Finite Locally Primitive 2-designs

Wu Yanni

Department of Mathematics Southern University of Science and Technology

12031209@mail.sustech.edu.cn

June 21, 2022

Definition

Define
$$\mathscr{D} = (\mathscr{P}, \mathscr{B})$$
 as a $2 - (v, k, \lambda)$ design, if

- (1) \mathscr{P} is a set of v points.
- (2) \mathscr{B} is a set of blocks, where each block is a k-subset of \mathscr{P} .
- (3) each two distinct points are contained in exactly λ blocks.

For any $\alpha \in \mathscr{P}$ and $B \in \mathscr{B}$, if $\alpha \in B$, we say (α, B) is a flag. Define *b* as the number of blocks, and *r* as the number of blocks contain α . Then we have

(1)
$$vr = bk$$
.
(2) $\lambda(v-1) = r(k-1)$.

Definition

An automorphism of \mathscr{D} is a permutaiton of \mathscr{P} which preserves the block set \mathscr{B} , i.e. $Aut(\mathscr{D}) = \{g \in Sym(\mathscr{P}) | B^g \in \mathscr{B}, \forall B \in \mathscr{B}\}.$

Lemma

Let $\mathscr{D} = (\mathscr{P}, \mathscr{B})$ be a $2 - (v, k, \lambda)$ design. Let $G \leq Aut(\mathscr{D})$. Then G acts faithfully on \mathscr{P} , on \mathscr{B} and on flags.

Proof.

(1) As
$$G \leq Aut(\mathscr{D}) \leq Sym(\mathscr{P})$$
, G acts faithfully on \mathscr{P} .

- (2) For any g ∈ G, if g fixes all blocks and g ≠ 1, then there exist α₁ and α₂ in 𝒫, such that α₁^g = α₂. For all B ∈ Γ(α₁), B^g = B, and α₂ = α₁^g ∈ B^g = B. Thus {α₁, α₂} are on all r blocks contain α₁. But r ≠ λ. A contradiction.
- (3) For any $g \in G$, if g fixes all flags, then g is also fixes all points, i.e. g = 1.

Let $G \leq Aut(\mathscr{D})$. We say

- (1) G is flag-transitive, if G acts transitively on the set of flags of \mathcal{D} .
- (2) G is point-(quasi)primitive, if G acts (quasi)primitively on \mathcal{P} .
- (3) G is block-(quasi)primitive, if G acts (quasi)primitively on \mathcal{B} .
- (4) *G* is locally-primitive, if G_{α} is primitive on $\Gamma(\alpha) = \{B \in \mathscr{B} | \alpha \in B\}$ and G_B is primitive on $\Gamma(B) = \{\alpha \in \mathscr{P} | \alpha \in B\}$.

Lemma

Let \mathscr{D} be a G-locally primitive 2-design. Then \mathscr{D} is G-point-primitive.

Problem

Classify locally primitive 2-design.

Lemma (Li,2003, Analysing finite locally s-arc transitive graph)

Let Γ be a finite G-locally primitive connected graph such that G has two orbits on vertices and G acts faithfully and quasiprimitive on both orbits with type {X,Y}. Then either X=Y, or {X,Y}={PA,SD} or {PA,CD}, and examples exist in each case.

Lemma (Li,2003, Analysing finite locally s-arc transitive graph)

Let Γ be a connected *G*-locally quasiprimitive graph. Suppose that Γ is bipartite and orbits of *G* are the bipartite halves Δ_1 and Δ_2 . Suppose also that *G* acts faithfully and quasiprimitive on Δ_1 and Δ_2 . Let $N \triangleleft G$. (1) N^{Δ_1} is regular $\iff N^{\Delta_2}$ is regular.

(2) If N is not regular on Δ_1 , then $N_v^{\Gamma(v)}$ is transitive for all $v \in V\Gamma$.

Suppose $\mathscr{D} = (\mathscr{P}, \mathscr{B})$ is a *G*-locally-primitive $2 - (v, k, \lambda)$ design. Then \mathscr{D} is *G*-point-primitive. Suppose also that \mathscr{D} is *G*-block-quasiprimitive. Then either $(G^{\mathscr{P}}, G^{\mathscr{B}}) = (HA, HA), (TW, TW)$, or \mathscr{D} is soc(G)-flag-transitive.

