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Three versions of Aldous’ spectral

gap conjecture



Notations

• Let Γ = (V (Γ), E(Γ), w) be a connected and weighted graph with

V (Γ) = {v1, v2, . . . , vn},

E(Γ) ⊆
{
{vi, vj} | vi 6= vj ∈ V (Γ)

}
,

and w : E(Γ)→ R+, {vi, vj} 7→ w({vi, vj}).

• Consider w as a map on [n]× [n] by letting

wij = wji = w({vi, vj}) > 0, ∀ {vi, vj} ∈ E(Γ),

and w = 0 everywhere else,

where [n] = {1, 2, . . . , n}.

• Any unweighted graph can be seen as a weighted graph with every

edge having weight 1.
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Aldous’ spectral gap conjecture

Aldous’ spectral gap conjecture (1992, [1])
For any unweighted and connected graph Γ, the random walk and the

interchange process on Γ have the same relaxation time.

• This conjecture indicates that these two Markov chains converge to

their respective stationary distributions at the same asymptotic rate.

• In 2010, this conjecture was confirmed in its general form for any

weighted and connected graph Γ (see [2]).

1. D. Aldous, https://www.stat.berkeley.edu/∼aldous/Research/OP/sgap.html.

2. P. Caputo, T. M. Liggett, and T. Richthammer. Proof of Aldous’ spectral gap conjecture. J.
Amer. Math. Soc., 23(3):831-851, 2010.
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Notations

• The adjacency matrix of Γ is A(Γ) = (aij)n×n with aij := wij .

• The eigenvalues of Γ are defined to be the those of A(Γ), denoted by

λ1(Γ) ≥ λ2(Γ) ≥ · · · ≥ λn(Γ).

• Γ is said to be regular with degree k if∑
j∈[n]

wij = k, ∀ i ∈ [n].

• When Γ is connected and regular with degree k, we have

λ1(Γ) = k and λ2(Γ) < k,

and λ1(Γ)− λ2(Γ) is called the spectral gap of Γ.
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Cayley graphs

• Let G be a finite group with the identity element e.

A symmetric weighted subset S of G satisfies

e 6∈ S, S = S−1 := {s−1 | s ∈ S},

and ws = ws−1 > 0, ∀ s ∈ S.

The weight of S is defined to be |S| :=
∑
s∈S ws.

• The Cayley graph Cay(G,S) is the weighted graph with

V = G, E =
{
{g, gs} | g ∈ G, s ∈ S

}
,

and ws as the weight of the edge {g, gs}.

We call S the connection set of Cay(G,S) and

Cay(G,S) is connected iff G = 〈S〉.

• Cay(G,S) is regular with degree |S|.
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Aldous’ spectral gap conjecture

• Let Sn be the symmetric group on [n].

• (Sn)1 = {σ ∈ Sn | σ(1) = 1} is the stabilizer of 1 ∈ [n] in Sn.

Aldous’ spectral gap conjecture V.2
Let T be any weighted generating subset of Sn consisting of transpositions.

Then the weighted graph Γ = Cay(Sn, T ) has the same spectral gap as

Γ′ = Sch(Sn, (Sn)1, T ).

• Γ′ = Sch(Sn, (Sn)1, T ) is the Schreier coset graph with

V = {Hi | Hi is a right coset of (Sn)1 in Sn, 1 ≤ i ≤ n},

and
∑

τ∈T, Hj=Hiτ
wτ as the weight of {Hi, Hj}.

• Γ and Γ′ are both regular with degree |T | ⇒ λ1(Γ) = λ1(Γ′) = |T |.
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Representation theory of sym-

metric groups



Representation theory of finite groups

Definition [3]
A matrix representation of a finite group G is a group homomorphism

φ : G→ GLd,

where GLd is the complex general linear group of degree d. The parameter

d is called the degree of φ.

Definition [3]
Let V be a vector space over C and of finite dimension dim(V ) and G

be a finite group. Then V is a G-module if there is a group homomorphism

ρ : G→ GL(V ),

where GL(V ) is the general linear group of V .

• We are using gv as a shorthand for the application of the transformation ρ(g) to the vector v.

