On the order of vertex-primitive 2-arc-transitive digraph besides direct cycles

Fu-Gang Yin

BJTU

2022 - 4 - 12

s-arc-transitive digraph

A digraph Γ is a pair (V, \rightarrow) with a set V (of vertices) and an antisymmetric irreflexive binary relation \rightarrow on V. (Note that by definition, if $u \rightarrow v$, then $v \not\rightarrow u$.)

- For a nonnegative integer s, an s-arc of Γ is a sequence $(v_0, v_1, ..., v_s)$ of vertices with $v_i \to v_{i+1}$ for each i = 0, ..., s 1. $(v_i \neq v_{i+2}$ by the definition.)
- Γ is said to be s-arc-transitive if its automorphism group Aut(Γ) acts transitively on the set of s-arcs.
- s-arc-transitive \Rightarrow (s-1)-arc-transitive.

s-arc-transitive digraph

Let Γ be a (G, s)-arc-transitive digraph, where $s \geq 1$. Then Γ is vertex-transitive. The in-neighbours $\Gamma(v)^- = \{u \in V(\Gamma) | u \to v\}$ and out-neighbours $\Gamma(v)^- = \{w \in V(\Gamma) | v \to w\}$ has same order, called the *valency* of Γ .

- If the valency is 1, then Γ is a directed cycle, and s can be as large as possible.
- If the valency is 2 and G acts primitive on the vertex set $V(\Gamma)$ of Γ , then Γ is a (undirected) cycle of prime order. (So vertex-primitive 2-arc-transitive digraphs besides direct cycles have valency at least 3.)
- Praeger [1] constructed a family of connected s-arc-transitive digraph $C_r(v, s)$ of order rv^s and valency v, where $r \ge 3, v \ge 2, s \ge 1$. (s can be as large as possible)

¹Praeger, C. E. (1989) Highly Arc Transitive Digraphs. European Journal of Combinatorics, 10, 281-292.

Vertex-primitive s-arc-transitive digraph

- (1) Vertex-primitive s-arc-transitive digraph was first studied by Praeger [1] in 1989. She studied vertex-primitive s-arc-transitive digraph in each O'Nan-Scott type. It was proved that a (G, s)-arc-transitive digraph is a directed cycle if G contains a regular normal subgroup, where $s \ge 2$. (So if G is vertex-primitive of type HA, HS, HC, TW, then the digraph is directed cycle.)
- (2) Giudici and Xia studied the vertex-quasiprimitive (G, s)-arc-transitive digraph such that G is of type AS, CD, SD or PA).
 - (a) They characterized those digraphs from types SD and proved those digraphs are not 3-arc-transitive. (In particular, the order of graph is $|T|^{|T|-1}$.)
 - (b) They proved digraphs of type CD are direct product of digraphs of type SD and those digraphs are not 3-arc-transitive.
 - (c) They proved digraphs of type PA are direct product of digraphs of type AS and those digraphs is s-arc-transitive.
 - (d) They prompted a quastion:

Question: Is there an upper bound on s for vertex-primitive s-arc-transitive digraphs that are not directed cycles?

¹Praeger, C. E. (1989) Highly Arc Transitive Digraphs. European Journal of Combinatorics, 10, 281-292.

²Giudici, M. & B. Xia (2017) Vertex-quasiprimitive 2-arc-transitive digraphs. Ars Mathematica Contemporanea, 14, 67-82.

- (3) Giudici,Li and Xia [3] studied the vertex-primitive (G, s)-arc-transitive digraph where G is almost simple with socle $PSL_n(q)$. Then proved $s \leq 2$, and provided many techniques.
- (4) Pan, Wu and Yin studied the case G is almost simple with socle A_n . They proved $s \leq 2$ if the stabilizer is not a wreath product group. (The unsolved case was solved by Chen, Li and Xia[5] recently.)
- (5) Chen, Giudici and Praeger [6] studied the case G is almost simple with socle ${}^{2}B_{2}(q)$ or ${}^{2}G_{2}(q)$. They proved that $s \leq 1$.

