Bases for primitive permutation groups

Hong Yi Huang

Group Theory Seminar, SUSTech

24 May 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Outline

Bounds for base sizes

3 Base-two primitive groups and regular suborbits

4 Saxl graphs

5 Future work

(ロ) (型) (E) (E) (E) (O)

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the stabiliser of α in G.

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the stabiliser of α in G. Then

$$\bigcap_{lpha\in\Omega} \mathcal{G}_{lpha} = 1.$$

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the stabiliser of α in G. Then

$$\bigcap_{lpha\in\Omega} \mathcal{G}_{lpha} = 1.$$

Question: For a subset $\Delta \subseteq \Omega$, when do we have

$$G_{(\Delta)} := \bigcap_{\alpha \in \Delta} G_{\alpha} = 1?$$

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the stabiliser of α in G. Then

$$\bigcap_{lpha\in\Omega} \mathcal{G}_{lpha} = 1.$$

Question: For a subset $\Delta \subseteq \Omega$, when do we have

$$G_{(\Delta)} := \bigcap_{\alpha \in \Delta} G_{\alpha} = 1?$$

Examples

•
$$G = S_n$$
, $\Omega = \{1, ..., n\}$ and $\Delta = \{1, ..., n-1\}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the stabiliser of α in G. Then

$$\bigcap_{lpha\in\Omega} \mathcal{G}_{lpha} = 1.$$

Question: For a subset $\Delta \subseteq \Omega$, when do we have

$$G_{(\Delta)} := \bigcap_{\alpha \in \Delta} G_{\alpha} = 1?$$

Examples

• $G = S_n$, $\Omega = \{1, ..., n\}$ and $\Delta = \{1, ..., n-1\}$.

• G = GL(V), $\Omega = V$ and Δ contains a basis of V.

Definition

A base for $G \leq \text{Sym}(\Omega)$ is a subset Δ of Ω such that $G_{(\Delta)} = 1$.

Definition

A base for $G \leq \text{Sym}(\Omega)$ is a subset Δ of Ω such that $G_{(\Delta)} = 1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

From now on, we will assume Ω is finite.

Base size b(G): the minimal size of a base for G.

Definition

A base for $G \leq \text{Sym}(\Omega)$ is a subset Δ of Ω such that $G_{(\Delta)} = 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

From now on, we will assume Ω is finite.

Base size b(G): the minimal size of a base for G.

Examples

•
$$G = S_n$$
, $\Omega = \{1, \ldots, n\}$: $b(G) = n - 1$.

Definition

A base for $G \leq \text{Sym}(\Omega)$ is a subset Δ of Ω such that $G_{(\Delta)} = 1$.

From now on, we will assume Ω is finite.

Base size b(G): the minimal size of a base for G.

Examples

- $G = S_n$, $\Omega = \{1, \ldots, n\}$: b(G) = n 1.
- G = GL(V), $\Omega = V$: $b(G) = \dim(V)$.

Definition

A base for $G \leq \text{Sym}(\Omega)$ is a subset Δ of Ω such that $G_{(\Delta)} = 1$.

From now on, we will assume Ω is finite.

Base size b(G): the minimal size of a base for G.

Examples

•
$$G = S_n$$
, $\Omega = \{1, \ldots, n\}$: $b(G) = n - 1$.

• G = GL(V), $\Omega = V$: $b(G) = \dim(V)$.

Note. There exists a base of size $m \iff G$ has a regular orbit on Ω^m .

Observation. If Δ is a base and $x, y \in G$, then

$$\alpha^{x} = \alpha^{y}$$
 for all $\alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} \iff x = y.$

Observation. If Δ is a base and $x, y \in G$, then

$$\alpha^x = \alpha^y$$
 for all $\alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_\alpha \iff x = y.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

That is, each group element is uniquely determined by its action on Δ .

Observation. If Δ is a base and $x, y \in G$, then

$$\alpha^{\mathsf{x}} = \alpha^{\mathsf{y}} \text{ for all } \alpha \in \Delta \iff x \mathsf{y}^{-1} \in \bigcap_{\alpha \in \Delta} \mathcal{G}_{\alpha} \iff \mathsf{x} = \mathsf{y}.$$

That is, each group element is uniquely determined by its action on Δ . In particular, $|G| \leq |\Omega|^{b(G)}$, so we have

$$\frac{\log|G|}{\log|\Omega|} \leqslant b(G).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Observation. If Δ is a base and $x, y \in G$, then

$$\alpha^x = \alpha^y$$
 for all $\alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_\alpha \iff x = y.$

That is, each group element is uniquely determined by its action on Δ . In particular, $|G| \leq |\Omega|^{b(G)}$, so we have

$$\frac{\log|G|}{\log|\Omega|} \leqslant b(G).$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Question. How small can a base be?

Observation. If Δ is a base and $x, y \in G$, then

$$\alpha^x = \alpha^y$$
 for all $\alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_\alpha \iff x = y.$

That is, each group element is uniquely determined by its action on Δ . In particular, $|G| \leq |\Omega|^{b(G)}$, so we have

$$rac{\log|G|}{\log|\Omega|}\leqslant b(G).$$

Question. How small can a base be?

 A small base Δ provides an efficient way to store the elements of G, using |Δ|-tuples rather than |Ω|-tuples.

Outline

2 Bounds for base sizes

3 Base-two primitive groups and regular suborbits

4 Saxl graphs

To determine exact b(G) is generally very difficult.

(ロ)、(型)、(E)、(E)、 E) の(()

To determine exact b(G) is generally very difficult.

• No algorithm for calculating b(G), or for constructing a base of minimal size.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

To determine exact b(G) is generally very difficult.

- No algorithm for calculating b(G), or for constructing a base of minimal size.
- Blaha, 1992: Determine if $b(G) \leq c$ for a given constant c is an NP-complete problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

To determine exact b(G) is generally very difficult.

- No algorithm for calculating b(G), or for constructing a base of minimal size.
- Blaha, 1992: Determine if b(G) ≤ c for a given constant c is an NP-complete problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Problem. Bound b(G) above.

To determine exact b(G) is generally very difficult.

- No algorithm for calculating b(G), or for constructing a base of minimal size.
- Blaha, 1992: Determine if b(G) ≤ c for a given constant c is an NP-complete problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Problem. Bound b(G) above.