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let $\mathscr{D} = (\mathscr{P}, \mathscr{B})$ be a G-locally-transitive $2 - (v, k, \lambda)$ design. Then $G^{\mathscr{P}}$ is not of type SD,CD,HS,HC.

Proof.

Suppose $G^{\mathscr{P}}$ is of type SD,CD,HS,HC. Let $N = soc(G) \cong T^m$. Then N is not regular on \mathscr{P} , thus N_{α} is transitive on $\Gamma(\alpha)$. Suppose $N_{\alpha} \cong T^i$. Then $v = \frac{|N|}{|N_{\alpha}|} = |T|^{m-i}$ and $r = \frac{|N_{\alpha}|}{|N_{\alpha B}|} ||N_{\alpha}| = |T|^i$, and $gcd(v-1,r) \mid gcd(|T|^{m-i}-1,|T|^i) = 1$. As $\lambda(v-1) = r(k-1), r \mid \lambda$. But $\lambda < r$. A contradiction.

Lemma

Let $\mathscr{D} = (\mathscr{P}, \mathscr{B})$ be a G-point-primitive $2 - (v, k, \lambda)$ design. Then $G^{\mathscr{P}}$ is not of type TW.

(日)

Let $\mathscr{D} = (\mathscr{P}, \mathscr{B})$ be a *G*-flag-transitive $2 - (v, k, \lambda)$ design. Let (α, B) be a flag, where $\alpha \in \mathscr{P}$ and $B \in \mathscr{B}$. Let $\mathscr{D}' = (\mathscr{P}', \mathscr{B}')$ be a design, where $\mathscr{P}' = \{G_{\alpha}g|g \in G\}, \mathscr{B}' = \{G_{\alpha}G_{B}g|g \in G\}$ and $(G_{\alpha}g_{1}, G_{\alpha}G_{B}g_{2})$ is a flag if and only if $G_{\alpha}g_{1} \subset G_{\alpha}G_{B}g_{2}$. Then (1) $\mathscr{D} \cong \mathscr{D}'$.

(2)
$$\lambda = \frac{|G_B G_\alpha \cap G_B G_\alpha g|}{|G_B|}$$
, for all $g \notin G_\alpha$.
(3) $\lambda = \frac{|G_B G_\alpha \cap G_B G_{\alpha'}|}{|G_B|}$, where (α, B) and (α', B) are two flags.

(1) Define $f: \mathscr{P} \to \mathscr{P}'$ be a map, where $f: \alpha^g \mapsto G_{\alpha}g$. Then $\forall g_1, g_2 \in G$,

$$\alpha^{g_1} = \alpha^{g_2} \iff \alpha^{g_1g_2^{-1}} = \alpha \iff g_1g_2^{-1} \in \mathcal{G}_\alpha \iff \mathcal{G}_\alpha g_1 = \mathcal{G}_\alpha g_2.$$

Thus $f: \mathscr{P} \to \mathscr{P}'$ is a bijection. As \mathscr{D} is a *G*-flag-transitive design, $B = \{\alpha^g | g \in G_B\} = \alpha^{G_B}$, and $f(B) = \{f(\alpha^h) | h \in G_B\} = \{G_\alpha h | h \in G_B\} = G_\alpha G_B$. Then $f(B^g) = \{f(\alpha^{hg}) | h \in G_B\} = \{G_\alpha hg | h \in G_B\} = G_\alpha G_B g, \forall g \in G$. For all $g_1, g_2 \in G$,

$$B^{g_1} = B^{g_2} \implies B^{g_1g_2^{-1}} = B \implies g_1g_2^{-1} \in G_B \implies G_Bg_1 = G_Bg_2$$
$$\implies G_{\alpha}G_Bg_1 = G_{\alpha}G_Bg_2 \implies \alpha^{G_{\alpha}G_Bg_1} = \alpha^{G_{\alpha}G_Bg_2} \implies B^{g_1} = B^{g_2}.$$
Thus $f : \mathscr{B} \to \mathscr{B}'$ is a bijection, and $\mathscr{D} \cong \mathscr{D}'.$

< (17) > < (17) > <

(2) For all $g_1, g_2 \in G$,

 $\alpha^{g_1} \in B^{g_2} \iff G_{\alpha}g_1 \subset G_{\alpha}G_Bg_2 \iff G_{\alpha} \subset G_{\alpha}G_Bg_2g_1^{-1}$ $\iff G_{\alpha} \cap G_Bg_2g_1^{-1} \neq \emptyset \iff G_{\alpha}g_1 \cap G_Bg_2 \neq \emptyset \iff G_{\alpha}g_1g_2^{-1} \cap G_B \neq \emptyset$ $\iff G_B \subset G_BG_{\alpha}g_1g_2^{-1} \iff G_Bg_2 \subset G_BG_{\alpha}g_1.$

