Prime graphs and actions of primitive groups

Melissa Lee University of Auckland

9th June 2022

Bases of permutation groups

- 2 IBIS groups
- OPrime graphs
- 4 Extremely primitive groups

Bases of Permutation Groups

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group.

A base for G is a subset $B \subseteq \Omega$ such that $\bigcap_{b \in B} G_b$ is trivial.

The size of the smallest base for G on Ω is called the base size of G, and is denoted b(G).

Exampl					
				6(Sn) =	
• 6	acting or	itself by	right	multiplication	6(6)=1

In this talk, we will assume all groups have finite order, and that our actions are faithful.

Lemma

The base size b(G) of the action of a permutation group G on a set Ω of size n satisfies $b(G) \ge \frac{\log |G|}{\log n}$

Proof: The pointwise stabiliser of *B* is trivial, so the action of each element $g \in G$ on Ω is determined by its action on the base *B*. So for any base *B*, $|G| < n^{|B|}$ and so $|G| < n^{|G|}$

Therefore

- Bases were formally defined by Charles Sims in the early 1970s in the context of computational group theory.
- How do we store a permutation group of large degree efficiently?
- Knowing a base B for a permutation group G acting on a set Ω allows us to store each element of G as a |B|-tuple, rather than an |Ω|-tuple.

Uses for bases

Given a base
$$\{b_1, b_2, \dots, b_k\}$$
 for $G \leq \text{Sym}(\Omega)$, define
 $G_i = G_{b_1, \dots, b_l}$
 $G_o = G \geq G_1 \geq G_2 \dots \geq G_k = 1$

Let U_i be a set of (right) coset representatives of G_{i-1}/G_i . Then every $g \in G$ can be written uniquely as

$$g = u_{k} u_{k-1} - \dots u_{i} \qquad u_{i} \in U_{i}$$

This technique also allows efficient computation of orbits, stabilisers, membership testing etc.

Melissa Lee (UoA)

. .

Theorem (Pyber, 1993)

There exists a universal constant C > 0 such that *almost all* subgroups $G \leq S_n$ have $b(G) > C \cdot n$

- Therefore, we cannot find any *good* (i.e., non-linear) upper bounds for *b*(*G*) that hold for arbitrary permutation groups *G*.
- In order to make meaningful statements about the size of b(G), we usually restrict our focus to primitive groups.

Bases for primitive groups

•
$$S_n \operatorname{acting on} \{1, 2, \dots, n\}$$

 $b(G) = n - 1$
 $\frac{\log |G|}{\log |SL|} = \frac{\log n!}{\log n} > \frac{n}{2}$
 $b(G) \leq 2 \frac{\log |G|}{\log |SL|}$

S_n acting on pairs of elements from {1,...n}.
Halasi (2012) b(G) =
$$\begin{bmatrix} 2n-2\\ 3 \end{bmatrix}$$
 n≥4
Hog |G|
log |SL|
log (n¹)
cond content of the pairs of elements from {1,...n}.

A group G is almost simple if there exists a non-Abelian finite simple group S such that $S \leq G \leq Aut(S)$.

Suppose G is an almost simple group with socle G_0 . A transitive action of G on a set Ω is standard if either:

.

An action of an almost simple group acting transitively on a set Ω is non-standard if it is not standard.

From before:

$$n^{|B|} \ge |G| \Rightarrow rac{\log |G|}{\log n} \le b(G)$$

Conjecture (Pyber 1993)

Let G be a primitive permutation group of degree n. Then there exists an absolute constant c such that

$$b(G) \leq C \frac{\log |G|}{\log n}$$

Theorem (Duyan, Halasi & Maróti (2016))

There is a universal constant c > 0 such that b(G) of a primitive permutation group G of degree n satisfies

$$b(G) \leq 45 \frac{16g161}{\log n} + C$$

Theorem (Halasi, Liebeck & Maróti (2019))

The base size b(G) of a primitive permutation group G of degree n satisfies $b(G) \leq 2 \frac{\log |G|}{\log n} + 24$

What about primitive groups with very small bases?

Melissa Lee (UoA)

Can we classify the primitive groups $G \leq Sym(\Omega)$ with *small* bases?

If b(G) = 1, i.e., regular orbit, then $\Rightarrow G \cong C_p$.

Problem: Saxl's programme

Classify all primitive groups G with b(G) = 2.