Other applications:

- Minimal dimension
- 2-generation of finite groups
- Extremely primitive groups
- Some graphs defined on groups

Let $\Delta = \{\alpha_1, \dots, \alpha_{b(G)}\}$ be a base and set $G^{(k)} = \bigcap_{i=1}^k G_{\alpha_i}$. Then $G > G^{(1)} > G^{(2)} > \dots > G^{(b(G)-1)} > G^{(b(G))} = 1.$

Let
$$\Delta = \{\alpha_1, \dots, \alpha_{b(G)}\}$$
 be a base and set $G^{(k)} = \bigcap_{i=1}^k G_{\alpha_i}$. Then
 $G > G^{(1)} > G^{(2)} > \dots > G^{(b(G)-1)} > G^{(b(G))} = 1.$

(ロ)、(型)、(E)、(E)、 E) の(()

This implies $2^{b(G)} \leq |G|$ and so $b(G) \leq \log_2 |G|$.

Let $\Delta = \{\alpha_1, \dots, \alpha_{b(G)}\}$ be a base and set $G^{(k)} = \bigcap_{i=1}^k G_{\alpha_i}$. Then $G > G^{(1)} > G^{(2)} > \dots > G^{(b(G)-1)} > G^{(b(G))} = 1.$

This implies $2^{b(G)} \leq |G|$ and so $b(G) \leq \log_2 |G|$.

Set $n = |\Omega|$. We have already seen $\log_n |G| \leq b(G) \leq \log_2 |G|$.

Let
$$\Delta = \{\alpha_1, \dots, \alpha_{b(G)}\}$$
 be a base and set $G^{(k)} = \bigcap_{i=1}^k G_{\alpha_i}$. Then
 $G > G^{(1)} > G^{(2)} > \dots > G^{(b(G)-1)} > G^{(b(G))} = 1.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

This implies $2^{b(G)} \leq |G|$ and so $b(G) \leq \log_2 |G|$.

Set $n = |\Omega|$. We have already seen $\log_n |G| \leq b(G) \leq \log_2 |G|$.

Examples

•
$$G = S_n \implies b(G) = n - 1 < 2 \log_n |G|.$$

Let
$$\Delta = \{\alpha_1, \dots, \alpha_{b(G)}\}$$
 be a base and set $G^{(k)} = \bigcap_{i=1}^k G_{\alpha_i}$. Then
 $G > G^{(1)} > G^{(2)} > \dots > G^{(b(G)-1)} > G^{(b(G))} = 1.$

This implies $2^{b(G)} \leqslant |G|$ and so $b(G) \leqslant \log_2 |G|$.

Set $n = |\Omega|$. We have already seen $\log_n |G| \leq b(G) \leq \log_2 |G|$.

Examples

•
$$G = S_n \implies b(G) = n - 1 < 2 \log_n |G|.$$

•
$$G = C_2 \wr C_{n/2} \implies b(G) = n/2 = \log_2 |G| - \log_2(n/2) > \frac{1}{2} \log_2 |G|.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let
$$\Delta = \{\alpha_1, \dots, \alpha_{b(G)}\}$$
 be a base and set $G^{(k)} = \bigcap_{i=1}^k G_{\alpha_i}$. Then
 $G > G^{(1)} > G^{(2)} > \dots > G^{(b(G)-1)} > G^{(b(G))} = 1.$

This implies $2^{b(G)} \leq |G|$ and so $b(G) \leq \log_2 |G|$.

Set $n = |\Omega|$. We have already seen $\log_n |G| \leq b(G) \leq \log_2 |G|$.

Examples

•
$$G = S_n \implies b(G) = n - 1 < 2 \log_n |G|.$$

•
$$G = C_2 \wr C_{n/2} \implies b(G) = n/2 = \log_2 |G| - \log_2(n/2) > \frac{1}{2} \log_2 |G|.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

G is called primitive if G_{α} is maximal in G.

Let
$$\Delta = \{\alpha_1, \dots, \alpha_{b(G)}\}$$
 be a base and set $G^{(k)} = \bigcap_{i=1}^k G_{\alpha_i}$. Then
 $G > G^{(1)} > G^{(2)} > \dots > G^{(b(G)-1)} > G^{(b(G))} = 1.$

This implies $2^{b(G)} \leq |G|$ and so $b(G) \leq \log_2 |G|$.

Set $n = |\Omega|$. We have already seen $\log_n |G| \leq b(G) \leq \log_2 |G|$.

Examples

•
$$G = S_n \implies b(G) = n - 1 < 2 \log_n |G|.$$

•
$$G = C_2 \wr C_{n/2} \implies b(G) = n/2 = \log_2 |G| - \log_2(n/2) > \frac{1}{2} \log_2 |G|.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

G is called primitive if G_{α} is maximal in *G*.

Note. The former example is primitive, while the latter is imprimitive.

Let G be primitive with degree n.

Conjecture (Pyber, 1993)

There is an absolute constant c such that $\log_n |G| \leq b(G) \leq c \log_n |G|$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let G be primitive with degree n.

Conjecture (Pyber, 1993)

There is an absolute constant c such that $\log_n |G| \leq b(G) \leq c \log_n |G|$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Duyan, Halasi & Maróti, 2018: Pyber's conjecture is true.

Let G be primitive with degree n.

Conjecture (Pyber, 1993)

There is an absolute constant c such that $\log_n |G| \leq b(G) \leq c \log_n |G|$.

Duyan, Halasi & Maróti, 2018: Pyber's conjecture is true.

Halasi, Liebeck & Maróti, 2019: $b(G) \leq 2 \log_n |G| + 24$.

Other bounds in the primitive setting

Soluble groups:

- Seress, 1996: G soluble $\implies b(G) \leq 4$
- Burness, 2021: G_{α} soluble $\implies b(G) \leq 5$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Other bounds in the primitive setting

Soluble groups:

- Seress, 1996: G soluble $\implies b(G) \leq 4$
- Burness, 2021: G_{α} soluble $\implies b(G) \leqslant 5$

Vdovin's conjecture: $b(G) \leq 5$ for every transitive G with G_{α} soluble.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●
Soluble groups:

- Seress, 1996: G soluble $\implies b(G) \leq 4$
- Burness, 2021: G_{α} soluble $\implies b(G) \leq 5$

Vdovin's conjecture: $b(G) \leq 5$ for every transitive G with G_{α} soluble. Almost simple groups: $T \leq G \leq Aut(T)$ for non-abelian simple T.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Soluble groups:
 - Seress, 1996: G soluble $\implies b(G) \leq 4$
 - Burness, 2021: G_{α} soluble $\implies b(G) \leqslant 5$

Vdovin's conjecture: $b(G) \leq 5$ for every transitive G with G_{α} soluble. Almost simple groups: $T \leq G \leq Aut(T)$ for non-abelian simple T. G is called standard if either

• $T = A_m$ and G acts on subsets or partitions of $\{1, \ldots, m\}$, or

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• T is classical and G_{α} is a C_1 -subgroup.

