Reflexible Orientably-regular Cayley Maps on Nonabelian Simple Groups

Yuandong Li

Advisor: Caiheng Li

Southern University of Science and Technology

May 9, 2022

1 Introduction: Orientably-regular Cayley maps

2 Some useful results

- Skew-morphisms of nonabelian simple groups
- Classification of bi-quasiprimitive d-groups
- 3 Main theorem: Characterization of $Aut(\mathcal{M})$
- 4 Method to tell reflexible ones

1 Introduction: Orientably-regular Cayley maps

- 2 Some useful results
 - Skew-morphisms of nonabelian simple groups
 - Classification of bi-quasiprimitive d-groups
- 3 Main theorem: Characterization of $Aut(\mathcal{M})$
- 4 Method to tell reflexible ones

Definition

An embedding of a graph $\Gamma = (V, E)$ into a surface is called a **2-cell** embedding if *E* divides the surface into discs, called **faces**. We denote the set of faces by *F*, and the triple (V, E, F) is a (2-cell) map

Definition

An embedding of a graph $\Gamma = (V, E)$ into a surface is called a **2-cell** embedding if *E* divides the surface into discs, called **faces**. We denote the set of faces by *F*, and the triple (V, E, F) is a (2-cell) map. A map is called **orientable** if the underlying surface is orientable.

Definition

An embedding of a graph $\Gamma = (V, E)$ into a surface is called a **2-cell** embedding if *E* divides the surface into discs, called faces. We denote the set of faces by *F*, and the triple (V, E, F) is a (2-cell) map. A map is called **orientable** if the underlying surface is orientable. An incident pair (v, e) of vertex and edges is called an **arc** or a **dart**; an incident triple (v, e, f) is called a **flag**.

Definition

An embedding of a graph $\Gamma = (V, E)$ into a surface is called a **2-cell** embedding if *E* divides the surface into discs, called faces. We denote the set of faces by *F*, and the triple (V, E, F) is a (2-cell) map. A map is called **orientable** if the underlying surface is orientable. An incident pair (v, e) of vertex and edges is called an **arc** or a **dart**; an incident triple (v, e, f) is called a **flag**.

In other words, "drawing" a graph $\Gamma = (V, E)$ into a surface S such that

- I any two edges do not intersect except for the end points,
- 2 E divides the surface S into discs.

An **automorphism** of a map $\mathcal{M} = (V, E, F)$ is a permutation of the flags of \mathcal{M} which preserves the incidence relation.

An **orientation-preserving(reversing) automorphism** is a map automorphism preserving(reversing) the orientation given by the underlying surface.

All (orientation-preserving) automorphisms of \mathcal{M} form group $\operatorname{Aut}(\mathcal{M})$ (resp. $\operatorname{Aut}^+(\mathcal{M})$). Clearly, $\operatorname{Aut}^+(\mathcal{M}) \leq \operatorname{Aut}(\mathcal{M}) \leq \operatorname{Aut}(\Gamma)$.

Definition

An orientable map \mathcal{M} is called **reflexible** if there exists an orientation-reversing automorphism of \mathcal{M} .

Lemma

The action of $Aut(\mathcal{M})$ (resp. $Aut^+(\mathcal{M})$) on flags (resp. arcs) are semi-regular.

Definition

 \mathcal{M} is called **(orientably-)regular** if Aut(\mathcal{M}) (resp. Aut⁺(\mathcal{M})) is transitive on the set of flags (resp. arcs).

3 1 4 3 1

Lemma

The action of $Aut(\mathcal{M})$ (resp. $Aut^+(\mathcal{M})$) on flags (resp. arcs) are semi-regular.

Definition

 \mathcal{M} is called **(orientably-)regular** if $Aut(\mathcal{M})$ (resp. $Aut^+(\mathcal{M})$) is transitive on the set of flags (resp. arcs).