3. B. Sagan. The symmetric group: representations, combinatorial algorithms, and symmetric
functions. Vol. 203. Springer Science & Business Media, 2001. 7



G-equivalence

Definition [3]

Let W and V be G-modules. Then a G-homomorphism (or sim-

ply a homomorphism) is a linear transformation θ : W → V such that

θ(gw) = gθ(w)

for all g ∈ G and w ∈W . If θ : W → V is also bijective, then we say θ is

a G-isomorphism. In this case we say that W and V are G-isomorphic,

or G-equivalent, written W ∼= V . Otherwise we say that W and V are

G-inequivalent.

• Matrix representations X and Y of a group G are equivalent if and
only if there exists a fixed matrix T such that

Y (g) = TX(g)T−1 for all g ∈ G.
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Representation theory of finite groups

Example [3]
The trivial representation of G sends every g ∈ G to the matrix (1).

Example [3]

A finite group G acts on itself by right multiplication:

if g, h ∈ G, the action of g on h equals hg−1.

The (right) regular representation RG of G is of degree |G| and for

every g ∈ G,

RG(g) = (rs,h)|G|×|G| with rs,h =

1, if hg−1 = s;

0, otherwise.
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Adjacency matrices of Cayley graphs

• For any weighted subset S ⊂ G,
A
(
Cay(G,S)

)
=
∑
g∈S

wgRG(g).

The (s, h)-entry of the left is ∑
g∈S
h=sg

wg.

The (s, h)-entry of the right is∑
g∈S

wg
(
RG(g)

)
s,h

=
∑
g∈S

hg−1=s

wg

• We use Rn to indicate the (right) regular representation of Sn. Then
for any weighted subset S of Sn, we have

A(Cay(Sn, S)) =
∑
σ∈S

wσRn(σ).
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Representation theory of Sn

Example [3]

The map φ(σ) = sgn(σ), ∀ σ ∈ Sn is a nontrivial representation of Sn
with degree 1, called the sign representation of Sn.

Example [3]

The defining representation Dn of Sn is of degree n and for all σ ∈ Sn,

Dn(σ) = (di,j)n×n with di,j =

1, if σ(j) = i;

0, otherwise.
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Adjacency matrix of Sch(Sn, (Sn)1, S)

• For any weighted subset S ⊂ Sn,
A
(
Sch(Sn, (Sn)1, S)

)
=
∑
σ∈S

wσDn(σ).

The (i, j)-entry of the left is ∑
σ∈S

Hj=Hiσ

wσ.

The (i, j)-entry of the right is∑
σ∈S

wσ
(
Dn(σ)

)
i,j

=
∑
σ∈S
σ(j)=i

wσ.
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Submodules

Definition [3]

Let V be a G-module. A submodule of V is a subspace W that is closed

under the action of G, i.e.,

w ∈W ⇒ gw ∈W for all g ∈ G.

Equivalently, W is a subset of V that is a G-module in its own right. We

write W ≤ V if W is a submodule of V .

Example [3]

Any G-module, V , has the submodules W = V as well as W = {0},

where 0 is the zero vector. These two submodules are called trivial. All

other submodules are called nontrivial.
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Irreducible Representations

Definition [3]
A nonzero G-module V is reducible if it contains a non-trivial submodule

W . Otherwise, V is said to be irreducible. Equivalently, V is reducible

if it has a basis B in which every g ∈ G is assigned a block matrix of the

form X(g) =

A(g) B(g)

0 C(g)

 , where the A(g) are square matrices, all of

the same size, and 0 is a nonempty matrix of zeros.

Definition [3]
Let V be a vector space with subspaces U and W . Then V is the (internal)

direct sum of U and W , written V = U ⊕W , if every v ∈ V can be

written uniquely as a sum v = u + w, u ∈ U, w ∈ W . If X is a matrix,

then X is the direct sum of matrices A and B, written X = A⊕B, if X

has the block diagonal form X =

A 0

0 B

.
14



Maschke’s Theorem

Maschke’s Theorem [3]

Let G be a finite group and let V be a nonzero G-module. Then

V = W (1) ⊕W (2) ⊕ · · · ⊕W (k),

where each W (i) is an irreducible G-submodule of V .

Maschke’s Theorem [3]

Let G be a finite group and let X be a matrix representation of G of

degree d > 0. Then there is a fixed matrix T such that every matrix

X(g), g ∈ G, has the form

TX(g)T−1 =


X(1)(g) 0 · · · 0

0 X(2)(g) · · · 0
...

...
. . .