Otherwise, G is called non-standard.

Soluble groups:

- Seress, 1996: G soluble $\implies b(G) \leq 4$
- Burness, 2021: G_{α} soluble $\implies b(G) \leqslant 5$

Vdovin's conjecture: $b(G) \leq 5$ for every transitive G with G_{α} soluble. Almost simple groups: $T \leq G \leq Aut(T)$ for non-abelian simple T. G is called standard if either

- $T = A_m$ and G acts on subsets or partitions of $\{1, \ldots, m\}$, or
- T is classical and G_{α} is a C_1 -subgroup.

Otherwise, *G* is called **non-standard**.

Note. $\log_n |G|$ is "usually" large if G is standard, and tiny if non-standard.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Soluble groups:

- Seress, 1996: G soluble $\implies b(G) \leq 4$
- Burness, 2021: G_{α} soluble $\implies b(G) \leqslant 5$

Vdovin's conjecture: $b(G) \leq 5$ for every transitive G with G_{α} soluble. Almost simple groups: $T \leq G \leq Aut(T)$ for non-abelian simple T. G is called standard if either

- $T = A_m$ and G acts on subsets or partitions of $\{1, \ldots, m\}$, or
- T is classical and G_{α} is a C_1 -subgroup.

Otherwise, G is called non-standard.

Note. $\log_n |G|$ is "usually" large if G is standard, and tiny if non-standard. **Burness et al., 2007-11:** $b(G) \leq 7$ if G is non-standard.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline

4 Saxl graphs

5 Future work

Observations: If G is transitive, then

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• $b(G) = 1 \iff G$ is regular;

Observations: If G is transitive, then

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Observations: If G is transitive, then

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

Problem. Classify the finite primitive groups G with b(G) = 2.

Observations: If G is transitive, then

•
$$b(G) = 1 \iff G$$
 is regular;

• $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

Problem. Classify the finite primitive groups G with b(G) = 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example

Consider the action of $G = D_{2n}$ on $\{1, \ldots, n\}$. Then

• {1,2} is a base, so b(G) = 2;

Observations: If G is transitive, then

•
$$b(G) = 1 \iff G$$
 is regular;

• $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

Problem. Classify the finite primitive groups G with b(G) = 2.

A D N A 目 N A E N A E N A B N A C N

Example

Consider the action of $G = D_{2n}$ on $\{1, \ldots, n\}$. Then

- {1,2} is a base, so b(G) = 2;
- G is primitive iff n is a prime.

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types. Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types. Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible. **Problem.** Determine the pairs (H, V), where H is a finite group, V is a

faithful irreducible $\mathbb{F}_p H$ -module and H has a regular orbit on V.

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types. Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible. **Problem.** Determine the pairs (H, V), where H is a finite group, V is a

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

faithful irreducible $\mathbb{F}_p H$ -module and H has a regular orbit on V.

• Partial results (e.g. H/Z(H) is simple).

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types. Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible. **Problem.** Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible $\mathbb{F}_p H$ -module and H has a regular orbit on V.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Partial results (e.g. H/Z(H) is simple).

Almost simple: $T \leq G \leq Aut(T)$ for non-abelian simple T.

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types. Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible. **Problem.** Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible $\mathbb{F}_p H$ -module and H has a regular orbit on V.

• Partial results (e.g. H/Z(H) is simple).

Almost simple: $T \leq G \leq Aut(T)$ for non-abelian simple T.

• $T = A_m$ or sporadic: James, 2006; Burness et al., 2010/11 \checkmark

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types. Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible. **Problem.** Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible $\mathbb{F}_p H$ -module and H has a regular orbit on V.

• Partial results (e.g. H/Z(H) is simple).

Almost simple: $T \leq G \leq Aut(T)$ for non-abelian simple T.

- $T = A_m$ or sporadic: James, 2006; Burness et al., 2010/11 \checkmark
- G standard with T classical: In progress (there are infinite families)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types. Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible. **Problem.** Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible $\mathbb{F}_p H$ -module and H has a regular orbit on V.

• Partial results (e.g. H/Z(H) is simple).

Almost simple: $T \leq G \leq Aut(T)$ for non-abelian simple T.

- $T = A_m$ or sporadic: James, 2006; Burness et al., 2010/11 \checkmark
- G standard with T classical: In progress (there are infinite families)
 e.g. a subspace action of Ω_n(q) with nq odd

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types. Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible. **Problem.** Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible $\mathbb{F}_p H$ -module and H has a regular orbit on V.

• Partial results (e.g. H/Z(H) is simple).

Almost simple: $T \leq G \leq Aut(T)$ for non-abelian simple T.

- $T = A_m$ or sporadic: James, 2006; Burness et al., 2010/11 \checkmark
- G standard with T classical: In progress (there are infinite families)
 e.g. a subspace action of Ω_n(q) with nq odd
- G non-standard with T Lie type: Partial results

e.g. T classical, $G_{\alpha} \in S$ (Burness, Guralnick & Saxl, 2014)

Some results Diagonal type: $G \leq T^k.(Out(T) \times P)$, T simple

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Diagonal type: $G \leq T^k$.(Out(T) × P), T simple

• Fawcett, 2013: $P \neq A_k, S_k \implies b(G) = 2$

Diagonal type: $G \leq T^k$.(Out(T) × P), T simple

• Fawcett, 2013: $P \neq A_k, S_k \implies b(G) = 2$

• Fawcett, 2013: $P = A_k$ or S_k and $b(G) = 2 \implies 2 < k < |T|$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Diagonal type: $G \leq T^k$.(Out(T) × P), T simple

- Fawcett, 2013: $P \neq A_k, S_k \implies b(G) = 2$
- Fawcett, 2013: $P = A_k$ or S_k and $b(G) = 2 \implies 2 < k < |T|$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• **H**, in progress: the case $P = A_k$ or S_k

Diagonal type: $G \leq T^k$.(Out(T) × P), T simple

- Fawcett, 2013: $P \neq A_k, S_k \implies b(G) = 2$
- Fawcett, 2013: $P = A_k$ or S_k and $b(G) = 2 \implies 2 < k < |T|$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• H, in progress: the case $P = A_k$ or S_k

Twisted wreath type: $G = T^k : P$, P transitive

Diagonal type: $G \leq T^k$.(Out(T) × P), T simple

- Fawcett, 2013: $P \neq A_k, S_k \implies b(G) = 2$
- Fawcett, 2013: $P = A_k$ or S_k and $b(G) = 2 \implies 2 < k < |T|$

• **H**, in progress: the case $P = A_k$ or S_k

Twisted wreath type: $G = T^k : P$, P transitive

• Fawcett, 2021+: P quasiprimitive $\implies b(G) = 2$

Diagonal type: $G \leq T^k$.(Out(T) × P), T simple

- Fawcett, 2013: $P \neq A_k, S_k \implies b(G) = 2$
- Fawcett, 2013: $P = A_k$ or S_k and $b(G) = 2 \implies 2 < k < |T|$

• **H**, in progress: the case $P = A_k$ or S_k

Twisted wreath type: $G = T^k : P$, P transitive

• Fawcett, 2021+: P quasiprimitive $\implies b(G) = 2$

Product type: $G \leq L \wr P$ in its product action

Diagonal type: $G \leq T^k$.(Out(T) × P), T simple

- Fawcett, 2013: $P \neq A_k, S_k \implies b(G) = 2$
- Fawcett, 2013: $P = A_k$ or S_k and $b(G) = 2 \implies 2 < k < |T|$
- **H**, in progress: the case $P = A_k$ or S_k

Twisted wreath type: $G = T^k : P$, P transitive

• Fawcett, 2021+: P quasiprimitive $\implies b(G) = 2$

Product type: $G \leq L \wr P$ in its product action

Bailey & Cameron, 2013: b(L ≥ P) = 2 ⇔ r(L) ≥ D(P)
 (Here r(L) is the number of regular suborbits of L and D(P) is the distinguishing number of P.)

・ロト ・西ト ・ヨト ・ヨー うへぐ

Diagonal type: $G \leq T^k$.(Out(T) × P), T simple

- Fawcett, 2013: $P \neq A_k, S_k \implies b(G) = 2$
- Fawcett, 2013: $P = A_k$ or S_k and $b(G) = 2 \implies 2 < k < |T|$
- **H**, in progress: the case $P = A_k$ or S_k

Twisted wreath type: $G = T^k : P$, P transitive

• Fawcett, 2021+: P quasiprimitive $\implies b(G) = 2$

Product type: $G \leq L \wr P$ in its product action

- Bailey & Cameron, 2013: b(L ≥ P) = 2 ⇔ r(L) ≥ D(P)
 (Here r(L) is the number of regular suborbits of L and D(P) is the distinguishing number of P.)
- The case $G < L \wr P$: Just initiated (Burness & H, 2022+)

Regular suborbit: An orbit of G_{α} of length $|G_{\alpha}|$.

Regular suborbit: An orbit of G_{α} of length $|G_{\alpha}|$.

Note. $b(G) \leq 2 \iff G$ has a regular suborbit.

Regular suborbit: An orbit of G_{α} of length $|G_{\alpha}|$.

Note. $b(G) \leq 2 \iff G$ has a regular suborbit.

Let r(G) be the number of regular suborbits of G.

Regular suborbit: An orbit of G_{α} of length $|G_{\alpha}|$.

Note. $b(G) \leq 2 \iff G$ has a regular suborbit.

Let r(G) be the number of regular suborbits of G.

• Chen & H, 2022: A general method for computing r(G).

Regular suborbit: An orbit of G_{α} of length $|G_{\alpha}|$.

Note. $b(G) \leq 2 \iff G$ has a regular suborbit.

Let r(G) be the number of regular suborbits of G.

- Chen & H, 2022: A general method for computing r(G).
- Burness & H, 2022+: Explicit $r(L \wr P)$ in the product action of $L \wr P$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Regular suborbit: An orbit of G_{α} of length $|G_{\alpha}|$.

Note. $b(G) \leq 2 \iff G$ has a regular suborbit.

Let r(G) be the number of regular suborbits of G.

- Chen & H, 2022: A general method for computing r(G).
- Burness & H, 2022+: Explicit $r(L \wr P)$ in the product action of $L \wr P$.

- ロ ト - 4 回 ト - 4 □

Problem. Classify the finite primitive groups G with r(G) = 1.

Regular suborbit: An orbit of G_{α} of length $|G_{\alpha}|$.

Note. $b(G) \leq 2 \iff G$ has a regular suborbit.

Let r(G) be the number of regular suborbits of G.

- Chen & H, 2022: A general method for computing r(G).
- Burness & H, 2022+: Explicit $r(L \ge P)$ in the product action of $L \ge P$.

Problem. Classify the finite primitive groups G with r(G) = 1.

• Burness & H, 2021+: G almost simple, G_{α} soluble and $r(G) = 1 \checkmark$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Regular suborbit: An orbit of G_{α} of length $|G_{\alpha}|$.

Note. $b(G) \leq 2 \iff G$ has a regular suborbit.

Let r(G) be the number of regular suborbits of G.

- Chen & H, 2022: A general method for computing r(G).
- Burness & H, 2022+: Explicit $r(L \wr P)$ in the product action of $L \wr P$.

Problem. Classify the finite primitive groups G with r(G) = 1.

• Burness & H, 2021+: G almost simple, G_{α} soluble and $r(G) = 1 \checkmark$ e.g. $G = PGL_2(q)$ and $G_{\alpha} = D_{2(q-1)}$
Regular suborbits

Regular suborbit: An orbit of G_{α} of length $|G_{\alpha}|$.

Note. $b(G) \leq 2 \iff G$ has a regular suborbit.

Let r(G) be the number of regular suborbits of G.

- Chen & H, 2022: A general method for computing r(G).
- Burness & H, 2022+: Explicit $r(L \wr P)$ in the product action of $L \wr P$.

Problem. Classify the finite primitive groups G with r(G) = 1.

• Burness & H, 2021+: G almost simple, G_{α} soluble and $r(G) = 1 \checkmark$ e.g. $G = PGL_2(q)$ and $G_{\alpha} = D_{2(q-1)}$

- ロ ト - 4 回 ト - 4 □

• Burness & H, 2022+: $r(L \wr P) = 1 \implies r(L) = D(P)$

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group of degree *n*.

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group of degree *n*. Then $Q(G) := \frac{|\{(\alpha, \beta) \in \Omega^2 : G_{\alpha\beta} \neq 1\}|}{n^2} = 1 - \frac{r(G)|G_{\alpha}|}{n}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

is the probability that a random pair in Ω is not a base for G.

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group of degree *n*. Then

$$Q(G) := \frac{|\{(\alpha, \beta) \in \Omega^2 : G_{\alpha\beta} \neq 1\}|}{n^2} = 1 - \frac{r(G)|G_{\alpha}|}{n}$$

is the probability that a random pair in Ω is not a base for G. Note. $Q(G) < 1 \iff b(G) \le 2 \iff r(G) > 0$.