An orientably-regular map can be identified with a group presentation

$$\operatorname{Aut}^{+}(\mathcal{M}) = \langle \lambda, \rho \mid \lambda^{2}, \rho', (\lambda \rho)^{m}, \cdots \rangle$$
(1)

where its edges, vertices and faces represented by the right cosets of the subgroups $\langle \lambda \rangle$, $\langle \rho \rangle$ and $\langle \lambda \rho \rangle$ respectively.

Similarly, for a regular map,

$$\operatorname{Aut}(\mathcal{M}) = \langle x, y, z \mid x^2, y^2, z^2, (xy)^2, (yz)^I, (xz)^m, \cdots \rangle$$
(2)

Lemma

- A regular map \mathcal{M} with $\operatorname{Aut}(\mathcal{M}) = \langle x, y, z \rangle$ is orientable if and only if the subgroup $\langle xy, yz \rangle$ is of index 2 in $\operatorname{Aut}(\mathcal{M})$. In this case \mathcal{M} is orientably-regular and $\operatorname{Aut}^+(\mathcal{M}) = \langle \lambda, \rho \rangle$ where $\lambda = xy$, $\rho = yz$.
- An orientably-regular map M with Aut⁺(M) = (ρ, λ) is regular if and only if M is reflexible, equivalently, there exists an automorphism of Aut⁺(M) that fixes λ and inverts ρ.

A **Cayley map** $CM(G, S, \rho)$ is a map which has a Cayley underlying graph Cay(G, S) and the same orientation at each vertex is given by a cyclic permutation ρ on S.

Further, it is called **balanced** if $\rho(s^{-1}) = (\rho(s))^{-1}$, $\forall s \in S$.

A **Cayley map** $CM(G, S, \rho)$ is a map which has a Cayley underlying graph Cay(G, S) and the same orientation at each vertex is given by a cyclic permutation ρ on S.

Further, it is called **balanced** if $\rho(s^{-1}) = (\rho(s))^{-1}$, $\forall s \in S$.

Theorem (Richter, Širáň et al., 2005 [5])

An orientable map \mathcal{M} is a Cayley map $CM(G, S, \rho)$ if and only if G is a subgroup of $Aut^+(\mathcal{M})$ acting regularly on the set of vertex.

A **Cayley map** $CM(G, S, \rho)$ is a map which has a Cayley underlying graph Cay(G, S) and the same orientation at each vertex is given by a cyclic permutation ρ on S.

Further, it is called **balanced** if $\rho(s^{-1}) = (\rho(s))^{-1}$, $\forall s \in S$.

Theorem (Richter, Širáň et al., 2005 [5])

An orientable map \mathcal{M} is a Cayley map $CM(G, S, \rho)$ if and only if G is a subgroup of $Aut^+(\mathcal{M})$ acting regularly on the set of vertex.

Theorem (Škoviera and Širáň, 1992 [6])

An orientably-regular Cayley map $\mathcal{M} = CM(G, S, \rho)$ is balanced if and only if $G \trianglelefteq Aut^+(\mathcal{M})$.

イロト イポト イヨト イヨト

Orientably-regular Cayley maps and Skew-morphisms

Let G be a finite group.

Definition

A skew-morphism of G is a permutation φ of G satisfying $1_G^{\varphi} = 1_G$ and there exists a function $\pi : G \to \mathbb{Z}_{|\varphi|}$ such that $(gh)^{\varphi} = g^{\varphi} h^{\varphi^{\pi(g)}}$ for all $h \in G$.

Orientably-regular Cayley maps and Skew-morphisms

Let G be a finite group.

Definition

A skew-morphism of G is a permutation φ of G satisfying $1_{\mathcal{G}}^{\varphi} = 1_{\mathcal{G}}$ and there exists a function $\pi : \mathcal{G} \to \mathbb{Z}_{|\varphi|}$ such that $(gh)^{\varphi} = g^{\varphi} h^{\varphi^{\pi(g)}}$ for all $h \in \mathcal{G}$.

Theorem (Jajcay and Širáň, 2002 [3])

A Cayley map $CM(G, S, \rho)$ is orientably-regular if and only if G admits a skew-morphism φ such that $\varphi|_S = \rho$.