...

0 0 · · · X(k)(g)

 ,

where each X(i) is an irreducible matrix representation of G. 15



Complete Reducibility

Definition [3]

A representation is completely reducible if it can be written as a direct

sum of irreducible representations.

So Maschke’s theorem could be restated:

Maschke’s Theorem [3]

Every (complex) representation of a finite group having positive dimension

is completely reducible.
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Characters

Definition [3]

Let X(g), g ∈ G, be a matrix representation. Then the character of X is

χ(g) = tr X(g),

where tr denotes the trace of a matrix. In other words, χ is the map

G
tr X−→ C.

If V is a G-module, then its character is the character of a matrix repre-

sentation X corresponding to V .

If X and Y both correspond to V , then Y = TXT−1 for some fixed T .
Thus, for all g ∈ G,

tr Y (g) = tr TX(g)T−1 = tr X(g).
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Characters

If X has character χ, we say that χ is irreducible whenever X is.

Example [3]

We consider the defining representation of Sn with its character χdef . It

is not hard to see that if σ ∈ Sn, then

χdef(σ) = the number of fixedpoints of σ.

Example [3]

Consider the regular representation of G and denote its character by χreg.

Then we have

χreg(g) =

|G|, if g = e;

0, otherwise.
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Characters

Proposition [3]

Let X be a matrix representation of G of degree d with character χ.

1. χ(e) = d.

2. If K is a conjugacy class of G, then

g, h ∈ K =⇒ χ(g) = χ(h).

3. For any g ∈ G, χ(g−1) = χ(g).

Definition [3]

Let χ and φ be any two functions from a group G to the complex numbers

C. The inner product of χ and φ is

〈χ, φ〉 = 1
|G|

∑
g∈G

χ(g)φ(g).
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Inner Products of Characters

Proposition [3]

Let χ and φ be characters; then

〈χ, φ〉 = 1
|G|

∑
g∈G

χ(g)φ(g−1).

Character Relations of the First Kind [3]

If χ and φ are irreducible characters of G, then

〈χ, φ〉 = δχ,φ.
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Character Relations of the First Kind

Corollary [3]

Let X be a matrix representation of G with character χ. Suppose

X ∼= m1X
(1) ⊕m2X

(2) ⊕ · · · ⊕mkX
(k),

where the X(i) are pairwise inequivalent irreducibles with characters χ(i) and

miX
(i) = X(i) ⊕X(i) ⊕ · · · ⊕X(i)︸ ︷︷ ︸

mi

.

1. χ = m1χ
(1) +m2χ

(2) + · · ·+mkχ
(k).

2. 〈χ, χ(j)〉 = mj for all j.

3. 〈χ, χ〉 = m2
1 +m2

2 + · · ·+m2
k.

4. X is irreducible if and only if 〈χ, χ〉 = 1.

5. Let Y be another matrix representation of G with character φ. Then

X ∼= Y if and only if χ(g) = φ(g)

for all g ∈ G.
21



Decomposition of the regular representation RG

Proposition [3]

Let G be a finite group and suppose RG = ⊕
i
miX

(i) , where the X(i) form

a complete list of pairwise inequivalent irreducible matrix representations

of G. Then

1. mi = degX(i),

2.
∑
i

(degX(i))2 = |G|, and

3. The number of X(i) equals the number of conjugacy classes of G.
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Eigenvalues of Cayley Graphs

Theorem [4]

Let G be a finite group and S a (symmetric) weighted subset of G.

Ĝ = {X(1), X(2), · · · , X(k)} is a complete set of inequivalent (complex)

irreducible matrix representations of G. Then the adjacency matrix of

Cay(G,S) =
∑
s∈S wsRG(s) is similar to

d1X
(1)(S)⊕ d2X

(2)(S)⊕ · · · ⊕ dkX(k)(S),

where di is the degree of X(i), X(i)(S) =
∑
s∈S wsX

(i)(s), and

diX
(i)(S) = X(i)(S)⊕X(i)(S)⊕ · · · ⊕X(i)(S)︸ ︷︷ ︸

di

.

4. M. Krebs and A. Shaheen. Expander families and Cayley graphs: a beginner’s guide. Oxford
Univ. Press, 2011.
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Representation theory of Sn

Definition [3]

A sequence of positive integers γ = (γ1, γ2, . . . , γm), satisfying γ1 ≥ γ2 ≥

. . . γm > 0 and n =
∑m
i=1 γi, is called a partition of n, denoted by γ ` n.

