ming-Yao Xu (1996): Classified 2-arc transitive circulants;
- Dragan Marusic (2003), Shaofei Du, Aleksander Malni, Dragan Marusic (2008): Classified 2-arc transitive dihedrants;
- Li-Xia (2019), Zhou JX (2021): Classified 2-arc transitive solvable Cayley graphs.

- 1-arc transitive Cayley graphs of simple groups with prime valency and solvable stabilizers (Feng, Yin, Zhou, 2021);
- 1-arc transitive Cayley graphs of simple groups with prime valency (Li JJ and Lu ZP, 2021), preprint 48 pages.
- 2-arc transitive Cayley graphs of alternating groups (Pan, Xia, Yin 2021);

Biprimitive 2-arc-transitive bi-Cayley Graphs

 Caiheng Li(2001), Classified the finite vertex primitive and vertex-biprimitive s-transitive graphs for s ≥ 4.

- Caiheng Li(2001), Classified the finite vertex primitive and vertex-biprimitive s-transitive graphs for s ≥ 4.
- Problem: Classify the vertex-primitive and vertex-biprimitive *s*-transitive graphs for s = 2 or 3.

- Caiheng Li(2001), Classified the finite vertex primitive and vertex-biprimitive s-transitive graphs for s ≥ 4.
- Problem: Classify the vertex-primitive and vertex-biprimitive *s*-transitive graphs for s = 2 or 3.
- Caiheng Li (2010), Classified the finite vertex-primitive and vertex-biprimitive s-arc-regular graphs for s ≥ 2.

- Caiheng Li(2001), Classified the finite vertex primitive and vertex-biprimitive s-transitive graphs for s ≥ 4.
- Problem: Classify the vertex-primitive and vertex-biprimitive *s*-transitive graphs for s = 2 or 3.
- Caiheng Li (2010), Classified the finite vertex-primitive and vertex-biprimitive s-arc-regular graphs for s ≥ 2.
- Problem: Classify the vertex-primitive and vertex-biprimitive s-arc-transitive but not s-arc-regular graph for s ≥ 2.

• Caiheng Li and Hua Zhang(2012), Classified the finite vertex-primitive and vertex-biprimitive 2-path-transitive but not 2-arc-transitive graphs.

• Caiheng Li and Hua Zhang(2012), Classified the finite vertex-primitive and vertex-biprimitive 2-path-transitive but not 2-arc-transitive graphs.

• Problem: Classify the vertex-primitive and vertex-biprimitive 2-arc-transitive graphs.

Classify the biprimitive non-normal 2-arc-transitive bi-Cayley graphs.

э

Lemma 1. [8, Theorem 2.3]

Let Γ be a finite connected regular bipartite graph with a group G of automorphisms which is 2-arc transitive and bi-quasiprimitive. Then the subgroup G^+ of index 2 in G fixing the parts Δ_1 and Δ_2 of the bipartition setwise has a unique minimal normal subgroup $N \cong T^k$, where $k \ge 1$, and T is a simple group, and $(G^+)^{\Delta_1} \cong (G^+)^{\Delta_2}$ is of type I (affine), II (almost simple), III(b)(i) (product action), or III(c) (twisted wreath), as described in [9].

Theorem 1

Let Γ is a bi-primitive 2-arc-transitive graph with two parts Δ_1 and Δ_2 , $A = \operatorname{Aut}(\Gamma)$ and A^+ be the stabilizer of A on two parts. Then $(A^+)^{\Delta_1} \cong (A^+)^{\Delta_2}$ is of type affine, almost simple or twisted wreath.

• Liebeck, Praeger, Saxl's (2010) classification of primitive permutation group containing regular subgroup:

• Liebeck, Praeger, Saxl's (2010) classification of primitive permutation group containing regular subgroup:

Lemma 2. [6, Theorem 1.1]

Let G be an almost simple primitive permutation group on a set Ω , with socle L. Suppose that G has a subgroup B which is regular on Ω . Then the possibilities for G, G_{α} ($\alpha \in \Omega$) and B are given in Tables 16.1 - 16.3 at the end of the paper.