Theorem (Jajcay and Širáň, 2002 [3])

A group G admits an orientably-regular Cayley map $CM(G, S, \rho)$ if and only if there exists a skew-morphism φ of G that has a symmetric orbit S that generates the group G.

Yuandong Li (SUSTech)

Orientably-regular Cayley maps on the following groups are classified:

Cyclic groups[2] (Marston Conder and Thomas Tucker, 2014) reflexible ⇔ anti-balanced

Dihedral groups[4] (István Kovács and Young Soo Kwon, 2021) a list of reflexible ones is given

Nonabelian characteristically simple groups[1] (Jiyong Chen, Shaofei Du and Cai Heng Li, 2022) reflexibility is not determined yet

Problem

Determine the reflexibility of orientably-regular Cayley maps on nonabelian (characteristically) simple groups.

æ

.

Problem

Determine the reflexibility of orientably-regular Cayley maps on nonabelian (characteristically) simple groups.

Problem

Classify the reflexible orientably-regular Cayley maps on nonabelian simple groups (according to $Aut(\mathcal{M})$).

1 Introduction: Orientably-regular Cayley maps

2 Some useful results

- Skew-morphisms of nonabelian simple groups
- Classification of bi-quasiprimitive d-groups

3 Main theorem: Characterization of $Aut(\mathcal{M})$

4 Method to tell reflexible ones

Skew-morphisms of nonabelian simple groups

Suppose G is a non-abelian simple group.

Theorem (Chen, Du and Li, 2022 [1])

Suppose σ is a skew-morphism of G. And $X := G\langle \sigma \rangle$. Then one of the following holds:

•
$$X = G : \langle \sigma \rangle$$
 and $\sigma \in Aut(G)$; or

②
$$(X, G) = (PSL(2, 11), A_5), (M_{23}, M_{22}), or (A_{m+1}, A_m) with m ≥ 6 even.$$

Remark: In the second case above, $X \curvearrowright \Omega = [X : G]$ primitively.

Corollary (Chen, Du and Li, 2022 [1])

Suppose \mathcal{M} is an orientably-regular Cayley map on G. Then either \mathcal{M} is a balanced Cayley map on G, or $\operatorname{Aut}^+(\mathcal{M})$ is simple and $G = M_{22}$, A_5 , A_m with $m \ge 6$ even.

э

イロト イポト イヨト イヨト

A permutation group X is called **bi-quasiprimitive** if all its minimal normal subgroups has exactly two orbits.

Definition

If Ω has a non-trivial X-invariant partition $\Omega = U \cup W$ such that $X_U = X_W$ is primitive on U and W, then X is called **bi-primitive**.

Definition

A permutation group X is called a **d-group** if it has a dihedral regular subgroup.

Theorem (Song, Li and Zhang, 2014 [7])

Suppose $X \leq \text{Sym}(\Omega)$ is a bi-quasiprimitive d-group which has a regular subgroup isomorphic to D_{2n} . Then either the action of X on Ω induces an orbital graph $\mathbf{K}_{n,n}$, or X is bi-primitive and divided into two cases:

- n = p, $G = D_{2p}$, $X = \mathbb{Z}_p : \mathbb{Z}_{2k} \leq AGL(1, p)$, and $X_{\omega} = \mathbb{Z}_k$ with k odd;
- **2** (X, G, X_{ω}) is as followings:

X	G	Xω	Condition
D ₄	D_4	1	
$S_{2\ell+1}$	$D_{4\ell+2}$	$A_{2\ell}$	ℓ is odd
$S_{4\ell}$	$D_{8\ell}$	$A_{4\ell-1}$	
$PGL(2, r^f).e$	$D_{2(r^{f}+1)}$	$\mathbb{Z}_r^f:\mathbb{Z}_{\frac{rf-1}{2}}.\mathbb{Z}_e$	$e \mid f, r^f \equiv 3 \pmod{4}$
$PGL(d, r^f).e.2$	$D_{2\frac{r^{df}-1}{r^{f}-1}}$	P_1	$d \ge 3, X \nleq \Pr L(d,q)$
PGL(2, 11)	D_{22}	A ₅	
M ₁₂ .2	D ₂₄	M ₁₁	

Yuandong Li (SUSTech)

Remark: The following fact is part of a lemma of the above classification theorem.

