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Let G 6 Sym(Ω) be a permutation group.

Denote by

Gα = {g ∈ G | αg = α}

the stabiliser of α in G . Then ⋂
α∈Ω

Gα = 1.

Question: For a subset ∆ ⊆ Ω, when do we have

G(∆) :=
⋂
α∈∆

Gα = 1?

Examples

G = Sn, Ω = {1, . . . , n} and ∆ = {1, . . . , n − 1}.

G = GL(V ), Ω = V and ∆ contains a basis of V .
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Bases

Definition

A base for G 6 Sym(Ω) is a subset ∆ of Ω such that G(∆) = 1.

From now on, we will assume Ω is finite.

Base size b(G ): the minimal size of a base for G .

Examples

G = Sn, Ω = {1, . . . , n}: b(G ) = n − 1.

G = GL(V ), Ω = V : b(G ) = dim(V ).

Note. There exists a base of size m ⇐⇒ G has a regular orbit on Ωm.
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Base sizes

Observation. If ∆ is a base and x , y ∈ G , then

αx = αy for all α ∈ ∆ ⇐⇒ xy−1 ∈
⋂
α∈∆

Gα ⇐⇒ x = y .

That is, each group element is uniquely determined by its action on ∆.

In particular, |G | 6 |Ω|b(G), so we have

log |G |
log |Ω|

6 b(G ).

Question. How small can a base be?

A small base ∆ provides an efficient way to store the elements of G ,
using |∆|-tuples rather than |Ω|-tuples.
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Bounds for base sizes

To determine exact b(G ) is generally very difficult.

No algorithm for calculating b(G ), or for constructing a base of
minimal size.

Blaha, 1992: Determine if b(G ) 6 c for a given constant c is an
NP-complete problem.

Problem. Bound b(G ) above.

Other applications:

Minimal dimension

2-generation of finite groups

Extremely primitive groups

Some graphs defined on groups
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First bounds

Let ∆ = {α1, . . . , αb(G)} be a base and set G (k) =
⋂k

i=1 Gαi . Then

G > G (1) > G (2) > · · · > G (b(G)−1) > G (b(G)) = 1.

This implies 2b(G) 6 |G | and so b(G ) 6 log2 |G |.

Set n = |Ω|. We have already seen logn |G | 6 b(G ) 6 log2 |G |.

Examples

G = Sn =⇒ b(G ) = n − 1 < 2 logn |G |.

G = C2 o Cn/2 =⇒ b(G ) = n/2 = log2 |G | − log2(n/2) > 1
2 log2 |G |.

G is called primitive if Gα is maximal in G .

Note. The former example is primitive, while the latter is imprimitive.
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Pyber’s conjecture

Let G be primitive with degree n.

Conjecture (Pyber, 1993)

There is an absolute constant c such that logn |G | 6 b(G ) 6 c logn |G |.

Duyan, Halasi & Maróti, 2018: Pyber’s conjecture is true.

Halasi, Liebeck & Maróti, 2019: b(G ) 6 2 logn |G |+ 24.
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Other bounds in the primitive setting

Soluble groups:

Seress, 1996: G soluble =⇒ b(G ) 6 4

Burness, 2021: Gα soluble =⇒ b(G ) 6 5

Vdovin’s conjecture: b(G ) 6 5 for every transitive G with Gα soluble.

Almost simple groups: T 6 G 6 Aut(T ) for non-abelian simple T .

G is called standard if either

T = Am and G acts on subsets or partitions of {1, . . . ,m}, or

T is classical and Gα is a C1-subgroup.

Otherwise, G is called non-standard.

Note. logn |G | is “usually” large if G is standard, and tiny if non-standard.

Burness et al., 2007-11: b(G ) 6 7 if G is non-standard.
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Base-two groups

Observations: If G is transitive, then

b(G ) = 1 ⇐⇒ G is regular;

b(G ) = 2 ⇐⇒ Gα 6= 1 has a regular orbit.

Problem. Classify the finite primitive groups G with b(G ) = 2.