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group of degree *n*. Then

$$Q(G) := \frac{|\{(\alpha, \beta) \in \Omega^2 : G_{\alpha\beta} \neq 1\}|}{n^2} = 1 - \frac{r(G)|G_{\alpha}|}{n}$$

is the probability that a random pair in Ω is not a base for G. **Note.** $Q(G) < 1 \iff b(G) \leq 2 \iff r(G) > 0$. To calculate exact Q(G) is difficult, but we have

$$Q(G) < \sum_{x \in \mathcal{P}} rac{|x^{\mathcal{G}} \cap \mathcal{G}_{lpha}|}{|x^{\mathcal{G}}|} =: \widehat{Q}(G),$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

where \mathcal{P} is the set of elements of prime order in G.

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group of degree *n*. Then

$$Q(G) := \frac{|\{(\alpha, \beta) \in \Omega^2 : G_{\alpha\beta} \neq 1\}|}{n^2} = 1 - \frac{r(G)|G_{\alpha}|}{n}$$

is the probability that a random pair in Ω is not a base for G. **Note.** $Q(G) < 1 \iff b(G) \leq 2 \iff r(G) > 0$. To calculate exact Q(G) is difficult, but we have

$$Q(G) < \sum_{x \in \mathcal{P}} rac{|x^{\mathcal{G}} \cap \mathcal{G}_{lpha}|}{|x^{\mathcal{G}}|} =: \widehat{Q}(G),$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

where \mathcal{P} is the set of elements of prime order in G. **Probabilistic method:** $\widehat{Q}(G) < 1 \implies b(G) \leq 2$.

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group of degree *n*. Then

$$Q(G) := \frac{|\{(\alpha, \beta) \in \Omega^2 : G_{\alpha\beta} \neq 1\}|}{n^2} = 1 - \frac{r(G)|G_{\alpha}|}{n}$$

is the probability that a random pair in Ω is not a base for G. **Note.** $Q(G) < 1 \iff b(G) \leq 2 \iff r(G) > 0$. To calculate exact Q(G) is difficult, but we have

$$Q(G) < \sum_{x \in \mathcal{P}} rac{|x^{\mathcal{G}} \cap \mathcal{G}_{lpha}|}{|x^{\mathcal{G}}|} =: \widehat{Q}(G),$$

where \mathcal{P} is the set of elements of prime order in G. **Probabilistic method:** $\widehat{Q}(G) < 1 \implies b(G) \leq 2$.

It also gives a lower bound for r(G).

Outline

2 Bounds for base sizes

3 Base-two primitive groups and regular suborbits

5 Future work

Definition (Burness & Giudici, 2020)

Let $G \leq \text{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition (Burness & Giudici, 2020)

Let $G \leq \text{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

•
$$G = D_8 = \langle (1234), (24) \rangle, \Omega = \{1, 2, 3, 4\}$$
:

Definition (Burness & Giudici, 2020)

Let $G \leq \text{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

•
$$G = D_8 = \langle (1234), (24) \rangle, \ \Omega = \{1, 2, 3, 4\}: \Sigma(G) =$$

Definition (Burness & Giudici, 2020)

Let $G \leq \text{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

•
$$G = D_8 = \langle (1234), (24) \rangle, \ \Omega = \{1, 2, 3, 4\}: \Sigma(G) =$$

•
$$G = C_4 = \langle (1234) \rangle$$
, $\Omega = \{1, 2, 3, 4\}$:

Definition (Burness & Giudici, 2020)

Let $G \leq \text{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

•
$$G = D_8 = \langle (1234), (24) \rangle, \ \Omega = \{1, 2, 3, 4\}$$
: $\Sigma(G) =$

•
$$G = C_4 = \langle (1234) \rangle, \ \Omega = \{1, 2, 3, 4\}$$
: $\Sigma(G) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n}$

Definition (Burness & Giudici, 2020)

Let $G \leq \text{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

•
$$G = D_8 = \langle (1234), (24) \rangle, \ \Omega = \{1, 2, 3, 4\}: \Sigma(G) =$$

•
$$G = C_4 = \langle (1234) \rangle, \ \Omega = \{1, 2, 3, 4\}$$
: $\Sigma(G) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n}$

•
$$G = D_{10} = \langle (12345), (25)(34) \rangle$$
, $\Omega = \{1, 2, 3, 4, 5\}$:

Definition (Burness & Giudici, 2020)

Let $G \leq \text{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

•
$$G = D_8 = \langle (1234), (24) \rangle, \ \Omega = \{1, 2, 3, 4\}: \Sigma(G) =$$

•
$$G = C_4 = \langle (1234) \rangle, \ \Omega = \{1, 2, 3, 4\}$$
: $\Sigma(G) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n}$

•
$$G = D_{10} = \langle (12345), (25)(34) \rangle, \ \Omega = \{1, 2, 3, 4, 5\}: \Sigma(G) = \langle (12345), (25)(34) \rangle$$

Another example

Let $G = PGL_2(q)$ and Ω be the set of distinct pairs of 1-spaces in \mathbb{F}_q^2 .

•
$$G_{\alpha} = D_{2(q-1)};$$

• α and β form a base iff they share a common 1-space.

Another example

Let $G = PGL_2(q)$ and Ω be the set of distinct pairs of 1-spaces in \mathbb{F}_q^2 .

•
$$G_{\alpha} = D_{2(q-1)};$$

• α and β form a base iff they share a common 1-space.

Hence, $\Sigma(G) \cong J(q + 1, 2)$ is a Johnson graph: vertices 2-subsets of $\{1, \ldots, q + 1\}$ and two vertices are adjacent if they are not disjoint.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Another example

Let $G = PGL_2(q)$ and Ω be the set of distinct pairs of 1-spaces in \mathbb{F}_q^2 .

•
$$G_{\alpha} = D_{2(q-1)};$$

• α and β form a base iff they share a common 1-space.

Hence, $\Sigma(G) \cong J(q + 1, 2)$ is a Johnson graph: vertices 2-subsets of $\{1, \ldots, q + 1\}$ and two vertices are adjacent if they are not disjoint.

For example, when q = 4 we have the complement of the Petersen graph.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let G be transitive and b(G) = 2.

(ロ)、(型)、(E)、(E)、(E)、(O)()

Let G be transitive and b(G) = 2.

Note. $\Sigma(G)$ is *G*-vertex-transitive with valency $v(G) = r(G)|G_{\alpha}|$.

Let G be transitive and b(G) = 2.

Note. $\Sigma(G)$ is *G*-vertex-transitive with valency $v(G) = r(G)|G_{\alpha}|$.

Chen & H, 2022: A general method for computing v(G) combinatorially

Let G be transitive and b(G) = 2.

Note. $\Sigma(G)$ is G-vertex-transitive with valency $v(G) = r(G)|G_{\alpha}|$.

Chen & H, 2022: A general method for computing v(G) combinatorially Prime valency: **Burness & Giudici, 2020** \checkmark

Let G be transitive and b(G) = 2.

Note. $\Sigma(G)$ is G-vertex-transitive with valency $v(G) = r(G)|G_{\alpha}|$.

Chen & H, 2022: A general method for computing v(G) combinatorially Prime valency: **Burness & Giudici, 2020** \checkmark

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

It deduces that $\Sigma(G)$ cannot be isomorphic to the Petersen graph.

Let G be transitive and b(G) = 2.

Note. $\Sigma(G)$ is *G*-vertex-transitive with valency $v(G) = r(G)|G_{\alpha}|$.

Chen & H, 2022: A general method for computing v(G) combinatorially Prime valency: **Burness & Giudici, 2020** \checkmark

It deduces that $\Sigma(G)$ cannot be isomorphic to the Petersen graph.

Prime-power valency: Partial results for primitive groups.

Let G be transitive and b(G) = 2.

Note. $\Sigma(G)$ is *G*-vertex-transitive with valency $v(G) = r(G)|G_{\alpha}|$.

Chen & H, 2022: A general method for computing v(G) combinatorially Prime valency: **Burness & Giudici, 2020** \checkmark

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

It deduces that $\Sigma(G)$ cannot be isomorphic to the Petersen graph.

Prime-power valency: Partial results for primitive groups.

• Chen & H, 2022: Almost simple primitive groups ✓

Let G be transitive and b(G) = 2.

Note. $\Sigma(G)$ is *G*-vertex-transitive with valency $v(G) = r(G)|G_{\alpha}|$.

Chen & H, 2022: A general method for computing v(G) combinatorially Prime valency: **Burness & Giudici, 2020** \checkmark

It deduces that $\Sigma(G)$ cannot be isomorphic to the Petersen graph.

Prime-power valency: Partial results for primitive groups.

● Chen & H, 2022: Almost simple primitive groups ✓

e.g. $G = \mathsf{PGL}_2(q)$, $G_lpha = D_{2(q-1)}$, $q = 2^m + 1$ Fermat prime

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let G be transitive and b(G) = 2.

Note. $\Sigma(G)$ is *G*-vertex-transitive with valency $v(G) = r(G)|G_{\alpha}|$.

Chen & H, 2022: A general method for computing v(G) combinatorially Prime valency: **Burness & Giudici, 2020** \checkmark

It deduces that $\Sigma(G)$ cannot be isomorphic to the Petersen graph.

Prime-power valency: Partial results for primitive groups.

● Chen & H, 2022: Almost simple primitive groups ✓

e.g. $G = \mathsf{PGL}_2(q)$, $G_lpha = D_{2(q-1)}$, $q = 2^m + 1$ Fermat prime

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Burness & H, 2022+: $G = L \wr P$ of product type \checkmark

Let G be transitive and b(G) = 2.

Note. $\Sigma(G)$ is *G*-vertex-transitive with valency $v(G) = r(G)|G_{\alpha}|$.

Chen & H, 2022: A general method for computing v(G) combinatorially Prime valency: **Burness & Giudici, 2020** \checkmark

It deduces that $\Sigma(G)$ cannot be isomorphic to the Petersen graph.

Prime-power valency: Partial results for primitive groups.

● Chen & H, 2022: Almost simple primitive groups ✓

e.g. $G = \mathsf{PGL}_2(q)$, $G_lpha = D_{2(q-1)}$, $q = 2^m + 1$ Fermat prime

• Burness & H, 2022+: $G = L \wr P$ of product type \checkmark

Even valency: v(G) even $\iff \Sigma(G)$ is Eulerian.

Let G be transitive and b(G) = 2.

Note. $\Sigma(G)$ is *G*-vertex-transitive with valency $v(G) = r(G)|G_{\alpha}|$.

Chen & H, 2022: A general method for computing v(G) combinatorially Prime valency: **Burness & Giudici, 2020** \checkmark

It deduces that $\Sigma(G)$ cannot be isomorphic to the Petersen graph.

Prime-power valency: Partial results for primitive groups.

● Chen & H, 2022: Almost simple primitive groups ✓

e.g. $G = \mathsf{PGL}_2(q)$, $G_lpha = D_{2(q-1)}$, $q = 2^m + 1$ Fermat prime

• Burness & H, 2022+: $G = L \wr P$ of product type \checkmark

Even valency: v(G) even $\iff \Sigma(G)$ is Eulerian.

Partial results for almost simple primitive groups
Burness & Giudici, 2020; Chen & H, 2022

Notes.

• $\Sigma(G)$ is the union of the regular orbital graphs of G.

(ロ)、(型)、(E)、(E)、 E) のQ(()

Notes.

• $\Sigma(G)$ is the union of the regular orbital graphs of G.

• $\Sigma(G)$ is an orbital graph of $G \iff r(G) = 1$.

Notes.

• $\Sigma(G)$ is the union of the regular orbital graphs of G.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

- $\Sigma(G)$ is an orbital graph of $G \iff r(G) = 1$.
- G is primitive $\implies \Sigma(G)$ is connected.

Notes.

- $\Sigma(G)$ is the union of the regular orbital graphs of G.
- $\Sigma(G)$ is an orbital graph of $G \iff r(G) = 1$.
- G is primitive $\implies \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Notes.

- $\Sigma(G)$ is the union of the regular orbital graphs of G.
- $\Sigma(G)$ is an orbital graph of $G \iff r(G) = 1$.
- G is primitive $\implies \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Conjecture (Burness & Giudici, 2020)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Notes.

- $\Sigma(G)$ is the union of the regular orbital graphs of G.
- $\Sigma(G)$ is an orbital graph of $G \iff r(G) = 1$.
- G is primitive $\implies \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Conjecture (Burness & Giudici, 2020)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

In particular, it asserts that $\Sigma(G)$ has diameter at most 2.

Example

If $G = PGL_2(q)$ and $G_{\alpha} = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ
Example

If $G = PGL_2(q)$ and $G_{\alpha} = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Evidence:

• All primitive groups of degree up to 4095 \checkmark

Example

If $G = PGL_2(q)$ and $G_{\alpha} = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

Evidence:

- All primitive groups of degree up to 4095 \checkmark
- "Most" almost simple groups with alternating or sporadic socles

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example

If $G = PGL_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

Evidence:

- All primitive groups of degree up to 4095 \checkmark
- "Most" almost simple groups with alternating or sporadic socles
- Chen & Du, 2020+; Burness & H, 2021+: soc(G) = L₂(q) ✓

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example

If $G = PGL_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

Evidence:

- All primitive groups of degree up to 4095 \checkmark
- "Most" almost simple groups with alternating or sporadic socles
- Chen & Du, 2020+; Burness & H, 2021+: soc(G) = L₂(q) ✓
- Burness & H, 2021+: almost simple groups with G_{α} soluble \checkmark

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Example

If $G = PGL_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

Evidence:

- All primitive groups of degree up to 4095 \checkmark
- "Most" almost simple groups with alternating or sporadic socles
- Chen & Du, 2020+; Burness & H, 2021+: $soc(G) = L_2(q) \checkmark$
- Burness & H, 2021+: almost simple groups with G_{α} soluble \checkmark

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• **H**, in progress: diagonal type groups with $P \neq A_k, S_k \checkmark$

Example

If $G = PGL_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

Evidence:

- All primitive groups of degree up to 4095 \checkmark
- "Most" almost simple groups with alternating or sporadic socles
- Chen & Du, 2020+; Burness & H, 2021+: $soc(G) = L_2(q) \checkmark$
- Burness & H, 2021+: almost simple groups with G_{α} soluble \checkmark
- **H**, in progress: diagonal type groups with $P \neq A_k, S_k \checkmark$
- Lee & Popiel, 2021+: some affine groups

 $S := \{ almost simple primitive groups with soluble stabilisers \}$

 $\mathcal{S} := \{ \mathsf{almost simple primitive groups with soluble stabilisers} \}$

• Li & Zhang, 2011: $\mathcal S$ is completely known \checkmark

 $\mathcal{S} := \{ \text{almost simple primitive groups with soluble stabilisers} \}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Li & Zhang, 2011: ${\mathcal S}$ is completely known \checkmark

 $\mathcal{B} := \{ G \in \mathcal{S} \mid b(G) = 2 \}$

S := {almost simple primitive groups with soluble stabilisers}
Li & Zhang, 2011: S is completely known ✓
B := {G ∈ S | b(G) = 2}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Burness, 2021: ${\cal B}$ is completely known \checkmark

 $\mathcal{S} := \{ \text{almost simple primitive groups with soluble stabilisers} \}$

- Li & Zhang, 2011: ${\mathcal S}$ is completely known \checkmark
- $\mathcal{B} := \{ G \in \mathcal{S} \mid b(G) = 2 \}$
 - Burness, 2021: ${\cal B}$ is completely known \checkmark
 - Burness & H, 2021+: The common neighbour property for \mathcal{B} \checkmark

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\mathcal{S} := \{ \mathsf{almost simple primitive groups with soluble stabilisers} \}$

- Li & Zhang, 2011: ${\mathcal S}$ is completely known \checkmark
- $\mathcal{B} := \{ G \in \mathcal{S} \mid b(G) = 2 \}$
 - Burness, 2021: ${\mathcal B}$ is completely known \checkmark
 - Burness & H, 2021+: The common neighbour property for \mathcal{B} \checkmark

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Clique number: maximal size $\omega(G)$ of a complete subgraph of $\Sigma(G)$.

 $\mathcal{S} := \{ \mathsf{almost simple primitive groups with soluble stabilisers} \}$

- Li & Zhang, 2011: $\mathcal S$ is completely known \checkmark
- $\mathcal{B} := \{ G \in \mathcal{S} \mid b(G) = 2 \}$
 - Burness, 2021: ${\mathcal B}$ is completely known \checkmark
 - Burness & H, 2021+: The common neighbour property for \mathcal{B} \checkmark

Clique number: maximal size $\omega(G)$ of a complete subgraph of $\Sigma(G)$.

Independence number: clique number $\alpha(G)$ of the complement of $\Sigma(G)$.

 $S := \{ \text{almost simple primitive groups with soluble stabilisers} \}$ • Li & Zhang, 2011: S is completely known \checkmark $B := \{ G \in S \mid b(G) = 2 \}$

• Burness, 2021: ${\cal B}$ is completely known \checkmark

• Burness & H, 2021+: The common neighbour property for \mathcal{B}

Clique number: maximal size $\omega(G)$ of a complete subgraph of $\Sigma(G)$.

Independence number: clique number $\alpha(G)$ of the complement of $\Sigma(G)$. **Example:** $(G, G_{\alpha}) = (A_5, S_3) \implies \Sigma(G) = J(5, 2), \ \omega(G) = 4, \ \alpha(G) = 2.$

S := {almost simple primitive groups with soluble stabilisers}
Li & Zhang, 2011: S is completely known ✓
B := {G ∈ S | b(G) = 2}
Burness, 2021: B is completely known √

• Burness & H, 2021+: The common neighbour property for \mathcal{B}

Clique number: maximal size $\omega(G)$ of a complete subgraph of $\Sigma(G)$.

Independence number: clique number $\alpha(G)$ of the complement of $\Sigma(G)$. **Example:** $(G, G_{\alpha}) = (A_5, S_3) \implies \Sigma(G) = J(5, 2), \ \omega(G) = 4, \ \alpha(G) = 2.$

(日)(1)</p

Theorem (Burness & H, 2021+)

• $G \in \mathcal{B}$ is simple $\implies \omega(G) \ge 5$ or $(G, G_{\alpha}) = (A_5, S_3)$;

 $S := \{ \text{almost simple primitive groups with soluble stabilisers} \}$ • Li & Zhang, 2011: S is completely known \checkmark $B := \{ G \in S \mid b(G) = 2 \}$

• Burness, 2021: ${\cal B}$ is completely known \checkmark

• Burness & H, 2021+: The common neighbour property for \mathcal{B}

Clique number: maximal size $\omega(G)$ of a complete subgraph of $\Sigma(G)$.

Independence number: clique number $\alpha(G)$ of the complement of $\Sigma(G)$. **Example:** $(G, G_{\alpha}) = (A_5, S_3) \implies \Sigma(G) = J(5, 2), \ \omega(G) = 4, \ \alpha(G) = 2.$

(日)(1)</p

Theorem (Burness & H, 2021+)

•
$$G \in \mathcal{B}$$
 is simple $\implies \omega(G) \ge 5$ or $(G, G_{\alpha}) = (A_5, S_3)$;

• $G \in \mathcal{B} \implies \alpha(G) \ge 4 \text{ or } (G, G_{\alpha}) = (A_5, S_3).$

Recall that $v(G) = r(G)|G_{\alpha}|$ and

$$Q(G) = 1 - \frac{r(G)|G_{\alpha}|}{n} = 1 - \frac{v(G)}{n}$$

is the probability that a random pair in Ω is not a base for G.

Recall that $v(G) = r(G)|G_{\alpha}|$ and

$$Q(G) = 1 - \frac{r(G)|G_{\alpha}|}{n} = 1 - \frac{v(G)}{n}$$

is the probability that a random pair in Ω is not a base for G.

Notes:

•
$$Q(G) < 1 \iff b(G) \leqslant 2.$$

Recall that $v(G) = r(G)|G_{\alpha}|$ and

$$Q(G) = 1 - \frac{r(G)|G_{\alpha}|}{n} = 1 - \frac{v(G)}{n}$$

is the probability that a random pair in Ω is not a base for G.

Notes:

- $Q(G) < 1 \iff b(G) \leq 2.$
- $Q(G) < 1/2 \implies \Sigma(G)$ has the common neighbour property.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Recall that $v(G) = r(G)|G_{\alpha}|$ and

$$Q(G) = 1 - \frac{r(G)|G_{\alpha}|}{n} = 1 - \frac{v(G)}{n}$$

is the probability that a random pair in Ω is not a base for G.

Notes:

- $Q(G) < 1 \iff b(G) \leqslant 2.$
- $Q(G) < 1/2 \implies \Sigma(G)$ has the common neighbour property.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• $Q(G) < 1/t \implies \omega(G) \ge t+1.$

Recall that $v(G) = r(G)|G_{\alpha}|$ and

$$Q(G) = 1 - \frac{r(G)|G_{\alpha}|}{n} = 1 - \frac{v(G)}{n}$$

is the probability that a random pair in Ω is not a base for G.

Notes:

•
$$Q(G) < 1 \iff b(G) \leq 2.$$

• $Q(G) < 1/2 \implies \Sigma(G)$ has the common neighbour property.

•
$$Q(G) < 1/t \implies \omega(G) \ge t+1.$$

Example

If $G = PGL_2(q)$ and $G_{\alpha} = D_{2(q-1)}$, then $Q(G) \to 1$ as $q \to \infty$. But $\Sigma(G) = J(q+1,2)$ still has the common neighbour property.

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Conjecture (Burness & H, 2022+)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha)$ meets every regular G_{β} -orbit.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Conjecture (Burness & H, 2022+)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha)$ meets every regular G_{β} -orbit.

Remark. BG conjecture: $\Sigma(\alpha)$ meets the union of regular G_{β} -orbits.

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Conjecture (Burness & H, 2022+)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha)$ meets every regular G_{β} -orbit.

Remark. BG conjecture: $\Sigma(\alpha)$ meets the union of regular G_{β} -orbits.

Theorem (Burness & H, 2022+)

BG conjecture and BH conjecture are equivalent.

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Conjecture (Burness & H, 2022+)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha)$ meets every regular G_{β} -orbit.

Remark. BG conjecture: $\Sigma(\alpha)$ meets the union of regular G_{β} -orbits.

Theorem (Burness & H, 2022+)

BG conjecture and BH conjecture are equivalent.

Indeed, G does not satisfy BH \implies $G \wr S_{r(G)}$ does not satisfy BG.

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Conjecture (Burness & H, 2022+)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha)$ meets every regular G_{β} -orbit.

Remark. BG conjecture: $\Sigma(\alpha)$ meets the union of regular G_{β} -orbits.

Theorem (Burness & H, 2022+)

BG conjecture and BH conjecture are equivalent.

Indeed, G does not satisfy BH $\implies G \wr S_{r(G)}$ does not satisfy BG. Evidence:

• The cases
$$r(G) = 1$$
 and BG holds

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Conjecture (Burness & H, 2022+)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha)$ meets every regular G_{β} -orbit.

Remark. BG conjecture: $\Sigma(\alpha)$ meets the union of regular G_{β} -orbits.

Theorem (Burness & H, 2022+)

BG conjecture and BH conjecture are equivalent.

Indeed, G does not satisfy BH $\implies G \wr S_{r(G)}$ does not satisfy BG. Evidence:

- The cases r(G) = 1 and BG holds
- All primitive groups of degree up to 4095 \checkmark

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Conjecture (Burness & H, 2022+)

 ${\mathcal G}$ primitive and $lpha, eta \in \Omega \implies \Sigma(lpha)$ meets every regular ${\mathcal G}_{eta}$ -orbit.

Remark. BG conjecture: $\Sigma(\alpha)$ meets the union of regular G_{β} -orbits.

Theorem (Burness & H, 2022+)

BG conjecture and BH conjecture are equivalent.

Indeed, G does not satisfy BH \implies $G \wr S_{r(G)}$ does not satisfy BG. Evidence:

- The cases r(G) = 1 and BG holds
- \bullet All primitive groups of degree up to 4095 \checkmark
- $G = \mathsf{PSL}_2(q)$ and $G_{\!lpha}$ of type $\mathsf{GL}_1(q)\wr S_2$

Outline

2 Bounds for base sizes

3 Base-two primitive groups and regular suborbits

4 Saxl graphs

Saxl graphs:

• Generalised Saxl graphs?

Saxl graphs:

- Generalised Saxl graphs?
- More evidence on BG/BH conjecture?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Saxl graphs:

- Generalised Saxl graphs?
- More evidence on BG/BH conjecture?
- Other invariants of Saxl graphs? (e.g. spectrum)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Saxl graphs:

- Generalised Saxl graphs?
- More evidence on BG/BH conjecture?
- Other invariants of Saxl graphs? (e.g. spectrum)

Base-two classification:

• The primitive groups without non-trivial Cartesian decomposition?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Saxl graphs:

- Generalised Saxl graphs?
- More evidence on BG/BH conjecture?
- Other invariants of Saxl graphs? (e.g. spectrum)

Base-two classification:

• The primitive groups without non-trivial Cartesian decomposition? e.g. diagonal type groups, almost simple groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Saxl graphs:

- Generalised Saxl graphs?
- More evidence on BG/BH conjecture?
- Other invariants of Saxl graphs? (e.g. spectrum)

Base-two classification:

• The primitive groups without non-trivial Cartesian decomposition? e.g. diagonal type groups, almost simple groups

- ロ ト - 4 回 ト - 4 □ - 4

• More results on blow-ups? (e.g. product type)

Thank you!