Lemma

Suppose X is a bi-quasiprimitive d-group and $M \leq_{min} X$ with orbits Δ, Δ' . If $X^+ := X_{\Delta} = X_{\Delta'}$ acts faithful both on Δ and Δ' , then X is bi-primitive.

1 Introduction: Orientably-regular Cayley maps

2 Some useful results

- Skew-morphisms of nonabelian simple groups
- Classification of bi-quasiprimitive d-groups

3 Main theorem: Characterization of $Aut(\mathcal{M})$

4 Method to tell reflexible ones

Theorem

Let \mathcal{M} be a reflexible orientably-regular Cayley map on a non-abelian simple group G with full automorphism group $Aut(\mathcal{M})$. Then one of the followings holds.

•
$$\mathsf{Aut}(\mathcal{M})\cong G:D_{2n}, \ i.e., \ \mathcal{M} \ is \ balanced;$$

- ② Aut(\mathcal{M}) is a bi-primitive d-group, actually, Aut(\mathcal{M}) \cong PGL(2,11) or S_l , with $G = A_5$ or A_{l-1} where l = 4t + 3, $t \in \mathbb{N}_+$;
- Aut(\mathcal{M}) \cong Aut⁺(\mathcal{M}) $\times \mathbb{Z}_2$. In this case, Aut⁺(\mathcal{M}) \cong A_s where s = 4t + 5, $t \in \mathbb{N}_+$.

Corollary

Reflexible orientably-regular Cayley maps on M₂₂ are balanced.

Proof of the main theorem: balanced

Recall that $\operatorname{Aut}(\mathcal{M}) = \operatorname{Aut}^+(\mathcal{M}) : \langle \tau \rangle$.

Since G is simple, G is either normal or core-free in $Aut^+(\mathcal{M})$.

- $G \trianglelefteq \operatorname{Aut}^+(\mathcal{M}) \Longrightarrow \mathcal{M} \text{ is balanced and } \operatorname{Aut}(\mathcal{M}) = (G : \langle \sigma \rangle) : \langle \tau \rangle.$
- 2 G is core-free in Aut⁺(\mathcal{M}) \Longrightarrow G = M_{22} , A_5 or A_{2m} with $m \ge 3$.

We focus on the second case and search for $Aut(\mathcal{M})$.

Proof of the main theorem: balanced

Recall that $\operatorname{Aut}(\mathcal{M}) = \operatorname{Aut}^+(\mathcal{M}) : \langle \tau \rangle$. Since *G* is simple, *G* is either normal or core-free in $\operatorname{Aut}^+(\mathcal{M})$.

- $G \trianglelefteq \operatorname{Aut}^+(\mathcal{M}) \Longrightarrow \mathcal{M} \text{ is balanced and } \operatorname{Aut}(\mathcal{M}) = (G : \langle \sigma \rangle) : \langle \tau \rangle.$
- 2 G is core-free in Aut⁺(\mathcal{M}) \Longrightarrow G = M_{22} , A_5 or A_{2m} with $m \ge 3$.

We focus on the second case and search for $Aut(\mathcal{M})$.

The following actions are faithful.

• Aut
$$(\mathcal{M}) \curvearrowright \Omega := [Aut(\mathcal{M}) : G]$$

2 Aut⁺(
$$\mathcal{M}$$
) $\frown \Delta := [Aut+(\mathcal{M}) : G]$

Proof of the main theorem: balanced

Recall that $\operatorname{Aut}(\mathcal{M}) = \operatorname{Aut}^+(\mathcal{M}) : \langle \tau \rangle$. Since *G* is simple, *G* is either normal or core-free in $\operatorname{Aut}^+(\mathcal{M})$.

