Cubic graphical regular representations of non-abelian simple groups

#### Shasha ZHENG University of Melbourne

#### Based on joint work with Binzhou XIA and Sanming ZHOU

Group Theory Seminars, SUSTech, May 2022

Cayley (di)graphs and GRRs (DRRs) Cubic GRRs of finite non-abelian simple groups





# Cubic GRRs of finite non-abelian simple groups Cubic GRRs of some classical simple groups

## Digraph

A digraph  $\Gamma$  is an ordered pair ( $V(\Gamma)$ ,  $A(\Gamma)$ ), where  $V(\Gamma)$  is the set of vertices and  $A(\Gamma)$  is the set of ordered pairs of vertices called arcs.



• 
$$V(\Gamma_1) = \{1, 2, 3\}.$$

• 
$$A(\Gamma_1) = \{(1,2), (2,3)\}.$$

Figure: Digraph Γ<sub>1</sub>

## Digraph

For a digraph  $\Gamma$ , if  $A(\Gamma)$  is symmetric, then  $\Gamma$  is called an undirected graph (or a graph for short).



Figure: Graph Γ<sub>2</sub>

 $A(\Gamma_2) = \{(1,2), (2,1), (2,3), (3,2)\} \longrightarrow E(\Gamma_2) = \{\{1,2\}, \{2,3\}\}.$ 

#### Digraph automorphism

For  $\Gamma = (V(\Gamma), A(\Gamma))$  and  $\sigma \in \text{Sym}(V(\Gamma))$ , if  $\sigma$  preserves the adjacency of  $\Gamma$ , then  $\sigma$  is called an automorphism of  $\Gamma$ .



Figure: Digraph Γ<sub>1</sub>

Figure: Graph Γ<sub>2</sub>

 1 is the unique automorphism of Γ<sub>1</sub>, but Γ<sub>2</sub> has (1,3) as another automorphism.

## Digraph automorphism

For  $\Gamma = (V(\Gamma), A(\Gamma))$  and  $\sigma \in \text{Sym}(V(\Gamma))$ , if  $\sigma$  preserves the adjacency of  $\Gamma$ , then  $\sigma$  is called an automorphism of  $\Gamma$ .



 1 is the unique automorphism of Γ<sub>1</sub>, but Γ<sub>2</sub> has (1,3) as another automorphism.

## **Digraph symmetries**

#### **Definition 1**

All automorphisms of  $\Gamma$  form a group  $Aut(\Gamma)$ , called the full automorphism group of  $\Gamma$ .

#### Definition 2

If Aut( $\Gamma$ ) is transitive on  $V(\Gamma)$ ,  $A(\Gamma)$  or  $E(\Gamma)$ , then  $\Gamma$  is called vertex-transitive, arc-transitive or edge-transitive respectively.

• A digraph is called **symmetric** if it is both vertex-transitive and arc-transitive.

### **Digraph symmetries**

#### **Definition 1**

All automorphisms of  $\Gamma$  form a group  $Aut(\Gamma)$ , called the full automorphism group of  $\Gamma$ .

#### **Definition 2**

If  $Aut(\Gamma)$  is transitive on  $V(\Gamma)$ ,  $A(\Gamma)$  or  $E(\Gamma)$ , then  $\Gamma$  is called vertex-transitive, arc-transitive or edge-transitive respectively.

• A digraph is called symmetric if it is both vertex-transitive and arc-transitive.

### **Digraph symmetries**

#### **Definition 1**

All automorphisms of  $\Gamma$  form a group  $Aut(\Gamma)$ , called the full automorphism group of  $\Gamma$ .

#### **Definition 2**

If  $Aut(\Gamma)$  is transitive on  $V(\Gamma)$ ,  $A(\Gamma)$  or  $E(\Gamma)$ , then  $\Gamma$  is called vertex-transitive, arc-transitive or edge-transitive respectively.

• A digraph is called symmetric if it is both vertex-transitive and arc-transitive.

Cayley (di)graphs and GRRs (DRRs) Cubic GRRs of finite non-abelian simple groups

## Cayley digraph

#### **Definition 3**

Let *G* be a group and  $1 \notin S \subset G$ . The Cayley digraph of *G* with respect to *S*, denoted by Cay(*G*, *S*), is defined as the digraph with vertex set *G* and arc set  $\{(u, v) : vu^{-1} \in S, u, v \in G\}$ .