Let B^g be a block contains two distinct points $\alpha^{g_1}, \alpha^{g_2}$. Then $\{\alpha^{g_1}, \alpha^{g_2}\} \subset B^g \iff G_Bg \subset G_BG_{\alpha}g_1 \cap G_BG_{\alpha}g_2$. The number of blocks contain $\alpha^{g_1}, \alpha^{g_2}$, say $\lambda_{\alpha^{g_1}, \alpha^{g_2}}$, is equal to the number of G_B cosets on $G_BG_{\alpha}g_1 \cap G_BG_{\alpha}g_2$, i.e.

$$\lambda_{lpha^{g_1},lpha^{g_2}} = rac{|G_B G_lpha g_1 \cap G_B G_lpha g_2|}{|G_B|}$$

Thus

$$\lambda = \frac{|G_B G_\alpha \cap G_B G_\alpha g|}{|G_B|},$$

where $g \notin G_{\alpha}$.

Let $\mathscr{D} = (\mathscr{P}, \mathscr{B})$ be a *G*-locally-primitive $2 - (v, k, \lambda)$ design. Suppose *G* is primitive on \mathscr{P} of type PA, and *G* is quasiprimitive on \mathscr{B} . Let $N = \operatorname{soc}(G) = T_1 \times T_2 \times \cdots \times T_m \cong T^m$. Let (α, B) be a flag, where $\mathscr{P} = \Omega^m, \omega_i \in \Omega, \alpha = (\omega_1, \omega_2, \cdots, \omega_m), B \in \mathscr{B}$. Let π be a non-trivial subset of $[m] = \{1, 2, \cdots, m\}$. Let $\pi' = [m] \setminus \pi$. Define $\rho_{\pi} : N \to N^{\pi} \cong T^{|\pi|}$ by $(n_1, n_2, \cdots, n_m) \mapsto (h_1, h_2, \cdots, h_m)$, where $h_i = n_i$ if $i \in \pi$, and $h_i = 1$ if $i \notin \pi$. Then $N_B \neq N_B^{\pi} \times N_B^{\pi'}$, for all non-trivial subset π of [m].

Proof.

Suppose there exist a non-trivial subset π of [m], such that $N_B = N_B^{\pi} \times N_B^{\pi'}$. Then $N = N^{\pi} \times N^{\pi'}$, and $N_{\alpha} = N_{\alpha}^{\pi} \times N_{\alpha}^{\pi'}$. As \mathscr{D} is N-flag-transitive,

$$\lambda = \frac{|N_B N_\alpha \cap N_B N_\alpha n|}{|N_B|}, \forall n \notin N_\alpha.$$

Let $x^{\pi} \in N^{\pi} \setminus N^{\pi}_{\alpha}$. Let $x^{\pi'} \in N^{\pi'} \setminus N^{\pi'}_{\alpha}$. Then $x^{\pi} \cdot x^{\pi'}, 1 \cdot x^{\pi'} \notin N_{\alpha}$. Thus $|N_B N_{\alpha} \cap N_B N_{\alpha}(x^{\pi} \cdot x^{\pi'})| = |N_B N_{\alpha} \cap N_B N_{\alpha}(1 \cdot x^{\pi'})|,$

which implies

$$|N_B^{\pi}N_{\alpha}^{\pi} \cap N_B^{\pi}N_{\alpha}^{\pi}x^{\pi}| \cdot |N_B^{\pi'}N_{\alpha}^{\pi'} \cap N_B^{\pi'}N_{\alpha}^{\pi'}x^{\pi'}| = |N_B^{\pi}N_{\alpha}^{\pi}| \cdot |N_B^{\pi'}N_{\alpha}^{\pi'} \cap N_B^{\pi'}N_{\alpha}^{\pi'}x^{\pi'}|$$

Proof.