- $G \trianglelefteq \operatorname{Aut}^+(\mathcal{M}) \Longrightarrow \mathcal{M} \text{ is balanced and } \operatorname{Aut}(\mathcal{M}) = (G : \langle \sigma \rangle) : \langle \tau \rangle.$
- 2 G is core-free in Aut⁺(\mathcal{M}) \implies G = M_{22} , A_5 or A_{2m} with $m \ge 3$.

We focus on the second case and search for $Aut(\mathcal{M})$.

The following actions are faithful.

• Aut
$$(\mathcal{M}) \frown \Omega := [Aut(\mathcal{M}) : G]$$

2
$$\operatorname{Aut}^+(\mathcal{M}) \frown \Delta := [\operatorname{Aut}^+(\mathcal{M}) : G]$$

By Frattini argument, $\operatorname{Aut}(\mathcal{M}) = G \operatorname{Aut}_{v}(\mathcal{M})$ for some vertex v of \mathcal{M} . Then $\operatorname{Aut}_{v}(\mathcal{M})$ is dihedral and a regular subgroup of $\operatorname{Aut}(\mathcal{M})$, i.e., $\operatorname{Aut}(\mathcal{M})$ is a **d-group**.

イロト イヨト イヨト 一日

Question: Aut $(\mathcal{M}) \curvearrowright \Omega := [Aut(\mathcal{M}) : G]$ bi-quasiprimitive?

æ

- 4 回 ト 4 回 ト 4 回 ト

Question: Aut $(\mathcal{M}) \curvearrowright \Omega := [Aut(\mathcal{M}) : G]$ bi-quasiprimitive?

Consider
$$N \trianglelefteq_{min} \operatorname{Aut}(\mathcal{M})$$
.
Then either $N \trianglelefteq \operatorname{Aut}^+(\mathcal{M})$ or $N \cap \operatorname{Aut}^+(\mathcal{M}) = 1$.
Claim that

■
$$N \trianglelefteq \operatorname{Aut}^+(\mathcal{M}), \forall N \trianglelefteq_{min} \operatorname{Aut}(\mathcal{M}).$$

 $\Longrightarrow \operatorname{Aut}(\mathcal{M}) \text{ is bi-primitive.}$

②
$$\exists N \leq_{\min} \operatorname{Aut}(\mathcal{M}) \text{ s.t. } N \cap \operatorname{Aut}^+(\mathcal{M}) = 1$$

⇒ $\operatorname{Aut}(\mathcal{M}) \cong \operatorname{Aut}^+(\mathcal{M}) \times \mathbb{Z}_2$

æ

Suppose $N \trianglelefteq \operatorname{Aut}^+(\mathcal{M})$, $\forall N \trianglelefteq_{min} \operatorname{Aut}(\mathcal{M})$.

Recall that $\operatorname{Aut}^+(\mathcal{M}) \curvearrowright \Delta$ primitively, hence N is transitive on Δ . Notice that $R\tau N = RN\tau$, N is also transitive on Δ' . $\Longrightarrow N$ has two orbits Δ and Δ' $\Longrightarrow \operatorname{Aut}(\mathcal{M}) \curvearrowright \Omega$ bi-quasiprimitive

Further, $\operatorname{Aut}(\mathcal{M})$ is bi-primitive by lemma and the fact that $\operatorname{Aut}^+(\mathcal{M}) \cong \operatorname{Aut}(\mathcal{M})_{\Delta} = \operatorname{Aut}(\mathcal{M})_{\Delta'}$ acts faithfully on both Δ and Δ' .

Thus we can read from the list that $(Aut(\mathcal{M}), G) \cong (PGL(2, 11), A_5)$ or (S_l, A_{l-1}) , where l = 4t + 3, $t \in \mathbb{N}_+$.

|山下 |田下 |田下

Suppose
$$\exists N \trianglelefteq_{min} Aut(\mathcal{M}) \text{ s.t. } N \cap Aut^+(\mathcal{M}) = 1.$$

Then $\operatorname{Aut}(\mathcal{M}) = \operatorname{Aut}^+(\mathcal{M}) \times N$ where $N = \langle r \rangle \cong \mathbb{Z}_2$.