 A digraph Γ is isomorphic to a Cayley digraph of a group G if and only if Γ admits a regular group of automorphisms isomorphic to G.

## Cayley digraph

#### **Definition 3**

Let *G* be a group and  $1 \notin S \subset G$ . The Cayley digraph of *G* with respect to *S*, denoted by Cay(*G*, *S*), is defined as the digraph with vertex set *G* and arc set  $\{(u, v) : vu^{-1} \in S, u, v \in G\}$ .

 A digraph Γ is isomorphic to a Cayley digraph of a group G if and only if Γ admits a regular group of automorphisms isomorphic to G. Cayley (di)graphs and GRRs (DRRs) Cubic GRRs of finite non-abelian simple groups

## Cayley digraph

#### Example



Figure: Cayley digraph  $Cay(\mathbb{Z}_7, \{1, 2\})$ 

Cayley (di)graphs and GRRs (DRRs) Cubic GRRs of finite non-abelian simple groups

## Cayley digraph

#### Example



## Right regular representation

For a given group *G*, every element  $g \in G$  induces a right translation R(g) on *G* as follows.

$$\begin{array}{rcl} \mathsf{R}(g): & G \to G \\ & u \mapsto ug \end{array}$$

Let

$$\mathsf{R}(G) = \{\mathsf{R}(g) \mid g \in G\}.$$

It is called the right regular representation of G.

- $R(G) \leq Aut(Cay(G, S))$  and it is transitive on G.
- All Cayley digraphs are vertex-transitive.

## Right regular representation

For a given group *G*, every element  $g \in G$  induces a right translation R(g) on *G* as follows.

$$\begin{array}{ll} \mathsf{R}(g) : & G \to G \\ & u \mapsto ug \end{array}$$

Let

$$\mathsf{R}(G) = \{\mathsf{R}(g) \mid g \in G\}.$$

It is called the right regular representation of G.

- $R(G) \leq Aut(Cay(G, S))$  and it is transitive on G.
- All Cayley digraphs are vertex-transitive.

## Normal Cayley digraph

#### **Definition 4**

A Cayley digraph Cay(G, S) is said to be normal for G if

 $R(G) \leq Aut(Cay(G, S)).$ 

- If a Cayley digraph is normal, then it is much easier to determine its full automorphism group.
- Cay(Z<sub>7</sub>, {1, 2}) and Cay(Z<sub>7</sub>, {1, 2, 5, 6}) are normal.
   —All Cayley digraphs of Z<sub>p</sub> (p a prime), other than K<sub>p</sub> or pK<sub>1</sub>, are normal.
- M. Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 182 (1998) 309–319.

## DRR and GRR

#### **Definition 5**

For a Cayley (di)graph Cay(G, S), if R(G) = Aut(Cay(G, S)), then Cay(G, S) is called a (di)graphical regular representation (GRR or DRR for short) of *G*.

- All DRRs (GRRs) are normal.
- A GRR (DRR) of *G* is a Cayley (di)graph of *G* with smallest possible full automorphism group when *G* admits one.
- Q (König, 1936): given a group *G*, is there a (di)graph whose automorphism group is isomorphic to *G*?

## DRR and GRR

#### **Definition 5**

For a Cayley (di)graph Cay(G, S), if R(G) = Aut(Cay(G, S)), then Cay(G, S) is called a (di)graphical regular representation (GRR or DRR for short) of *G*.

- All DRRs (GRRs) are normal.
- A GRR (DRR) of *G* is a Cayley (di)graph of *G* with smallest possible full automorphism group when *G* admits one.
- Q (König, 1936): given a group *G*, is there a (di)graph whose automorphism group is isomorphic to *G*?