Then

$$|N_B^{\pi}N_{\alpha}^{\pi}\cap N_B^{\pi}N_{\alpha}^{\pi}x^{\pi}|=|N_B^{\pi}N_{\alpha}^{\pi}|.$$

And

$$N_B^{\pi} N_{\alpha}^{\pi} x^{\pi} = N_B^{\pi} N_{\alpha}^{\pi},$$

for all $x^{\pi} \in N^{\pi} \setminus N^{\pi}_{\alpha}$, which implies

$$N^{\pi}_B N^{\pi}_{\alpha} = \cup_{x^{\pi} \in N^{\pi}} N^{\pi}_B N^{\pi}_{\alpha} x^{\pi} = N^{\pi}_B N^{\pi} = N^{\pi}.$$

Similarly,

$$N_B^{\pi'}N_\alpha^{\pi'}=N^{\pi'}.$$

Thus

$$N_B N_\alpha = (N_B^\pi N_\alpha^\pi) \times (N_B^{\pi'} N_\alpha^{\pi'}) = N^\pi \times N^{\pi'} = N$$

and $\lambda = \frac{|N|}{|N_B|} = b$. A contradiction.

イロト イヨト イヨト イヨ

Suppose *G* is primitive on \mathscr{P} of type PA, and *G* is quasiprimitive on \mathscr{B} . Then $(G^{\mathscr{P}}, G^{\mathscr{B}}) \neq (PA, CD)$.

If $(G^{\mathscr{P}}, G^{\mathscr{B}}) = (PA, PA)$, then G is not primitive on \mathscr{B} .

(Suppose $G^{\mathscr{B}}$ is quasiprimitive of type PA. Then N_B is a subdirect product of R^m for some 1 < R < T.)

Lemma

Let $\mathscr{D} = (\mathscr{P}, \mathscr{B})$ be a *G*-locally-primitive $2 - (v, k, \lambda)$ design. And *G* is not primitive on \mathscr{B} . Let $\mathscr{S} = \{S_1, S_2, \cdots\}$ be a nontrivial *G*-invariant partition of \mathscr{B} , i.e. $S_i^g = S_j, \forall g \in G$. Let (α, B) be a flag and $B \in S \in \mathscr{S}$. Define $G_S = \{g \in G | B^g \in S\}$. Then (1) $G_\alpha \cap G_B = G_\alpha \cap G_S$.

(2) For any two block B_1, B_2 in $S, B_1 \cap B_2 = \emptyset$.

Let $\mathscr{D} = (\mathscr{P}, \mathscr{B})$ be a *G*-locally-primitive $2 - (v, k, \lambda)$ design. Then $(G^{\mathscr{P}}, G^{\mathscr{B}}) \neq (PA, SD)$.

Define N = soc(G). Then \mathcal{D} is N-flag-transitive. As $G^{\mathscr{B}}$ is of type *SD*, we have $T^m \triangleleft G \leq A \rtimes S_n$, where $A = \{(a_1, a_2, \cdots, a_m) | a_i \in Aut(T), Ta_i = Ta_i, \forall i, j\}.$ Let (α, B) be a flag, where $\alpha = (\omega_1, \omega_2, \cdots, \omega_m) \in \mathscr{P}$, and $B \in \mathscr{B}$. Then $N_{\alpha} = \{(t_1, t_2, \cdots, t_m) | t_i \in T_{\omega_i}\} \cong T_{\omega_1} \times T_{\omega_2} \times \cdots \times T_{\omega_m}$, and without loss of generality, let $N_B = \{(t, t, \dots, t) | t \in T\} \cong T$. Define $D: Aut(T) \rightarrow D(Aut(T)) = \{(a, a, \dots, a) | a \in Aut(T)\} \leq Aut(T)^m$ by $a \mapsto (a, a, \dots, a)$, for $a \in Aut(T)$. Define $\rho: D(Aut(T)) \times S_m \to Aut(T)$ by $(a, a, \dots, a) s \mapsto a$ for $a \in Aut(T)$ and $s \in S_m$. Then $G_B \leq D(Aut(T)) \times S_m$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Define $n = (n_1, 1, \dots, 1) \in N$, where $n_1 \notin T_{\omega_1}$. Then $n \notin N_{\alpha}$ and $\alpha^n \neq \alpha$. The number of blocks contain both α and α^n is

$$\lambda_{\alpha,\alpha^n} = \frac{|N_B N_\alpha \cap N_B N_\alpha n|}{|N_B|}.$$