Let $\Gamma = \operatorname{BiCay}(G, S)$ is a biprimitive (X, 2)-arc-transitive bi-Cayley graph, where $s \ge 2$, $G \le X \le \operatorname{Aut}(\Gamma)$, assume that $G \not \cong \operatorname{Aut}(\Gamma)$.

Let $\Gamma = \operatorname{BiCay}(G, S)$ is a biprimitive (X, 2)-arc-transitive bi-Cayley graph, where $s \ge 2$, $G \le X \le \operatorname{Aut}(\Gamma)$, assume that $G \not \supseteq \operatorname{Aut}(\Gamma)$.

• X^+ is an almost simple group.

Let $\Gamma = \operatorname{BiCay}(G, S)$ is a biprimitive (X, 2)-arc-transitive bi-Cayley graph, where $s \ge 2$, $G \le X \le \operatorname{Aut}(\Gamma)$, assume that $G \not \supseteq \operatorname{Aut}(\Gamma)$.

• X^+ is an almost simple group.

• X^+ has a factorization: $X^+ = GX^+_{\alpha}$, where X^+_{α} is the maximal subgroup of X^+ and G is regular on Δ_1 and Δ_2 .

Let $\Gamma = \operatorname{BiCay}(G, S)$ is a biprimitive (X, 2)-arc-transitive bi-Cayley graph, where $s \ge 2$, $G \le X \le \operatorname{Aut}(\Gamma)$, assume that $G \not \supseteq \operatorname{Aut}(\Gamma)$.

• X^+ is an almost simple group.

- X^+ has a factorization: $X^+ = GX^+_{\alpha}$, where X^+_{α} is the maximal subgroup of X^+ and G is regular on Δ_1 and Δ_2 .
- Determines the structure of $X_{\alpha} = X_{\alpha}^{+}$, $X_{\alpha} = X_{\alpha}^{[1]}.X_{\alpha}^{\Gamma(\alpha)} = (X_{\alpha\beta}^{[1]}.(X_{\alpha}^{[1]})^{\Gamma(\beta)}).X_{\alpha}^{\Gamma(\alpha)}.$

Condition

Condition

A graph Γ is an (X, 2)-arc-transitive graph of valency k with $X \leq \operatorname{Aut}(\Gamma)$ if and only if there exists a 2-element $g \in X$ such that $\Gamma \cong \operatorname{Cos}(X, X_u, X_u g X_u)$ with $u \in V(\Gamma)$, X_u acts 2-transitively on $[X_u : X_u^g \cap X_u]$ and the following conditions hold:

$$k = |X_u : X_u^g \cap X_u|, g^2 \in X_u, g \in \mathbf{N}_X(X_u^g \cap X_u), \langle g, X_u \rangle = X.$$

Let q be a prime power and $n \ge 2$ be an integer. Let PG(n-1,q) be the (n-1)-dimensional projective geometry over a field of order q. Let V_1 and V_{n-1} be the sets of points and hyperplanes of PG(n-1,q), respectively.

Let q be a prime power and $n \ge 2$ be an integer. Let PG(n-1,q) be the (n-1)-dimensional projective geometry over a field of order q. Let V_1 and V_{n-1} be the sets of points and hyperplanes of PG(n-1,q), respectively.

The *point-hyperplane incidence graph*, denoted by HP(n-1, q), of PG(n-1, q) is the graph with vertices V₁ ∪ V_{n-1}, and α ∈ V₁ and β ∈ V_{n-1} are adjacent if and only if α ⊆ β.

Let q be a prime power and $n \ge 2$ be an integer. Let PG(n-1,q) be the (n-1)-dimensional projective geometry over a field of order q. Let V_1 and V_{n-1} be the sets of points and hyperplanes of PG(n-1,q), respectively.

- The point-hyperplane incidence graph, denoted by HP(n-1, q), of PG(n-1, q) is the graph with vertices V₁ ∪ V_{n-1}, and α ∈ V₁ and β ∈ V_{n-1} are adjacent if and only if α ⊆ β.
- The point-hyperplane non-incidence graph, denoted by $\overline{HP(n-1,q)}$, of PG(n-1,q) is the graph with vertices $V_1 \cup V_{n-1}$, and $\alpha \in V_1$ and $\beta \in V_{n-1}$ are adjacent if and only if $\alpha \notin \beta$.

3

イロト 不得下 イヨト イヨト

Theorem 2

Let Γ be a bi-primitive s-arc-transitive bi-Cayley graph over a group B with s > 2. Let $A = Aut(\Gamma)$. Then one of the following holds: (a) Γ is a normal bi-Cayley graph; (b) Γ is the complete bipartite graph $K_{n,n}$; (c) $\Gamma \cong \Delta^{(2)}$, where $\Delta = K_n$ with $n \ge 3$, or Δ is one of the graphs given in [5, Table 1]; (d) $\Gamma \cong HP(n-1,q), HP(n-1,q) (n \ge 3), G(22,5) \text{ or } B'(H(11))$ (see [7] for the last two graphs); (e) Γ is one of the graphs given in *Examples 4.3, 4.4, 4.5, 4.11, 4.13* and 4.14.

- A I I I A I I I I

Basic 2-arc-transitive graphs of order $r^a s^s$ or $2r^a s^s$

• C.E. Praeger (1993) proved that a connected 2-arc-transitive graph is a cover of some basic 2-arc-transitive graph.

- C.E. Praeger (1993) proved that a connected 2-arc-transitive graph is a cover of some basic 2-arc-transitive graph.
- **Problem:** Classify all finite basic 2-arc-transitive graphs.

• C.E. Praeger (1993) proved that a connected 2-arc-transitive graph is a cover of some basic 2-arc-transitive graph.

• **Problem:** Classify all finite basic 2-arc-transitive graphs.

Lemma 3. [9, Theorem 2.]

Let Γ be a finite connected graph with a group G of automorphisms which is 2-arc transitive on Γ and quasiprimitive on the vertex set Ω of Γ . Then G is of HA, AS, PA or TW as described in [9].

• C.E. Praeger (1993) proved that a connected 2-arc-transitive graph is a cover of some basic 2-arc-transitive graph.

• **Problem:** Classify all finite basic 2-arc-transitive graphs.

Lemma 3. [9, Theorem 2.]

Let Γ be a finite connected graph with a group G of automorphisms which is 2-arc transitive on Γ and quasiprimitive on the vertex set Ω of Γ . Then G is of HA, AS, PA or TW as described in [9].

 C.E. Praeger (1993) proved that if Γ is bipartite, then either Γ is a complete bipartite graph, or G⁺ is faithful on both parts of Γ.

• Caiheng Li (2001), classified the finite *s*-arc-transitive graphs of prime-power order.

- Caiheng Li (2001), classified the finite *s*-arc-transitive graphs of prime-power order.
- Caiheng Li, Zaiping Lu and Jingjian Li (2010): Classified 2-arc-transitive graph of odd order.

- Caiheng Li (2001), classified the finite *s*-arc-transitive graphs of prime-power order.
- Caiheng Li, Zaiping Lu and Jingjian Li (2010): Classified 2-arc-transitive graph of odd order.
- Luke Morgan. et al. (2016), for any given positive integers k, n and d with d large enough, there exist only a finite number of primes r such that krⁿ is the order of some 2-arc-transitive graph of valency d.

Classify the basic 2-arc-transitive graphs of order $r^a s^b$ and $2r^a s^b$ (bipartite).

э

• Caiheng Li, Xianhua Li's (2014) classification of permutation groups of degree a product of two prime-powers:

• Caiheng Li, Xianhua Li's (2014) classification of permutation groups of degree a product of two prime-powers:

Lemma 4. [1, Theorem 1.2]

Let *T* be a finite simple group and X < T with $|T : X| = p^a q^b$, where *p*, *q* are primes and *a*, *b* are positive integers, then *X* is isomorphic to *K* or *H* and (T, X) lies in Tables 3.2, 3.1, 4.1, 4.2, 4.3, 4.4, 4.5 and 5.1.

Theorem 3

Let *a* be a positive integer, *r* and *s* be distinct primes. Assume that $\Gamma = (V, E)$ is a basic 2-arc-transitive graph with respect to a group *G*. Let $\{\alpha, \beta\} \in E$ and $G^+ = \langle G_{\alpha}, G_{\beta} \rangle$. Assume that *G* is almost simple with $\operatorname{soc}(G) = T$ and G^+ has an orbit on *V* of length $r^a s^b$. Then Γ is isomorphic to one of the following graphs: (1) the complete graph $K_{r^a s^b}$ and its standard double cover; (2) the Odd graph O_4 of valency 4 and its standard double cover; (3) the point-hyperplane incidence graph and non-incidence graph of the projective geometry $\operatorname{PG}(n-1,q)$, where $n \ge 3$ and $r^a s^b = \frac{q^n - 1}{q-1}$;

(4) the incidence graph of the generalized quadrangle $GQ(4, 2^{2^i})$, where $i \ge 1$; (5) the graphs in Examples 3.1, 3.2, 3.4-3.10, the standard double cover of the graph in Example 3.1, and the graphs described as in Tables 4.2 and 6.7. (6) $T = PSL_2(p^{2^i})$, $T_{\alpha} = C_p^{2^i} \rtimes C_m$, and Γ is of valency p^{2^i} and described as in [4, Table 1], where p is an odd prime and $m = \frac{p^{2^i} - 1}{2^{i_0+1}}$ for $1 \le i_o < i$.

On locally primitive symmetric graph of valency twice prime

• Giudici et al. (2003) established a reduction for studying locally primitive bipartite graphs.

- Giudici et al. (2003) established a reduction for studying locally primitive bipartite graphs.
- Caiheng Li, Jiangmin Pan and Li Ma (2009) gave a characterization of the undirected vertex transitive locally primitive graphs of order prime power.

- Giudici et al. (2003) established a reduction for studying locally primitive bipartite graphs.
- Caiheng Li, Jiangmin Pan and Li Ma (2009) gave a characterization of the undirected vertex transitive locally primitive graphs of order prime power.
- Xingui Fang, Xuesong Ma, Jie Wang (2011): the locally-primitive Cayley graphs of finite non- abelian simple groups are investigated.

- Giudici et al. (2003) established a reduction for studying locally primitive bipartite graphs.
- Caiheng Li, Jiangmin Pan and Li Ma (2009) gave a characterization of the undirected vertex transitive locally primitive graphs of order prime power.
- Xingui Fang, Xuesong Ma, Jie Wang (2011): the locally-primitive Cayley graphs of finite non- abelian simple groups are investigated.
- Jiangmin Pan (2014) classify locally-primitive Cayley graphs of dihedral groups.

Classify the locally primitive symmetric graphs of valency 2p admitting a transitive alternating automorphism group.

Lemmas

Lemma 5.

Let Γ be a *G*-locally primitive graph with $H < G \leq \operatorname{Aut}(\Gamma)$ such $H \cong A_n$ is transitive on $V\Gamma$, where $n \geq 5$. Take *N* an arbitrary normal subgroup of *G*. Then either *G* acts quasi-primitively on $V\Gamma$ or *N* has at least three orbits on $V\Gamma$ and the normal quotient Γ_N is G/N-locally primitive, in particular, Γ is a normal cover of Γ_N for the latter.

Lemmas

Lemma 6.

Let Γ be a *G*-locally primitive graph of valency 2r, where *r* is an odd prime and $G \leq \text{Aut}\Gamma$ acts quasi-primitively on $V\Gamma$. If *G* contains a proper transitive subgroup isomorphic to an alternating simple group, then either Γ is a normal Cayley graph of A_n or *G* is an almost simple group.

Lemmas

 Binzhou Xia (2017) classified quasi-primitive permutation groups with a transitive subgroup which is isomorphic to A_n for some n ≥ 5: Binzhou Xia (2017) classified quasi-primitive permutation groups with a transitive subgroup which is isomorphic to A_n for some n ≥ 5:

Lemma 7. [10, Theorem 1.1]

Suppose that L = HK is a factorization of the finite simple group L with $H \cong A_n$, where $n \ge 5$. Then one of the following holds. (a) $L = A_{n+k}$ for $1 \le k \le 5$, and L_{α} is *k*-transitive on n + k points.

- (b) $L = A_m$ and $L_{\alpha} = A_{m-1}$, where *m* is the index of a subgroup in A_n .
- (c) (L, n, L_{α}) lies in [10, Table 1].

3

(日) (同) (三) (三)

Theorem 4.

Let Γ be a *G*-symmetric graphs of valency 2r, where $G \leq \operatorname{Aut}\Gamma$ and r is an odd prime. Assume that Γ is *G*-locally primitive and $H \cong A_n$ acts transitively on $V\Gamma$ for H < G and $n \geq 5$ integer. Then either Γ is isomorphic to a normal Cayley graph of A_n , or *G* is almost simple with socle *L* and one of the following holds.

(1) Γ is isomorphic to the complete graph K_{2r+1} ;

(2) $(L, H) = (A_{n+1}, A_n)$ and L_{α} is 1-transitive but not 2-transitive on n+1 points;

(3) $(L, L_{\alpha}^{\Gamma(\alpha)}, r)$ is $(A_{q+1}, PSL(2, q), \mathcal{O}, \frac{q+1}{2})$ and $H \cong A_{q-1}$, where $\mathcal{O} \leq Out(PSL(2, q)), q = p^{f}$ for p some odd prime and f a power of 2;

(4) Γ is a normal cover of one of the above graphs.

Reference

- C. H. Li, X.H. Li. On permutation groups of degree a product of two prime-powers [J], Communications in Algebra, 2014, 42(4): 721–4743.
- X.G. Fang and C.E. Praeger, Finite two-arc-transitive graphs admitting a Suzuki simple group [J], Communications in Algebra, 1999, 27(8): 3727-3754.
- [3] X.G. Fang and C.E. Praeger, Finite two-arc-transitive graphs admitting a Ree simple group [J], Communications in Algebra, 1999, 27(8): 3755-3769.
- [4] A. Hassani, L.R. Nochefranca, C.E. Praeger, Two-arc transitive graphs admitting a two-dimensional projective linear group [J], Journal of Group Theory, 1999, 2(4): 335-353.
- [5] J. J. Li, J. Yang and W. Y. Zhu, Vertex primitive s-transitive Cayley graphs, Discrete Mathematics, 343 (2020).
- [6] M.W. Liebeck, C.E. Praeger and J. Saxl, Regular subgroups of primitive permutation groups, Mem. Amer. Math. Soc., 2010.
- Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Comb. Theory, Ser. B, 42 (1987), 196–211.
- [8] C.E. Praeger, On a reduction theorem for finite, bipartite 2-arc-transitive graphs, Australas. J. Combin, 7 (1993), 21–36.
- C.E. Praeger, An O'Nan-Scott Theorem for Finite Quasiprimitive Permutation Groups and an Application to 2-Arc Transitive Graphs. Journal of the London Mathematical Society, 2 (1993), 227–239.
- [10] B. Xia, Quasiprimitive groups containing a transitive alternating group. Journal of Algebra, 490 (2017), 555-567.

э

- ∢ ≣ →

Image: A mathematical states and a mathem

Thank You!

Xiaoqian Zhang (Central South University)

2-arc-transitive Graphs

э 18/September/2022 37 / 37

æ