#### Cayley (di)graphs and GRRs (DRRs)

Cubic GRRs of finite non-abelian simple groups

### Relationships



#### Some subclasses of vertex-transitive digraphs

## Graphical regular representation

#### Theorem (Godsil 1978)

Apart from abelian groups of exponent at least three, generalized dicyclic groups and the following thirteen other groups:

(1) 
$$C_2^2$$
,  $C_2^3$ ,  $C_2^4$ ,  $D_6$ ,  $D_8$ ,  $D_{10}$ ,  $A_4$ ,  $Q_8 \times C_3$ ,  $Q_8 \times C_4$ ,  
(2)  $\langle a, b \mid a^8 = b^2 = 1, b^{-1}ab = a^5 \rangle$ ,  
(3)  $\langle a, b, c \mid a^2 = b^2 = c^2 = 1, abc = bca = cab \rangle$ ,  
(4)  $\langle a, b, c \mid a^3 = b^3 = c^2 = (ac)^2 = (bc)^2 = 1, ab = ba \rangle$  and  
(5)  $\langle a, b, c \mid a^3 = c^3 = 1, ac = ca, bc = cb, b^{-1}ab = ac \rangle$ ,  
every finite group admits a GRR.

## Fang, Li, Wang and Xu's conjecture

There is special interest in GRRs of a prescribed valency.

Conjecture 1 (Fang, Li, Wang and Xu, 2002)

Every finite non-abelian simple group admits a cubic GRR.

- Xia and Fang found that this conjecture fails for PSL<sub>2</sub>(7).
- X.G. Fang, C.H. Li, J. Wang and M.Y. Xu, On cubic Cayley graphs of finite simple groups, Discrete Math. 244 (2002) 67–75.
- B. Xia and T. Fang, Cubic graphical regular representations of PSL<sub>2</sub>(q), Discrete Math. 339 (8) (2016) 2051–2055.

## Fang and Xia's conjecture

#### Conjecture 2 (Fang and Xia, 2016)

Except a finite number of cases, every finite non-abelian simple group has a cubic GRR.



- An alternating group? (Godsil, 1983.)
- A classical group?
- An exceptional group of Lie type?
  - Sz(q) with  $q = 2^{2n+1} \ge 8$ . (Fang et al., 2002.)
  - Ree(q) with  $q = 3^{2n+1} \ge 27$ . (2022+.)

#### • A sporadic simple group?

B. Xia and T. Fang, Cubic graphical regular representations of PSL<sub>2</sub>(*q*), Discrete Math. 339 (8) (2016) 2051–2055.

### Cubic GRRs of finite non-abelian simple groups

• If Cay(G, S) is a GRR of G, then we necessarily have  $\langle S \rangle = G$  and Aut(G, S) = 1, where

$$\operatorname{Aut}(G, S) = \{ \alpha \in \operatorname{Aut}(G) : S^{\alpha} = S \}.$$

- A list of finite non-abelian simple groups G for which a cubic Cayley graph Cay(G, S) is a GRR if and only if ⟨S⟩ = G and Aut(G, S) = 1 was given.
  - It contains all sporadic simple groups and all simple groups of exceptional Lie type.
- B. Xia, Cubic graphical regular representations of PSL<sub>3</sub>(*q*), Discrete Math. 343 (1) (2020) 111646.

## Cubic GRRs of finite non-abelian simple groups

The list:

- (i) *G* is a sporadic simple group;
- (ii)  $G = A_n$  with  $n \notin \{47\} \cup \{2^m 1 \mid m \ge 4\}$ ;
- (iii) *G* is a simple group of exceptional Lie type;
- (iv) G is a classical simple group of odd characteristic;
- (v)  $G = PSL_n(q)$  with q even and  $n \ge 4$  such that either n is odd and q > 2 or gcd(n, q 1) > 1;
- (vi)  $G = PSU_n(q)$  with q even and  $n \ge 6$  such that either n is odd or gcd(n, q + 1) > 1;
- (vii)  $G = PSL_2(q)$ ,  $PSL_3(q)$ ,  $PSU_3(q)$ ,  $PSU_4(q)$ ,  $PSU_5(q)$  or  $PSp_4(q)$ , where q is even.
  - B. Xia, Cubic graphical regular representations of PSL<sub>3</sub>(*q*), Discrete Math. 343 (1) (2020) 111646.

## Cubic GRRs of finite non-abelian simple groups

- For every finite non-abelian simple group *G* except *A*<sub>7</sub>, PSL<sub>2</sub>(*q*), PSL<sub>3</sub>(*q*) and PSU<sub>3</sub>(*q*), there exists a pair of generators (*x*, *y*) of *G* where *y* is an involution such that Aut(*G*, {*x*, *x*<sup>-1</sup>, *y*}) = 1.
  - In particular, all sporadic simple groups and simple groups of exceptional Lie type admit cubic GRRs.
- D. Leemans and M.W. Liebeck, Chiral polyhedra and finite simple groups, Bull. London Math. Soc. 49 (2017) 581–592.