Suppose $N_B(t_1, t_2, \dots, t_m) \subseteq N_B N_\alpha \cap N_B N_\alpha n$, where $(t_1, t_2, \dots, t_m) \in N_\alpha$, then there exist $(t'_1, t'_2, \dots, t'_m) \in N_\alpha$, such that

$$N_B(t_1,t_2,\cdots,t_m)=N_B(t_1',t_2',\cdots,t_m')n,$$

i.e. $(t'_1 n t_1^{-1}, t'_2 t_2^{-1}, \dots, t'_m t_m^{-1}) \in N_B$, where $t_i, t'_i \in T_{\omega_i}$. There exist $t \in T$ such that $t = t'_1 n_1 t_1^{-1} = t'_2 t_2^{-1} = \dots = t'_m t_m^{-1}$. Thus $t \in T_{\omega_2} \cap \dots \cap T_{\omega_m}, t_1 = t^{-1} t'_1 n_1 \in (T_{\omega_2} \cap \dots \cap T_{\omega_m}) T_{\omega_1} n_1 \cap T_{\omega_1}$. Then $T_{\omega_2} \cap \dots \cap T_{\omega_m} \subsetneq T_{\omega_1}$, otherwise $t_1 \in T_{\omega_1} n_1 \cap T_{\omega_1} = \emptyset$. Thus there exist $x \in T_{\omega_2} \cap \dots \cap T_{\omega_m}$ where $x \notin T_{\omega_1}$ and

$$T_{\omega_1} \cap T_{\omega_2} \cap \cdots \cap T_{\omega_m} < T_{\omega_2} \cap \cdots \cap T_{\omega_m}.$$

These implies $\omega_1 \neq \omega_i, \forall i \neq 1$. Similarly, $\omega_j \neq \omega_i, \forall i \neq j$. And $\{\omega_1, \omega_2, \dots, \omega_m\}$ are distinct elements. Thus $m \leq |\Omega|$. Suppose $m = |\Omega|$, then $T_{\omega_2} \cap \dots \cap T_{\omega_m}$ fixes ω_1 . A contradiction. Then $m \leq |\Omega|$.

Wu Yanni (SUSTech)

As $G_{\alpha B} \leq G_B \leq D(Aut(T)) \times S_m$, for all $g \in G_{\alpha B}, g = (a, a, \dots, a)s$, forsome $a \in Aut(T), s \in S_m$. $N_{\alpha}^g = N_{\alpha}$, i.e.

$$egin{aligned} \mathcal{N}^g_lpha &= \mathcal{N}^{(a,\cdots,a)s}_lpha \ &= \{(t_1,t_2,\cdots,t_m) | t_i \in \mathcal{T}_{\omega_i}\}^{(a,\cdots,a)s} \ &= \{(t_1,t_2,\cdots,t_m) | t_i \in \mathcal{T}_{\omega_i^a}\}^s \ &= \mathcal{N}_lpha. \end{aligned}$$

Thus

$$\{T_{\omega_1}, \cdots, T_{\omega_m}\} = \{T_{\omega_1^a}, \cdots, T_{\omega_m^a}\}.$$

Define $Y = T_{\omega_1} \cap \cdots \cap T_{\omega_m}$, and $Y^m = \{(y_1, y_2, \cdots, y_m) | y_i \in Y\}.$ Then

$$Y^{a} = T_{\omega_{1}^{a}} \cap \cdots \cap T_{\omega_{m}^{a}} = T_{\omega_{1}} \cap \cdots \cap T_{\omega_{m}} = Y.$$

As S_m acts on $\{1, 2, \dots, m\}$ faithfully, there exist unique $s \in S_m$, such that $(a, a, \dots, a)s \in G_{\alpha B}$. Thus $\rho|_{G_{\alpha B}}$ is an injection. $|G_{\alpha B}| = |\rho(G_{\alpha B})| \leq |Aut(T)|$.

(1) Suppose
$$Y \neq 1$$
.
Then $N_{\alpha B} < Y^m < N_{\alpha}$. And
 $G_{\alpha B} = N_{\alpha B}G_{\alpha B} \subset Y^mG_{\alpha B} \subset N_{\alpha}G_{\alpha B} = G_{\alpha}$.
For all $g = (a, \dots, a)s \in G_{\alpha B}$, where $a \in Aut(T)$ and $s \in S_m$,

$$(Y^m)^g = (Y \times \cdots \times Y)^{(a, \cdots, a)s} = (Y^a \times \cdots \times Y^a)^s = Y \times \cdots \times Y = Y^m.$$