Suppose $\tau_{v} \in \operatorname{Aut}(\mathcal{M})_{v}$ stabilizes a given vertex v and satisfying $\tau_{v}\rho_{v} = \rho_{v}^{-1}\tau_{v}$, we may consider $\tau_{v} = (a, r) \in \operatorname{Aut}^{+}(\mathcal{M}) \times \langle r \rangle$, and $\rho_{v} = (\rho, 1)$. Then $\tau_{v}\rho_{v} = \rho_{v}^{-1}\tau_{v}$ implies $a\rho = \rho^{-1}a$ for some $a \in \operatorname{Aut}^{+}(\mathcal{M})$.

This can only happen in $\operatorname{Aut}^+(\mathcal{M}) \cong A_s$ where s = 4t + 5, $t \in \mathbb{N}_+$. In fact, by MAGMA, $\forall \rho \in M_{23}$ of order 23, ρ is not conjugate to ρ^{-1} .

Q.E.D.

1 Introduction: Orientably-regular Cayley maps

2 Some useful results

- Skew-morphisms of nonabelian simple groups
- Classification of bi-quasiprimitive d-groups

3 Main theorem: Characterization of $Aut(\mathcal{M})$

4 Method to tell reflexible ones

Aut⁺(\mathcal{M}) = $\langle \lambda, \rho \rangle \cong PSL(2, 11)$ or A_m with $m \ge 7$ even. We may assume $\rho = (1 \ 2 \ 3 \ \cdots \ 11)$ or $(1 \ 2 \ 3 \ \cdots \ m)$.

Step 1. List τ in PGL(2, 11) or S_m such that $\rho^{\tau} = \rho^{-1}$. **Step 2.** List involutions $\lambda \in \operatorname{Aut}^+(\mathcal{M})$ s.t. $\operatorname{Aut}^+(\mathcal{M}) = \langle \lambda, \rho \rangle$. **Step 3.** For each λ , check if $\exists \tau$ s.t. $\lambda^{\tau} = \lambda$.

Example

Simple orientably-regular Cayley maps on A_5 are reflexible.

```
X:=PGL(2,11);G:=Socle(X);r:=Classes(G)[7][3]; set Aut^+(\mathcal{M}) and \rho
T:={t:t in X| Order(t) eq 2 and r<sup>t</sup> eq r<sup>(-1)</sup>}; List \tau
L:={I:I in G Order(I) eq 2 and Order(sub<G|I,r>) eq Order(G)};
                                                                               List \lambda
i:=0:
for I in L do check \lambda^{\tau} = \lambda
  flag:=false;
  for t in T do
     if I^{t} eq t^{t} then flag:=true; i:=i+1; break; end if;
  end for:
  if flag eq false then I; end if;
end for:
i:#L:
Output: 55, 55
```

Jiyong Chen, Shaofei Du, and Cai Heng Li. Skew-morphisms of nonabelian characteristically simple groups. *Journal of Combinatorial Theory, Series A*, 185:105539, 2022.

Marston Conder and Thomas Tucker. Regular cayley maps for cyclic groups. Transactions of the American Mathematical Society, 366, 07 2014.

R. Jajcay and J. Širáň. Skew-morphisms of regular cayley maps. Discret. Math., 244:167–179, 2002.

Istvn Kovács and Young Soo Kwon.
 Regular cayley maps for dihedral groups.
 Journal of Combinatorial Theory, Series B, 148:84–124, 05 2021.

R Bruce Richter, Jozef Širáň, Robert Jajcay, Thomas W Tucker, and Mark E Watkins.

Cayley maps.

Journal of Combinatorial Theory, Series B, 95(2):189-245, 2005.

Martin Škoviera and Jozef Širáň. Regular maps from cayley graphs, part 1: balanced cayley maps. Discrete mathematics, 109(1-3):265–276, 1992.

Shu Jiao Song, Cai Heng Li, and Hua Zhang. Finite permutation groups with a regular dihedral subgroup, and edge-transitive dihedrants.

Journal of Algebra, 399:948-959, 2014.