Example

Consider the action of G = D2n on {1, . . . , n}. Then

{1, 2} is a base, so b(G ) = 2;

G is primitive iff n is a prime.
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Some results

The O’Nan-Scott Theorem divides finite primitive groups into 5 types.

Affine: G = V :H 6 AGL(V ), where V = Fd
p and H 6 GL(V ) irreducible.

Problem. Determine the pairs (H,V ), where H is a finite group, V is a
faithful irreducible FpH-module and H has a regular orbit on V .

Partial results (e.g. H/Z (H) is simple).

Almost simple: T 6 G 6 Aut(T ) for non-abelian simple T .

T = Am or sporadic: James, 2006; Burness et al., 2010/11 X

G standard with T classical: In progress (there are infinite families)

e.g. a subspace action of Ωn(q) with nq odd

G non-standard with T Lie type: Partial results

e.g. T classical, Gα ∈ S (Burness, Guralnick & Saxl, 2014)
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Regular suborbits

Regular suborbit: An orbit of Gα of length |Gα|.

Note. b(G ) 6 2 ⇐⇒ G has a regular suborbit.

Let r(G ) be the number of regular suborbits of G .

Chen & H, 2022: A general method for computing r(G ).

Burness & H, 2022+: Explicit r(L oP) in the product action of L oP.

Problem. Classify the finite primitive groups G with r(G ) = 1.

Burness & H, 2021+: G almost simple, Gα soluble and r(G ) = 1 X

e.g. G = PGL2(q) and Gα = D2(q−1)

Burness & H, 2022+: r(L o P) = 1 =⇒ r(L) = D(P)
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Probabilistic methods

Let G 6 Sym(Ω) be a transitive permutation group of degree n.

Then

Q(G ) :=
|{(α, β) ∈ Ω2 : Gαβ 6= 1}|

n2
= 1− r(G )|Gα|

n

is the probability that a random pair in Ω is not a base for G .

Note. Q(G ) < 1 ⇐⇒ b(G ) 6 2 ⇐⇒ r(G ) > 0.

To calculate exact Q(G ) is difficult, but we have

Q(G ) <
∑
x∈P

|xG ∩ Gα|
|xG |

=: Q̂(G ),

where P is the set of elements of prime order in G .

Probabilistic method: Q̂(G ) < 1 =⇒ b(G ) 6 2.

It also gives a lower bound for r(G ).
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Saxl graphs

Definition (Burness & Giudici, 2020)

Let G 6 Sym(Ω). Then the Saxl graph Σ(G ) is a graph with

vertex set Ω;

α and β are adjacent ⇐⇒ {α, β} is a base for G .

Examples

G = D8 = 〈(1234), (24)〉, Ω = {1, 2, 3, 4}: Σ(G ) =

G = C4 = 〈(1234)〉, Ω = {1, 2, 3, 4}: Σ(G ) =

G = D10 = 〈(12345), (25)(34)〉, Ω = {1, 2, 3, 4, 5}: Σ(G ) =
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α and β are adjacent ⇐⇒ {α, β} is a base for G .

Examples

G = D8 = 〈(1234), (24)〉, Ω = {1, 2, 3, 4}: Σ(G ) =

G = C4 = 〈(1234)〉, Ω = {1, 2, 3, 4}: Σ(G ) =

G = D10 = 〈(12345), (25)(34)〉, Ω = {1, 2, 3, 4, 5}: Σ(G ) =



Another example

Let G = PGL2(q) and Ω be the set of distinct pairs of 1-spaces in F2
q.

Gα = D2(q−1);

α and β form a base iff they share a common 1-space.

Hence, Σ(G ) ∼= J(q + 1, 2) is a Johnson graph: vertices 2-subsets of
{1, . . . , q + 1} and two vertices are adjacent if they are not disjoint.

For example, when q = 4 we have the complement of the Petersen graph.
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Valency
Let G be transitive and b(G ) = 2.

Note. Σ(G ) is G -vertex-transitive with valency v(G ) = r(G )|Gα|.

Chen & H, 2022: A general method for computing v(G ) combinatorially

Prime valency: Burness & Giudici, 2020 X

It deduces that Σ(G ) cannot be isomorphic to the Petersen graph.