Thus
$$Y^m G_{\alpha B}$$
 is a group, and $Y^m \triangleleft Y^m G_{\alpha B}$.
Let $y = (y_1, y_2, \dots, y_m) \in Y^m$, where $y_1 \neq y_2$.
Then $y \notin G_{\alpha B}$, and $G_{\alpha B} \neq Y^m G_{\alpha B}$.
As $Y^m < N$, we obtain $Y^m G_{\alpha B} \cap N = Y^m (G_{\alpha B} \cap N) = Y^m N_{\alpha B} = Y^m$.
But $G_{\alpha} \cap N = N_{\alpha} \neq Y^m$. Thus $Y^m G_{\alpha B} \neq G_{\alpha}$.
Then $G_{\alpha B} < Y^m G_{\alpha B} < G_{\alpha}$, and $G_{\alpha B}$ is not a maximal subgroup of G_{α} . A contradiction.

イロト イヨト イヨト イヨト

(2) Suppose
$$Y = 1$$
.
Then $N_{\alpha B} = \{(t, \dots, t) | t \in Y\} = 1$.
As $\rho : G_B \to Aut(T)$ is a group homomorphism, $\rho(G_{\alpha B}) \leq \rho(G_B)$.

(2.1) Suppose
$$\rho(G_{\alpha B}) = \rho(G_B)$$
.
As $\rho(N_B) = T \leq \rho(G_B)$, and T is transitive on Ω , $m < |\Omega|$, there exist $t \in T \leq \rho(G_{\alpha B})$, such that $\omega_1^t \notin \{\omega_1, \omega_2, \cdots, \omega_m\}$.
Thus there not exist $s \in S_m$, such that $(t, t, \cdots, t)s \in G_{\alpha B}$. A contraduction.

(2.2) Suppose
$$\rho(G_{\alpha B}) < \rho(G_B)$$
.
As $G_{\alpha B}$ is a maxical subgroup of $G_B, \langle G_{\alpha B}, g \rangle = G_B$, for all $g \in G_B \setminus G_{\alpha B}$.
The map $\rho : Aut(T) \times S_m \to Aut(T)$ is a group homomorphism.
Then $\rho(G_B) = \rho(\langle G_{\alpha B}, g \rangle) = \langle \rho(G_{\alpha B}), \rho(g) \rangle$, for all $g \in G_B \setminus G_{\alpha B}$.
If $\rho(g) \in \rho(G_{\alpha B})$, then $\rho(G_{\alpha B}) = \rho(G_B)$.
A contradiction.
Then $\rho(g) \notin \rho(G_{\alpha B})$.
Thus $\rho(G_{\alpha B})$ is a maximal subgroup of $\rho(G_B)$.

2.2.1) Suppose
$$\rho(G_{\alpha B}) \cap T \neq 1$$
.
Consider the group $H = \langle D(\rho(G_{\alpha B}) \cap T), G_{\alpha B} \rangle$.
Let $1 \neq t \in \rho(G_{\alpha B}) \cap T$. Then there exist unique $s_t \in S_m$, such that
 $(t, t, \dots, t)s_t \in G_{\alpha B}$.
As $N_{\alpha B} = 1, s_t \neq 1$, for all $1 \neq t \in \rho(G_{\alpha B}) \cap T$.
Thus $s_t \in H$, but $s_t \notin G_{\alpha B}$. So, $G_{\alpha B} < H$.
As $\rho(H) = \rho(G_{\alpha B}) < \rho(G_B), H \neq G_B$.
So $G_{\alpha B} < H < G_B$. A contradiction.
2.2.2) Suppose $\rho(G_{\alpha B}) \cap T = 1$.
Then $\rho(G_B) = T : \rho(G_{\alpha B})$. And
 $|T| = \frac{|\rho(G_B)|}{|\rho(G_{\alpha B})|} \leq \frac{|G_B|}{|\rho(G_{\alpha B})|} = \frac{|G_B|}{|G_{\alpha B}|} = |N_B| = k \leq |N_B| = |T|$.
Thus $G_B \cong \rho(G_B) \leq Aut(T)$, and
 $G_B/N_B \cong \rho(G_B) / \rho(N_B) \leq Aut(T)/T$ is solvable.
Then G_B has unique minimal normal subgroup N_B and G_B is
primitive and faithful on $\Gamma(B)$ of type AS .
But N_B is regular on $\Gamma(B)$. A contradiction.

3

イロト イヨト イヨト イヨト

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで