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Question: For a subset A C Q, when do we have

Gay=[) Ga=1?
acl

Examples
e G=5,Q={1,...,nfand A={1,...,n—1}.

e G=GL(V), Q= V and A contains a basis of V.
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Bases

Definition
A base for G < Sym() is a subset A of Q such that Ga) = 1.

From now on, we will assume Q is finite.

Base size b(G): the minimal size of a base for G.

Examples
e G=S5,Q={1,...,n}: b(G)=n—-1.

o G=GL(V), Q=V: b(G) =dim(V).

Note. There exists a base of size m <= G has a regular orbit on Q™.
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Base sizes

Observation. If A is a base and x,y € G, then
o= forallae A = xy te ﬂ Gy, <= x=y.
acA

That is, each group element is uniquely determined by its action on A.

In particular, |G| < |Q]%(), so we have

log |G|
< .
ogla] < P1¢)

Question. How small can a base be?

@ A small base A provides an efficient way to store the elements of G,
using |Al|-tuples rather than |Q[-tuples.
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Bounds for base sizes
To determine exact b(G) is generally very difficult.

@ No algorithm for calculating b(G), or for constructing a base of
minimal size.

e Blaha, 1992: Determine if b(G) < c for a given constant c is an
NP-complete problem.

Problem. Bound b(G) above.

Other applications:

@ Minimal dimension
@ 2-generation of finite groups
@ Extremely primitive groups

@ Some graphs defined on groups
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First bounds

Let A = {a1,...,apG)} be a base and set Gk = ﬂfle Gq;. Then
G>GW s g < ... g(6)-1) 5 g(b(G)) — 1.

This implies 22(¢) < |G| and so b(G) < log, |G|.
Set n = |Q2|. We have already seen log,, |G| < b(G) < log, |G].
Examples

e G=5, = b(G)=n—-1<2log,|G]|.

o G=G1C,p = b(G) =n/2=log, |G| — logy(n/2) > 5 log, |G|.

G is called primitive if G, is maximal in G.

Note. The former example is primitive, while the latter is imprimitive.
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Pyber's conjecture

Let G be primitive with degree n.

Conjecture (Pyber, 1993)

There is an absolute constant ¢ such that log, |G| < b(G) < clog, |G|.

Duyan, Halasi & Maréti, 2018: Pyber’s conjecture is true.
Halasi, Liebeck & Maréti, 2019: b(G) < 2log,, |G| + 24.
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Other bounds in the primitive setting
Soluble groups:

e Seress, 1996: G soluble — b(G) < 4

e Burness, 2021: G, soluble =— b(G) <5

Vdovin’s conjecture: b(G) < 5 for every transitive G with G, soluble.
Almost simple groups: T < G < Aut(T) for non-abelian simple T.
G is called standard if either
e T = A and G acts on subsets or partitions of {1,..., m}, or
o T is classical and G, is a Ci-subgroup.
Otherwise, G is called non-standard.

Note. log, |G| is “usually” large if G is standard, and tiny if non-standard.
Burness et al., 2007-11: b(G) < 7 if G is non-standard.
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Base-two groups

Observations: If G is transitive, then
@ b(G)=1 <= G is regular;

@ b(G) =2 <= G, # 1 has a regular orbit.

Problem. Classify the finite primitive groups G with b(G) = 2.

Example
Consider the action of G = Dy, on {1,...,n}. Then
e {1,2} is a base, so b(G) = 2;

@ G is primitive iff nis a prime.
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Some results

The O’Nan-Scott Theorem divides finite primitive groups into 5 types.
Affine: G = V:H < AGL(V), where V =F9 and H < GL(V) irreducible.

Problem. Determine the pairs (H, V), where H is a finite group, V is a
faithful irreducible F,H-module and H has a regular orbit on V.

e Partial results (e.g. H/Z(H) is simple).
Almost simple: T < G < Aut(T) for non-abelian simple T.
e T = A, or sporadic: James, 2006; Burness et al., 2010/11 /

e G standard with T classical: In progress (there are infinite families)
e.g. a subspace action of Q,(q) with ng odd
@ G non-standard with T Lie type: Partial results

e.g. T classical, G, € S (Burness, Guralnick & Saxl, 2014)
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Some results
Diagonal type: G < TX.(Out(T) x P), T simple

o Fawcett, 2013: P # A, Sy = b(G) =2
e Fawcett, 2013: P =Ai or Sy and b(G) =2 = 2 < k < |T|
@ H, in progress: the case P = Ay or 5i
Twisted wreath type: G = Tk:P, P transitive
e Fawcett, 2021+: P quasiprimitive = b(G) =2
Product type: G < LU P in its product action

o Bailey & Cameron, 2013: b(L:P) =2 < r(L) > D(P)

(Here r(L) is the number of regular suborbits of L and D(P) is the
distinguishing number of P.)

@ The case G < L P: Just initiated (Burness & H, 2022+)
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Regular suborbits

Regular suborbit: An orbit of G, of length |G,|.
Note. b(G) <2 <= G has a regular suborbit.

Let r(G) be the number of regular suborbits of G.
e Chen & H, 2022: A general method for computing r(G).

e Burness & H, 2022+: Explicit r(L2 P) in the product action of L P.

Problem. Classify the finite primitive groups G with r(G) = 1.

e Burness & H, 2021+: G almost simple, G, soluble and r(G) =1 v
e.g. G = PGLQ(q) and Ga = D2(q_1)

e Burness & H, 2022+4: r(L:P)=1 = r(L) = D(P)
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Probabilistic methods

Let G < Sym(fQ) be a transitive permutation group of degree n. Then

[{(a,B) € Q2 Gop 7 1} —1_ r(G)|Gal

n? n

Q(G) :=

is the probability that a random pair in £ is not a base for G.
Note. Q(G) <1 < b(G) <2 <= r(G) > 0.
To calculate exact Q(G) is difficult, but we have
ae) < K el = e,
xeP
where P is the set of elements of prime order in G.

Probabilistic method: Q(G) <1 = b(G) < 2.

It also gives a lower bound for r(G).
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Sax| graphs
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Sax| graphs

Definition (Burness & Giudici, 2020)

Let G < Sym(Q2). Then the Sax| graph £(G) is a graph with
@ vertex set €2;
@ « and S are adjacent <= {a, S} is a base for G.

Examples

o G = Dg = ((1234),(24)), Q = {1,2,3,4}: T(G) =

o G=Cy=((1234)), Q={1,2,3,4}: X(G)=

o G = Dy = ((12345), (25)(34)), Q = {1,2,3,4,5}: (G) = @

v
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Another example

Let G = PGL2(q) and Q be the set of distinct pairs of 1-spaces in IF%.
® Ga = Dyg-1);
@ « and B form a base iff they share a common 1-space.

Hence, ¥(G) = J(q + 1,2) is a Johnson graph: vertices 2-subsets of
{1,...,g+ 1} and two vertices are adjacent if they are not disjoint.

For example, when g = 4 we have the complement of the Petersen graph.

A\
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0'\\ XY
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Valency
Let G be transitive and b(G) = 2.

Note. ¥(G) is G-vertex-transitive with valency v(G) = r(G)|G,]|.
Chen & H, 2022: A general method for computing v(G) combinatorially
Prime valency: Burness & Giudici, 2020 v
It deduces that £ (G) cannot be isomorphic to the Petersen graph.
Prime-power valency: Partial results for primitive groups.

@ Chen & H, 2022: Almost simple primitive groups v

e.g. G =PGLa(q), Go = Dyg—1), g =2" + 1 Fermat prime
@ Burness & H, 2022+: G = L P of product type v/

Even valency: v(G) even <= X(G) is Eulerian.

@ Partial results for almost simple primitive groups

Burness & Giudici, 2020; Chen & H, 2022
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Notes.
@ X (G) is the union of the regular orbital graphs of G.
e Y (G) is an orbital graph of G <= r(G) = 1.

e G is primitive = X(G) is connected.

Question: What is the diameter of X(G) if G is primitive?

Conjecture (Burness & Giudici, 2020)

G primitive = any two vertices in X(G) have a common neighbour.

In particular, it asserts that X(G) has diameter at most 2.



Diameter

Example

If G = PGLa(q) and G, = Dy(q—1), then (G) = J(q + 1,2) has the
common neighbour property.




Diameter

Example

If G = PGLa(q) and G, = Dy(q—1), then (G) = J(q + 1,2) has the
common neighbour property.

Evidence:

@ All primitive groups of degree up to 4095 v/



Diameter

Example

If G = PGLa(q) and G, = Dy(q—1), then (G) = J(q + 1,2) has the
common neighbour property.

Evidence:

@ All primitive groups of degree up to 4095 v/

@ “Most” almost simple groups with alternating or sporadic socles



Diameter

Example

If G = PGLa(q) and G, = Dy(q—1), then (G) = J(q + 1,2) has the
common neighbour property.

Evidence:

@ All primitive groups of degree up to 4095 v/
@ “Most” almost simple groups with alternating or sporadic socles

e Chen & Du, 2020+; Burness & H, 2021+: soc(G) = La2(q) v



Diameter

Example

If G = PGLa(q) and G, = Dy(q—1), then (G) = J(q + 1,2) has the
common neighbour property.

Evidence:
@ All primitive groups of degree up to 4095 v/
@ “Most” almost simple groups with alternating or sporadic socles
e Chen & Du, 2020+; Burness & H, 2021+: soc(G) = La2(q) v

@ Burness & H, 2021+: almost simple groups with G, soluble v/



Diameter

Example

If G = PGLa(q) and G, = Dy(q—1), then (G) = J(q + 1,2) has the
common neighbour property.

Evidence:
@ All primitive groups of degree up to 4095 v/
@ “Most” almost simple groups with alternating or sporadic socles

e Chen & Du, 2020+; Burness & H, 2021+: soc(G) = La2(q) v

Burness & H, 2021+: almost simple groups with G, soluble v/

H, in progress: diagonal type groups with P # Ay, Sk v/



Diameter

Example

If G = PGLa(q) and G, = Dy(q—1), then (G) = J(q + 1,2) has the
common neighbour property.

Evidence:
@ All primitive groups of degree up to 4095 v/
@ “Most” almost simple groups with alternating or sporadic socles

e Chen & Du, 2020+; Burness & H, 2021+: soc(G) = La(q) v

Burness & H, 2021+: almost simple groups with G, soluble v/

H, in progress: diagonal type groups with P # Ay, Sk v/

Lee & Popiel, 2021+: some affine groups
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S := {almost simple primitive groups with soluble stabilisers}
o Li & Zhang, 2011: S is completely known v/
B:={GeS|bG)=2}

@ Burness, 2021: B is completely known v/

o Burness & H, 2021+: The common neighbour property for B v/
Clique number: maximal size w(G) of a complete subgraph of ¥(G).
Independence number: clique number «(G) of the complement of £(G).
Example: (G, G,) = (A5,S3) = X(G) = J(5,2), w(G) =4, a(G) =2,
Theorem (Burness & H, 2021+)

o G e Bissimple = w(G) =5or (G, G,) = (As, S3);
e GeB = «(G)=4or(G,G,) = (As,S3).




Probabilistic methods

Recall that v(G) = r(G)|G,| and

Q(G) =1 @Gl _; v(6)

n n

is the probability that a random pair in € is not a base for G.



Probabilistic methods

Recall that v(G) = r(G)|G,| and

0(6) 1. "OIGl _ _ v(6)

n n
is the probability that a random pair in € is not a base for G.
Notes:

o Q(G) <1 < b(G)<2.



Probabilistic methods

Recall that v(G) = r(G)|G,| and

0(6) 1. "OIGl _ _ v(6)

n n
is the probability that a random pair in € is not a base for G.
Notes:

o Q(G) <1 < b(G)<2.

e Q(G) <1/2 = %(G) has the common neighbour property.



Probabilistic methods
Recall that v(G) = r(G)|G,| and

H6)IG] | (6

n n

Q(G) =1

is the probability that a random pair in € is not a base for G.
Notes:

e Q(G)<1l < b(G) <2

e Q(G) <1/2 = %(G) has the common neighbour property.

e QG) <1/t = w(G)>t+1.



Probabilistic methods

Recall that v(G) = r(G)|G,| and

0(6) 1. "OIGl _ _ v(6)
n n

is the probability that a random pair in € is not a base for G.

Notes:

e Q(G)<1 < b(G)<2.
e Q(G) <1/2 = %(G) has the common neighbour property.
e QG) <1/t = w(G)>t+1.

Example

If G = PGLa(q) and G, = Dy(g—1), then Q(G) — 1 as g — co. But
Y(G) = J(g + 1,2) still has the common neighbour property.
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A strong conjecture
Let () be the set of neighbours of a in £(G).

Conjecture (Burness & H, 2022+)
G primitive and o, f € Q = X (o) meets every regular Gg-orbit.

Remark. BG conjecture: ¥ (c) meets the union of regular Gg-orbits.

Theorem (Burness & H, 2022+)

BG conjecture and BH conjecture are equivalent.

Indeed, G does not satisfy BH = G 1 5,(g) does not satisfy BG.

Evidence:
@ The cases r(G) =1 and BG holds
@ All primitive groups of degree up to 4095 v/
e G =PSLy(q) and G, of type GL1(q)1 S
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Future work

Sax| graphs:

o Generalised Sax| graphs?

@ More evidence on BG/BH conjecture?

@ Other invariants of Sax| graphs? (e.g. spectrum)
Base-two classification:

@ The primitive groups without non-trivial Cartesian decomposition?

e.g. diagonal type groups, almost simple groups

@ More results on blow-ups? (e.g. product type)



Thank youl!
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