Diagonal & Twisted wreath type

Partial classification of groups with b(G) = 2 (Fawcett, 2013)

Complete classification when soc(G) is

• sporadic (Burness et al. 2010) or

Almost simple type

• alternating (James 2006; Burness et al. 2011).

Partial answers for groups of Lie type.

Product type

Progress where point stabiliser is soluble (Burness & Huang, 2022+)

Affine type groups

There has been a focus on covering groups of almost simple groups.

H

Complete classification when:

- sporadic (Fawcett et al., 2019),
- alternating (Fawcett et al., 2016), and

Theorem (Köhler and Pahlings, 2001; Lübeck, 2021)

Let G = VH be a primitive group of affine type whose point stabiliser H = H(q) is a covering group of an almost simple group of Lie type.

If |H| and |V| are **coprime**, then b(G) = 2, or (H, V) is one of a list of known examples.

H/ is almost simple

C = NH

What about cases where |H| and |V| are not coprime?

- Here the possible V are not well understood in general.
- Sometimes we only know the smallest (non-trivial) possibility for V.
- We must appeal to a technique which carefully counts elements in these groups and their eigenspaces.

Theorem (L., 2021)

Let G = VH be a primitive group of affine type whose point stabiliser H is a covering group of an almost simple group of Lie type.

- If H and V do not have the same underlying field characteristic, then b(G) is known.
 - if H, V have the same underlying characteristic and soc(H/Z(H)) ≅ PSL_n(q), then b(G) = 2, or (H, V) is one of several families of infinite examples.

Corollary

In either case, $b(G) \leq 5$.

The tables

(G)	G	đ	r		b(G)	G	đ	<i>r</i>	_
2	L ₂ (4)	2	4		2	$c \times L_3(2), 1 \neq c \mid 8$	3	9	
	$2.L_2(4) \le G \le \mathbb{F}_{5}^{\times} \circ (2.L_2(4))$	2	5			$c \times L_3(2), c \in \{2, 10\}$	3	11	1
	$2.L_2(4) \le G \le \mathbb{F}_9^{\times} \circ (2.L_2(4))$	2	9			$L_3(2) \le G \le \mathbb{F}_3^{\times} \times L_3(2).2$	6	3	
	$c \circ (2L_2(4)), c \mid r - 1, c \neq 1, 2$	2	11, 19 16	1		$L_3(2) \le G \le L_3(2).2$	8	2	
	$c \times L_2(4), c \in \{5, 15\}$	2	25			$L_3(3) \le G \le L_3(3).2$	12	2	
	$c \circ (2.L_2(4)), c \in \{6, 12, 24\}$ $c \circ (2.L_2(4)), c \in \{4, 28\}$	2	20 29	+		$4_{2}L_{2}(4) \leq G \leq \mathbb{F}_{9}^{\times} \circ (4_{2}L_{2}(4).2_{2})$	4	9	
	$co(2L_2(4)), c \in \{4, 20\}$	2	31, 41	Ŧ		$2.L_3(4) \le G \le F_9^{\times} \circ (2.L_3(4).2^2)$	6	9	
	$c \circ (2L_2(4)), c \in \{\frac{r-1}{2}, r-1\}$	2	61	+		$6.L_3(4) \le G \le 6.L_3(4).2_1$	6	7	
	$F_{61}^{\times} \circ (2.L_2(4))$	2	49			$4_1.L_3(4).2_3$	8	5	
	$c \circ (2.L_2(4)), c \in \{12, 24, 48\}$ $c \circ (2.L_2(4), 2), c \mid 24$	2	25	1		$L_4(2) \le G < \mathbb{F}_3^{\times} \times L_4(2).2$	7	3	
	$c \circ (2L_2(4), 2), c \mid 24$ $c \circ (2L_2(4), 2i), c \mid 24, c > 2$	2	25			$L_4(2) \le G \le \mathbb{F}_5^{\times} \times L_4(2).2$	7	5	
	$co(2L_2(4),2l), c(24, c > 2$	3	5			$L_4(2) < G \le \mathbb{F}_7^{\times} \times L_4(2).2$	7	7	
	$L_2(4) \le G \le \mathbb{F}_5^{\times} \times L_2(4).2$ $L_2(4) < G \le \mathbb{F}_9^{\times} \times L_2(4)$	3	ŝ			$L_4(2).2 < G \le \mathbb{F}_9^{\times} \times L_4(2).2$	7	9	
	$L_2(4) < G \le \mathbb{F}_9^- \times L_2(4)$	3				$2.L_4(2)$	8	3	
	$F_{11}^{\times} \times L_2(4)$	4	11 2	+		$F_5^{\times} \circ (2.L_4(2).2)$	8	5	
	$L_{2}(4)$					$L_4(3) \le G \le L_4(3).2_2$	26	2	
	$L_2(4) \le G \le \mathbb{F}_3^{\times} \times L_2(4).2$	4	3			U ₃ (3)	3	9	
	$L_2(4) < G \le \mathbb{F}_4^{\times} \times L_2(4).2$	4	4			$c \times U_3(3), c = 2k 80$	3	81	
	$F_5^{\times} \circ (2.L_2(4))$	4	5			$U_3(3) \le G \le F_4^{\times} \times U_3(3).2$	6	4	
	$c \times L_2(4).2, c \in \{2, 6\}$	4	8	†		$U_3(3) < G \le F_5^{\times} \times U_3(3)$	6	5	+
	$c \times L_2(8), c \mid 7$ $c \times L_2(8), c = 3k \mid 63$	2	64			$F_7^{\times} \times U_3(3)$	6	7	1
	$c \times L_2(8), c = 36 63$	4	8			$c \times U_3(3).2, c \in \{2, 6\}$	6	7	
	$F_{8}^{\times} \times L_{2}(8)$					$U_3(3) \le G \le F_3^{\times} \times U_3(3).2$	7	3	
	$F_3^{\times} \times L_2(8)$	7	3			$c \times U_3(3).2, c \mid 4$	7	5	1+2
	$L_2(8) \le G \le L_2(8).3$		3			$U_3(3) \le G \le \mathbb{F}_5^{\times} \times U_3(3)$	7	5	
	$c \times (L_2(8).3), c \in \{1, 2\}$	7	3			$U_3(3) \le G \le U_3(3).2$	14	2	
	$2.L_2(9) \le G \le 2.L_2(9).2_2$	2	81			$F_{2}^{*} \times U_{3}(4)$	12	3	
	$c \circ (2.L_2(9)), c \in \{10, 20, 40, 80\}$	2	81			$U_1(5) < G \leq U_2(5), S_1$	20	2	
	$c \circ (2.L_2(9)).2_2, c \mid 80$ $3.L_2(9)$	3	4			$c \circ (2.U_4(2)), c (r - 1)$	4	7,13	+
		3	4			$2.U_4(2) \le G \le \mathbb{F}_9^{\times} \circ (2.U_4(2).2)$	4	9	÷.,
	$L_2(9) \le G \le \mathbb{F}_9^{\times} \times L_2(9).2_2$	3	16			$c \times U_4(2), c \mid 15$	4	16	
	$F_{16}^{\times} \circ (3.L_2(9)) = 10.0 \pm 101$	3	16	+		$c \circ (2.U_4(2)), c \mid 18, c > 2$	4	19	+
	$c \circ (3.L_2(9)), c \in \{2, 6, 18\}$					$c \circ (2.U_4(2)), c = 3k 24$	ā.	25	
	$c \circ (3.L_2(9)), c \in \{10, 30\}$	3	31 25	+		$2.U_4(2) \le G \le \mathbb{F}_{27}^{\times} \circ (2.U_4(2).2)$	4	27	
	$c \circ (3.L_2(9)), c \mid 24 \text{ even}$ $c \circ (3.L_2(9).2_3), c \mid 24 \text{ even}$	3	25			$F_{r}^{\times} \circ (2.U_{4}(2))$	4	31.37	+
	$L_2(9) \le G \le L_2(9).2_3$	4	3			$12 \circ (2.U_4(2))$	4	37	÷
	$L_2(9) \le G \le L_2(9).2_1$ $L_2(9) \le G \le \mathbb{F}_4^{\times} \times L_2(9).2_1$	4	4			$c \times U_4(2), c \in \{3, 9, 21, 63\}$	4	64	÷.,
	$L_2(9) \le G \le \mathbb{F}_4 \times L_2(9).2_1$ $2.L_2(9) \le G \le \mathbb{F}_k^{\times} \circ (2.L_2(9).2_1)$	4	5			$U_4(2)$	5	7	+
	$F_{\tau}^{2} \circ (2L_{2}(9)) \subseteq G \subseteq F_{5} \circ (2L_{2}(9), 2_{1})$ $F_{\tau}^{2} \circ (2L_{2}(9))$	4	7			$U_4(2) < G \leq \mathbb{F}_{\tau}^{\times} \times U_4(2)$	5	7,13	÷
			7	t -		$U_4(2) \leq G \leq \mathbb{F}_9^{\times} \times U_4(2).2$	5	9	÷.,
	$F_7^{\times} \circ (2.L_2(9).2_1)$	4	8	†		$c \times U_4(2), c \in \{6, 18\}$	5	19	+
	$c \times L_2(9).2_1, c \in \{1, 7\}$ $L_2(9).2_1 \le G \le L_2(9).2^2$	4	9			$c \times (U_4(2)), c \in \{2, 26\}$	5	27	1
	$L_2(9).2_1 \le G \le L_2(9).2^*$ $2 \times L_2(9) \le G \le \mathbb{F}_9^{\times} \times L_2(9).2^2$	4	9			$c \times (U_4(2).2), c \mid 26$	5	27	
	$a \wedge L_2(d) \ge G \ge \mathbb{P}_0 \times L_2(0).2^d$	4	9			$c \times U_4(2), c \in \{1, 3\}$	6	4	
	$L_2(9) < G \le \mathbb{F}_5^{\times} \circ (L_2(9).2_1)$	5	7				6	8	
	$c \times L_2(9).2_1, c \in \{2, 3, 6\}$ $c \times L_2(9).2^2, c \in \{1, 2\}$	9	3	†*1 †		$U_4(2) \le G \le \mathbb{F}_5^{\times} \times U_4(2).2$ $U_4(2) \le G \le \mathbb{F}_7^{\times} \times U_4(2).2$	6	7	+
		5	3.4.5	+		$U_4(2) \le G \le \mathbb{F}_8^{\times} \times U_4(2).2$	6	8	1
	$c \times L_2(11), c \mid (r - 1)$ 2.L ₂ (11)	6	3,4,5			$F_{11}^{\times} \times U_4(2)$	6	11	+
	$L_2(11)$ $L_2(11) \le G \le L_2(11).2$	10	2			$U_4(2).2 < G \le F_F^{\times} \times U_4(2).2$	6	11,13	1+1
	$L_2(11) \le G \le L_2(11).2$ 2. $L_2(13)$	6	3			$c \times (U_4(2).2), c 15$	6	16	1-4
		6	4			$U_4(2) \le G \le \mathbb{F}_3^{\times} \times U_4(2).2$	10	3	
	$\mathbb{F}_{4}^{\times} \times L_{2}(13)$ $c \times L_{2}(13), c \in \{1, 2\}$	7	3			$U_4(2) \le G \le U_4(2).2$	14	2	
		14	2			$6_1.U_4(3) \le G \le 6_1.U_4(3).2_2$	6	-	
	$L_2(13).2$ $L_3(17)$	8	2			$c \circ (3_1.U_4(3)), c \mid 15$	6	16	
	$L_2(17)$ $L_2(23)$	11	2			$c \circ (3_1.U_4(3).2_2), c \mid 15$	6	16	
	$L_2(25)$ $L_2(25) \le G \le L_2(25).2_2$	12	2			$c \circ (6_1 U_4(3)), c (r-1)$	6	13.19	+
	$L_2(25) \leq G \leq L_2(25).2_2$ $L_3(31)$	12	2			$F_{31}^{\circ} \circ (6_1.U_4(3)), c + (r - 1)$ $F_{31}^{\circ} \circ (6_1.U_4(3))$	6	31	4
		2	7			$c \circ (6_1.U_4(3).2_2), c (r - 1)$	6	13,19	4
	$c \circ (2.L_3(2)), c \mid 6$ $c \circ (2.L_3(2)), c \mid 48, c \neq \{2, 3, 6\}$	2	7 49			$c \circ (6_1.U_4(3).2_2), c \mid (r-1)$ $c \circ (6_1.U_4(3).2_2), c \mid (r-1)$	6	31.37	1
		2	49			$c \circ (6_1.U_4(3), 2_2), c (r - 1)$ $c \circ (6_1.U_4(3)), c 24$	6	25	1
	$c \circ (2.L_3(2).2), c \mid 48, c \neq \{2,3,6\}$	2	49			$c \circ (6_1.U_4(3)), c \mid 24$ $c \circ (6_1.U_4(3).2_2), c \mid (r-1)$	6	25,49	
	$c \times L_2(2), c \mid 3$	3	7			$U_4(3) \le G \le U_4(3).D_8$	20	20,49	
	$L_{3}(2) \le G \le \mathbb{F}_{7}^{\times} \times L_{3}(2).2$	3	8			$U_4(3) \le G \le U_4(3).D_8$ $U_5(2) \le G < \mathbb{F}_2^{\times} \times U_5(2).2$	20	3	
	$F_0^{\times} \times L_3(2)$								

TABLE 1.2. Pairs (G, V) in Theorem 1.1 with b(G) > 1, Part I.

Melissa Lee (UoA)

Prime graphs and actions of primitive groups

IBIS groups

IBIS groups

An ordered base (b_1, \ldots, b_t) for a finite group G is **irredundant** if

$$G > G_{b_1} > G_{b_1, b_2} > \dots > G_{b_1, \dots, b_4} =$$

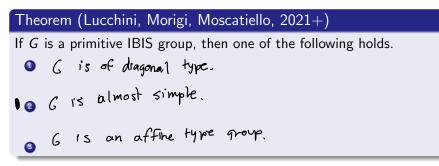
We say that G is a Irredundant Bases of Invariant Size (IBIS) group if all of its irredundant bases are of the same size.

Theorem (Cameron & Fon-Der-Flaass, 1995)

The following are equivalent.

Problem

(Easier?) Problem



Theorem (Lucchini, Morigi, Moscatiello, 2021+)

G is a primitive IBIS group of diagonal type if and only if, for some $f \ge 2$, $\int \simeq F_{L_2}(z^f) \times PS_{L_2}(z^f)$ Lemma (Lucchini, Morigi, Moscatiello, 2021+)

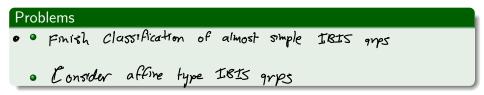
There are no primitive IBIS groups with non-Abelian socle and base size 2.

Theorem (Burness et al.)

The almost simple primitive groups with sporadic or alternating socle and b(G) > 2 are known.

Proposition (L. 2021+, Spiga 2022+)

The almost simple primitive IBIS groups G with sporadic or alternating socle and point stabiliser H are known.

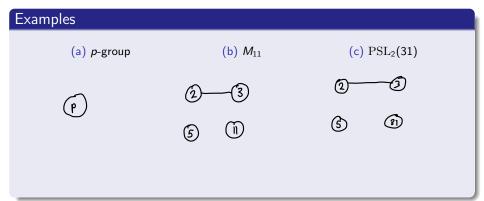


Prime graphs

Prime graphs

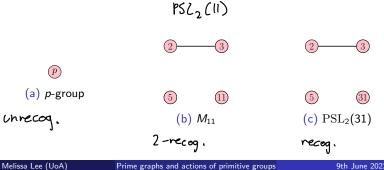
The prime graph or Gruenberg-Kegel graph $\Gamma(G)$ of a finite permutation group $G \leq Sym(\Omega)$ has:

- Vertices: the primes dividing |G|,
- Edges: $p \sim r$ if there is an element of order *pr* in *G*.



We say that a finite group G is:

- **Recognisable** by prime graph if $\Gamma(G) \cong \Gamma(H) \Leftrightarrow G \cong H$.
- k-recognisable by prime graph (for k ∈ N) if there are exactly k groups H such that Γ(G) ≅ Γ(H).
- Unrecognisable by prime graph if there are infinitely many groups H such that Γ(G) ≅ Γ(H).



Theorem (Cameron & Maslova, 2021+)

If G is a group that is k-recognisable by prime graph, then G is almost simple with non-abelian socle.

Problem

For each almost simple group G, determine whether G is recognisable by prime graph.

Author(s)	Recognisable	k- recognisable	Unrecognisable
Hagie (2003)	J ₁ , M ₂₂ , M ₂₃ M ₂₄ , Co ₂	M1, K=2	M ₁₂ , 5 ₂
Zavarnitsine (2006)	J ₄		
Kondrat'ev (2019, 2020)	Rv, Jz, Suz, O'N, Ly, Th, Fizz,	Fi24 HN HS K=2	MeL, Coz
L. & Popiel (2021+)			

Progress - Lie type groups

Many partial results, almost all for simple groups.

Author(s)	Recognisable	k-recognisable
Khosravi et al. (2007)	6	
Khosravi (2008)	PZI(12) PSZZ(p ^k) podd K>1	
Zavarnitsine (2006)	$2G_2(q)$	
Ahanjideh et al. (2013)		P_N _{2m+1} (3) PSp2k(3) K=2

Progress - alternating and symmetric groups

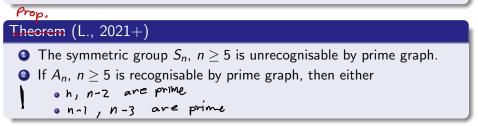
Also many partial results by Gorshkov et al., Khosravi et al., Staroletov and others ...

Theorem (Gorshkov et al., 2019)

If G is a group with the same prime graph as either A_n or S_n with $n \ge 19$, then there exists $K \le G$ and $t \in \mathbb{N}$ such that

$$A_t \leq G/K \leq S_t,$$

and K is divisible by at most one prime greater than n/2.



Some other open problems

What graphs can be realised as the prime graphs of some finite group?
 labelled
 unlabelled

• The maximum number of almost simple groups with the same prime graph?

Extremely primitive groups

A finite, non-regular primitive permutation group $G \leq \text{Sym}(\Omega)$ is extremely primitive if a point stabiliser G_{α} acts primitively on each of its orbits on $\Omega \setminus \alpha$.

Theorem (Mann, Praeger & Seress, 2007) An extremely primitive group is either almost simple, or of affire type.

Theorem (Burness, Praeger, Seress, 2012; Burness & Thomas, 2021)

An extremely primitive **almost simple** group $G \leq \text{Sym}(\Omega)$ belongs to one of five infinite families, or is one of 21 further examples.

The almost simple extremely primitive groups

G_0	$H \cap G_0$	Rank	Conditions
Alt_n	$(\operatorname{Sym}_{n/2} \wr \operatorname{Sym}_2) \cap G_0$	$\frac{1}{4}(n+2)$	$n \equiv 2 \pmod{4}$
Alt_n	Alt_{n-1}	2	$G = \operatorname{Sym}_n$ or Alt_n
Alt_6	$L_{2}(5)$	2	$G = \text{Sym}_6 \text{ or Alt}_6$
Alt_5	D_{10}	$2 \\ 2 \\ \frac{1}{2}q \\ 2 \\ 3$	
$L_2(q)$	P_1	2	
$L_2(q)$	$D_{2(q+1)}$	$\frac{1}{2}q$	$G = G_0, q + 1$ is a Fermat prime
$\operatorname{Sp}_n(2)$	$O_n^{\pm}(2)$	$\tilde{2}$	$n \ge 6$
$U_{4}(3)$	$L_{3}(4)$	3	See Remark II(v)
$L_{3}(4)$	Alt_6	3	See Remark II(vi)
$L_2(11)$	Alt_5	2	$G = G_0$
$G_{2}(4)$	J_2	3	
M_{11}	Sym_6	2	
M_{11}	$L_2(11)$	2	
M_{12}	M_{11}	2	$G = G_0$
M_{22}	$L_{3}(4)$	2	
M_{23}	M_{22}	2	
M_{24}	M_{23}	2	
J_2	$U_{3}(3)$	3	
HS	M_{22}	3	
HS	$U_{3}(5)$	2	$G = G_0$
Suz	$G_{2}(4)$	3	
McL	$U_{4}(3)$	3	
\mathbf{Ru}	${}^{2}F_{4}(2)$	3	
Co_2	$U_{6}(2)$	3	
Co_2	McL	6	
Co_3	McL	2	

TABLE 1. The extremely primitive almost simple groups

Melissa Lee (UoA)

Theorem (Mann, Praeger & Seress, 2007)

Let G = VH be an extremely primitive affine group, where $V = V_d(p)$. Then either:

- \mathcal{A} (H, d, p) is one of a known list of examples, or
- 2 p = 2 and H is almost simple.

Moreover, if we assume **Wall's conjecture**, then (2) reduces to a list S of three infinite families of (H, d, r) and 16 further possibilities.

Theorem (Burness & Thomas, 2020+) No example in 5 is extremely primitive!

Observation: If G = VH with H almost simple and H has a regular orbit on V, then G is not extremely primitive.

Theore	Theorem (Burness & L., 2021+)							
There	orre	no	hrther	extremely	primitive	groups.		

Thank you!