• For each γ ` n, there is a corresponding irreducible representation ργ
of Sn, known as the Specht module, with degree dγ .

• Ŝn := {ργ | γ ` n} is a complete set of inequivalent irreducible

matrix representations of Sn.

• ρ(n): trivial representation of Sn with d(n) = 1

ρ(1n): sign representation of Sn with d(1n) = 1

ρ(n−1,1): standard representation of Sn with d(n−1,1) = n− 1
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Representation theory of Sn

Decomposition of Rn [3]

For the regular representation Rn of Sn, there is a fixed matrix M such

that

MRn(σ)M−1 =
⊕
γ`n

dγργ(σ), ∀ σ ∈ Sn.

Here dγργ(σ) = ργ(σ)⊕ ργ(σ)⊕ · · · ⊕ ργ(σ)︸ ︷︷ ︸
dγ

.

Decomposition of Dn [3]
For the defining representation Dn of Sn, there is a fixed matrix M such

that

MDn(σ)M−1 = ρ(n)(σ)
⊕
ρ(n−1,1)(σ), ∀σ ∈ Sn.
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Application of representation theory

• Let S be any weighted subset of Sn and

ργ(S) :=
∑
σ∈S

wσργ(σ), ∀ γ ` n (1)

• A
(
Cay(Sn, S)

)
=
∑
σ∈S wσRn(σ) is similar to⊕

γ`n

dγργ(S). (2)

A
(
Sch(Sn, (Sn)1, S)

)
=
∑
σ∈S wσDn(σ) is similar to

ρ(n)(S)
⊕

ρ(n−1,1)(S). (3)

• If γ = (n), we have dγ = 1 and dγργ(S) = ργ(S) = |S|.

When S is symmetric and generates Sn,

λ2(Cay(Sn, S)) = max
γ`n
γ 6=(n)

λ1(ργ(S)) < |S|, (4)

λ2(Sch(Sn, (Sn)1, S)) = λ1(ρ(n−1,1)(S)) < |S|. (5) 26



Aldous property

Aldous’ Spectral Gap Conjecture V.3
Let T be any weighted generating subset of Sn consisting of transpositions.

The second largest eigenvalue of Cay(Sn, T ) is obtained by the standard

representation ρ(n−1,1), that is,

λ2(Cay(Sn, T )) = λ1(ρ(n−1,1)(T )).

In general, the strictly second largest eigenvalue of a regular graph is
the largest eigenvalue strictly smaller than the degree of the graph.

Definition [7]
For any symmetric weighted subset S ⊂ Sn, we say that Cay(Sn, S) has

the Aldous property if its strictly second largest eigenvalue is attained by

the standard representation of Sn, that is,

λt+1(Cay(Sn, S)) = λ1(ρ(n−1,1)(S)),

where t := [Sn : 〈S〉] is the index of 〈S〉 in Sn. 27



The normal case of Aldous’ Spectral Gap Conjecture

Definition
For any symmetric weighted subset S of a group G, Cay(G,S) is said to

be normal if the weights of S are constant on any conjugacy class of G,

that is, ws = wg−1sg, for any g ∈ G and s ∈ S.

• Γ = Cay(Sn, T ) is normal if and only if

T consists of all transpositions in Sn,

and wτ = c for every τ ∈ T ,

where c is a fixed positive integer. In this case, we can regard Γ =

Cay(Sn, T ) as a unweighted graph.
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Eigenvalues of normal Cayley graphs

Proposition [5, 6]
Let {χ1, χ2, . . . , χk} be a complete set of inequivalent irreducible char-

acters of G. Then the eigenvalues of any weighted normal Cayley graph

Cay(G,S) on G are given by

λj = 1
χj(e)

∑
s∈S

wsχj(s) =
∑
s∈S

wsχ̃j(s), j = 1, 2, . . . , k.

Moreover, the multiplicity of λj is equal to
∑

1≤i≤k, λi=λj χi(e)
2.

5. P. Diaconis and M. Shahshahani. Generating a random permutation with random transposi-
tions. Z. Wahrscheinlichkeitstheor. Verw. Geb., 57(2):159-179, 1981.

6. P. H. Zieschang. Cayley graphs of finite groups. J. Algebra, 118(2):447-454, 1988.
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Generalizations



Normal Cayley graphs having the Aldous property

Definition
For any σ ∈ Sn, the support of σ is defined to be

supp(σ) := {i ∈ [n] | σ(i) 6= i}.

For ∅ 6= I ⊆ {2, 3, . . . , n− 1, n} and 2 ≤ k ≤ n, set

T (n, I) = {σ ∈ Sn | |supp(σ)| ∈ I}

and
T (n, k) = {σ ∈ Sn | 2 ≤ |supp(σ)| ≤ k}.
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Normal Cayley graphs having the Aldous property

Theorem 1 [7]
There exists a positive integer N such that for every n ≥ N and any

conjugacy class S of Sn, the normal Cayley graph Cay(Sn, S) has the

Aldous property if and only if 2 ≤ |supp(σ)| ≤ n− 2 for some (and hence

all) σ ∈ S.

Theorem 2 [7]
There exists a positive integer N such that for every n ≥ N and any ∅ 6=

I ⊂ {2, 3, . . . , n−1, n} with |I ∩{n−1, n}| 6= 1, the normal Cayley graph

Cay(Sn, T (n, I)) has the Aldous property if and only if I ∩{n−1, n} = ∅.

7. Y. Li, B. Xia and S. Zhou. Aldous’ spectral gap property for normal Cayley graphs on
symmetric groups. Submitted. 2022.

31



Normal Cayley graphs having the Aldous property

Theorem 3 [7]
There exists a positive integer N such that for every n ≥ N and any

2 ≤ k ≤ n, the connected normal Cayley graph Cay(Sn, T (n, k)) has the

Aldous property.

• Theorem 3 generalizes the normal case of Aldous’ conjecture.

• S(n, k) := {σ ∈ Sn | σ fixes k elements} with 0 ≤ k ≤ n− 2

• The k-point fixing graph is defined to be F(n, k) = Cay(Sn, S(n, k)).

Corollary 4 [7]
There exists a positive integer N such that for every n ≥ N , the k-point-

fixing graph F(n, k) has the Aldous property if and only if 2 ≤ k ≤ n− 2.

7. Y. Li, B. Xia and S. Zhou. Aldous’ spectral gap property for normal Cayley graphs on
symmetric groups. Submitted. 2022.
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Normal Cayley graphs having the Aldous property

Problem 5 [7]
Give a necessary and sufficient condition for Cay(Sn, T (n, I)) with {n −

1} ⊂ I ⊂ {2, 3, . . . , n−2, n−1} to have the Aldous property for sufficiently

large n.

Problem 6 [7]
Give a necessary and sufficient condition for Cay(Sn, T (n, I)) with {n} ⊂

I ⊆ {2, 3, . . . , n − 2, n} to have the Aldous property for sufficiently large

n.

7. Y. Li, B. Xia and S. Zhou. Aldous’ spectral gap property for normal Cayley graphs on
symmetric groups. Submitted. 2022.
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Normal Cayley graphs having the Aldous property

Proposition 2.3 in [9]
There exists some positive integer N such that for every n ≥ N and any

σ ∈ Sn with |fix(σ)| ≥ 2, we have

max
γ`n

γ 6=(n) or (1n)

χ̃γ(σ) = χ̃(n−1,1)(σ). (6)

[9.] O. Parzanchevski and D. Puder. Aldous’s spectral gap conjecture for normal sets. Trans.

Amer. Math. Soc., 373(10):7067–7086, 2020.
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Thank you for your attention.
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Interchange process

• A state is identical to an element of the symmetric group Sn.

• The transition from a sate σ ∈ Sn to a state σij , occurring with rate

wij , interchanges the particles at vertices i and j.

• The state σij is στij , where τij denotes the transposition (i, j) ∈ Sn.

A transition from the state σ =
(

1 2 3 4 5
3 5 2 4 1

)
to σ12 =

(
1 2 3 4 5
5 3 2 4 1

)



Random walk

• The random walk on Γ is the continuous-time Markov chain in which

a single particle jumps from the vertex i ∈ V (Γ) to j at rate wij .

• The state space of this random walk is V (Γ) = {1, 2, . . . , n}.

A transition from the state 1 to the state 2
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