#### Conjecture 2 for classical simple groups

- Most families of classical groups are known to admit cubic GRRs.
- B. Xia, On cubic graphical regular representations of finite simple groups, J. Combin. Theory Ser. B 141 (2020) 1–30.
- B. Xia and T. Fang, Cubic graphical regular representations of PSL<sub>2</sub>(q), Discrete Math. 339 (8) (2016) 2051–2055.
- B. Xia, Cubic graphical regular representations of PSL<sub>3</sub>(*q*), Discrete Math. 343 (1) (2020) 111646.

### Conjecture 2 for classical simple groups

To settle Conjecture 2, the remaining families of groups that need to be considered are:

- $PSU_3(q)$  with  $q \neq 2$ ,
- $PSL_4(q)$ ,  $PSL_6(q)$  (where gcd(6, q 1) = 1),  $PSL_8(q)$ ,  $PSp_6(q)$ ,  $PSp_8(q)$ ,  $P\Omega_8^{\pm}(q)$ ,  $P\Omega_{10}^{\pm}(q)$ , and  $P\Omega_{12}^{\pm}(q)$  with q even.
  - If a group *G* has no proper subgroup of index at most 47, then for an involution *y* and an element *x* of an odd prime order in *G*,  $Cay(G, \{x, x^{-1}, y\})$  is a GRR of *G* if and only if  $G = \langle x, y \rangle$  and  $Aut(G, \{x, x^{-1}, y\}) = 1$ .

## Primitive prime divisor

For a pair of positive integers (a, m) with  $a \ge 2$  and  $m \ge 2$ , we call a prime divisor r of  $a^m - 1$  a primitive prime divisor of (a, m) if r does not divide  $a^i - 1$  for every positive integer i < m.

Denote the set of primitive prime divisors of (a, m) by ppd(a, m).

By Zsigmondy's theorem, if (*a*, *m*) ≠ (2<sup>k</sup> - 1, 2), (2, 6), then ppd(*a*, *m*) is not empty.

#### Our main result

#### Theorem 1 (Xia, Z and Zhou, 2022+)

Let *G* be a finite simple group and  $r \in ppd(2, ef)$ , where *G* and *e* are given in the table with  $q = 2^f$ ,  $f \ge 1$ , and let *x* be any fixed element of *G* with order *r*. Then for a random involution *y* of *G*, the probability of  $Cay(G, \{x, x^{-1}, y\})$  being a GRR of *G* approaches 1 as *q* approaches infinity.

| G                | Conditions                            | е     |
|------------------|---------------------------------------|-------|
| $PSL_n(q)$       | <i>n</i> = 4,6 or 8, <i>q</i> even    | n     |
| $PSp_n(q)$       | <i>n</i> = 6 or 8, <i>q</i> even      | n     |
| $P\Omega_n^+(q)$ | <i>n</i> = 8, 10 or 12, <i>q</i> even | n – 2 |
| $P\Omega_n^-(q)$ | <i>n</i> = 8, 10 or 12, <i>q</i> even | n     |

Table: The pairs (G, e) in Theorem 3

## Methodologies

For a subset *A* of a group *G*, denote by  $I_2(A)$  the set of involutions of *G* in *A*, and set  $i_2(A) = |I_2(A)|$ .

Let G, q and x be as in Theorem 3. Define

$$\begin{split} \mathcal{K}(x) &= \{ y \in I_2(G) : G = \langle x, y \rangle \}, \\ \mathcal{L}(x) &= \{ y \in I_2(G) : \operatorname{Aut}(G, \{ x, x^{-1}, y \}) = 1 \}, \\ \operatorname{Inv}(x) &= \{ \alpha \in I_2(\operatorname{Aut}(G)) : x^{\alpha} = x^{-1} \}, \\ \mathcal{M}(x) : \text{the set of maximal subgroups of } G \text{ containing } x. \end{split}$$

## Methodologies

If  $q \ge 4$  for  $G = PSL_4(q)$  and  $q \ge 2$  for any other *G*, then for a random involution *y* of *G*, the probability P(x) of  $Cay(G, \{x, x^{-1}, y\})$  being a GRR of *G* is given by

$$P(x) = \frac{|K(x) \cap L(x)|}{i_2(G)}.$$

Moreover,

$$P(x) \geq 1 - \frac{i_2\left(\bigcup_{M \in \mathcal{M}(x)} M\right)}{i_2(G)} - \frac{\sum_{\alpha \in \operatorname{Inv}(x)} i_2(\mathbf{C}_G(\alpha))}{i_2(G)}.$$

## Example: $PSL_4(q)$

#### $G = PSL_4(q)$ with $q \ge 4$ even

$$P(x) \geq 1 - \frac{i_2\left(\bigcup_{M \in \mathcal{M}(x)} M\right)}{i_2(G)} - \frac{\sum_{\alpha \in \operatorname{Inv}(x)} i_2(\mathbf{C}_G(\alpha))}{i_2(G)} > 1 - 5q^{-1}.$$

• 
$$i_2(G) > q^5(q^3 - 1)$$
.

• 
$$i_2\left(\cup_{M\in\mathcal{M}(x)}M\right) < 3q^7/2$$

• 
$$i_2(\mathbf{C}_G(\alpha)) < 2q^4$$
 for  $\alpha \in \text{Inv}(x)$ .

•  $|Inv(x)| \le 13q^3/8$ .



## Spiga's conjectures

#### Conjecture 3 (Spiga, 2018)

For finite non-abelian simple groups, the proportion of cubic Cayley graphs of a given group that are GRRs approaches 1 as the order of the group approaches infinity.

- Theorem 1 provides evidence in some sense to support this conjecture for those families of groups.
- P. Spiga, Cubic graphical regular representations of finite non-abelian simple groups, Commun. Algebra 46 (6) (2018) 2440–2450.

## Spiga's conjectures

#### Conjecture 4 (Spiga, 2018)

Except  $PSL_2(q)$  and a finite number of other cases, every finite non-abelian simple group *G* contains an element *x* and an involution *y* such that  $Cay(G, \{x, x^{-1}, y\})$  is a GRR of *G*.

- Both PSL<sub>3</sub>(q) and PSU<sub>3</sub>(q) form infinite families of counterexamples.
- P. Spiga, Cubic graphical regular representations of finite non-abelian simple groups, Commun. Algebra 46 (6) (2018) 2440–2450.
- A. Breda d'Azevedo and D.A. Catalano, Strong map-symmetry of SL(3, *K*) and PSL(3, *K*) for every finite field *K*, J. Algebra Appl. 20 (04) (2021) p.2150048.

## A modified version of Conjecture 4

Our work together with several known results implies that we can save Conjecture 4 by adding  $PSL_3(q)$  and  $PSU_3(q)$  to the list of exceptional groups.

#### Theorem 2 (Xia, Z and Zhou, 2022+)

Except  $PSL_2(q)$ ,  $PSL_3(q)$ ,  $PSU_3(q)$  and a finite number of other cases, every finite non-abelian simple group *G* contains an element *x* and an involution *y* such that  $Cay(G, \{x, x^{-1}, y\})$  is a GRR of *G*.

## Fang and Xia's conjecture

#### Conjecture 2 (Fang and Xia, 2016)

Except for a finite number of cases, every finite non-abelian simple group has a cubic GRR.

- Note that PSL<sub>2</sub>(q) with q ∉ {2, 3, 7} and PSL<sub>3</sub>(q) with q ≠ 2 admit cubic GRRs with connection sets consisting of three involutions.
- How about PSU<sub>3</sub>(q)?
   For a prime power q, the group PSU<sub>3</sub>(q) has a cubic GRR if and only if q ≥ 4.
- J.J. Li, B. Xia, X.Q. Zhang and Z, Cubic graphical regular representations of PSU<sub>3</sub>(*q*), arXiv preprint (2022) arXiv: 2201.04307.

Cayley (di)graphs and GRRs (DRRs) Cubic GRRs of finite non-abelian simple groups

Cubic GRRs of some classical simple groups

#### Fang and Xia's conjecture

#### Theorem 3 (Xia, Z and Zhou, 2022+)

Except for a finite number of cases, every finite non-abelian simple group has a cubic GRR.

# Thank you!