Prime-power valency: Partial results for primitive groups.

Chen & H, 2022: Almost simple primitive groups X

e.g. G = PGL2(q), Gα = D2(q−1), q = 2m + 1 Fermat prime

Burness & H, 2022+: G = L o P of product type X

Even valency: v(G ) even ⇐⇒ Σ(G ) is Eulerian.

Partial results for almost simple primitive groups

Burness & Giudici, 2020; Chen & H, 2022
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Diameter

Notes.

Σ(G ) is the union of the regular orbital graphs of G .

Σ(G ) is an orbital graph of G ⇐⇒ r(G ) = 1.

G is primitive =⇒ Σ(G ) is connected.

Question: What is the diameter of Σ(G ) if G is primitive?

Conjecture (Burness & Giudici, 2020)

G primitive =⇒ any two vertices in Σ(G ) have a common neighbour.

In particular, it asserts that Σ(G ) has diameter at most 2.
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Diameter

Example

If G = PGL2(q) and Gα = D2(q−1), then Σ(G ) = J(q + 1, 2) has the
common neighbour property.

Evidence:

All primitive groups of degree up to 4095 X

“Most” almost simple groups with alternating or sporadic socles

Chen & Du, 2020+; Burness & H, 2021+: soc(G ) = L2(q) X

Burness & H, 2021+: almost simple groups with Gα soluble X

H, in progress: diagonal type groups with P 6= Ak ,Sk X

Lee & Popiel, 2021+: some affine groups
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Other invariants

S := {almost simple primitive groups with soluble stabilisers}

Li & Zhang, 2011: S is completely known X

B := {G ∈ S | b(G ) = 2}

Burness, 2021: B is completely known X

Burness & H, 2021+: The common neighbour property for B X

Clique number: maximal size ω(G ) of a complete subgraph of Σ(G ).

Independence number: clique number α(G ) of the complement of Σ(G ).

Example: (G ,Gα) = (A5, S3) =⇒ Σ(G ) = J(5, 2), ω(G ) = 4, α(G ) = 2.

Theorem (Burness & H, 2021+)

G ∈ B is simple =⇒ ω(G ) > 5 or (G ,Gα) = (A5,S3);

G ∈ B =⇒ α(G ) > 4 or (G ,Gα) = (A5,S3).
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Probabilistic methods

Recall that v(G ) = r(G )|Gα| and

Q(G ) = 1− r(G )|Gα|
n

= 1− v(G )

n

is the probability that a random pair in Ω is not a base for G .

Notes:

Q(G ) < 1 ⇐⇒ b(G ) 6 2.

Q(G ) < 1/2 =⇒ Σ(G ) has the common neighbour property.

Q(G ) < 1/t =⇒ ω(G ) > t + 1.

Example

If G = PGL2(q) and Gα = D2(q−1), then Q(G )→ 1 as q →∞. But
Σ(G ) = J(q + 1, 2) still has the common neighbour property.
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A strong conjecture
Let Σ(α) be the set of neighbours of α in Σ(G ).

Conjecture (Burness & H, 2022+)

G primitive and α, β ∈ Ω =⇒ Σ(α) meets every regular Gβ-orbit.

Remark. BG conjecture: Σ(α) meets the union of regular Gβ-orbits.

Theorem (Burness & H, 2022+)

BG conjecture and BH conjecture are equivalent.

Indeed, G does not satisfy BH =⇒ G o Sr(G) does not satisfy BG.

Evidence:

The cases r(G ) = 1 and BG holds

All primitive groups of degree up to 4095 X

G = PSL2(q) and Gα of type GL1(q) o S2
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Future work

Saxl graphs:

Generalised Saxl graphs?

More evidence on BG/BH conjecture?

Other invariants of Saxl graphs? (e.g. spectrum)

Base-two classification:

The primitive groups without non-trivial Cartesian decomposition?

e.g. diagonal type groups, almost simple groups

More results on blow-ups? (e.g. product type)
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Thank you!
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