 $^3{\rm M.}$ Giudici, C. H. Li & B. Xia (2017) An infinite family of vertex-primitive 2-arc-transitive digraphs. Journal of Combinatorial Theory, Series B, 127, 1-13.

⁴J. Pan, C. Wu & F. Yin (2020) Vertex-primitive s-arc-transitive digraphs of alternating and symmetric groups. Journal of Algebra, 544, 75-91.

 $^{^5}$ J. Chen, J. Li & B. Xia (2021) Bounding s for vertex-primitive 2-arc-transitive digraph of alternating and symmetric groups. arXiv:2111.06579v1

⁶L. Chen, M. Giudici, &C.E. Praeger (2021) Vertex-primitive s-arc-transitive digraphs admitting a Suzuki or Ree group. arXiv:2109.10508v1

(6) Giudici, Li and Xia [7] constructed an infinite family of vertex-primitive 2-arc-transitive digraphs that are not directed cycles (the first examples). The graphs are (PSL₃(p²), 2)-arc-transitive with stabilizer A₆, where p ≡ ±2(mod 5) and p ≥ 7.

So the example is of smallest order is of order $|PSL_3(7^2)|/|A_6| = 30758154560$.

Question: Whether exists vertex-primitive 2-arc-transitive digraph besides directed cycles with order less than 30758154560?

(This question was introduced by Xia in the summer of 2019 when visiting our university.)

⁷M. Giudici, C.H. Li & B. Xia (2017) An infinite family of vertex-primitive 2-arc-transitive digraphs. Journal of Combinatorial Theory, Series B, 127, 1-13.

Properties of 2-arc-transitive digraphs

Proposition 1 ([GLX2019,Lemma 2.13])

For any vertex-primitive arc-transitive digraph Γ , either Γ is a directed cycle of prime length or Γ has valency at least 3.

Proposition 2 ([GLX2019,Lemma 2.14])

Let Γ be a connected G-arc-transitive digraph with arc (v, w). Let $g \in G$ such that $v^g = w$. Then each nontrivial normal subgroup of G_v is not normalized by g.

Proposition 3 ([GX2017,Lemma 2.2])

Let Γ be a *G*-arc-transitive digraph with a 2-arc (u, v, w). Then Γ is (G, 2)-arc-transitive if and only if $G_v = G_{uv}G_{vw}$. (homogeneous factorization)

Proposition 4 ([GX2017,Corrollary 2.11])

Let Γ be a (G, 2)-arc-transitive digraph, M be a vertex-transitive normal subgroup of G. Then Γ is M-arc-transitive.

Let G be a transitive permutation group acting on Ω and let $v \in \Omega$. Then a G_v -orbit on Ω are called G-suborbit relative to v. For a G-suborbit w^{G_v} , if $(v, w)^G = (w, v)^G$, then w^{G_v} is said to be self-paired, otherwise non-self-paired.

Note that a *G*-arc-transitive digraph arises from a non-self-paired *G*-suborbit, equivalently, arises from a (G_v, G_v) -double coset $G_v g G_v$ with $g^{-1} \notin G_v g G_v$.

Lemma 1

Let Γ be a (G, 2)-arc-transitive digraph with arc (v, w). Let $g \in G$ such that $v^g = w$. Then w is in a non-self-paired G-suborbit and $g^{-1} \notin G_v g G_v$. Let $G = PSL_3(3).2$, $H = A\Gamma L_1(9)$. Find representations of (H, H)-double cosets in G, and check whether $g^{-1} \in HgH$ for each representation g.

```
G:=AutomorphismGroupSimpleGroup("L",3,3);
Gas:=Subgroups(G:OrderEqual:=9*8*2);
Ga:=Gas[1] 'subgroup;
gs,_:=DoubleCosetRepresentatives(G, Ga, Ga);
g:=gs[1];
Gab:=Ga meet Ga^g;
Tr:=Transversal(Ga.Gab);
Tr1:=[t:t in Tr| g*t*g in Ga];
if #Tr1 ge 1 then
print "the suborbit is self-paired";
else
print "the suborbit is non-self-paired";
end if;
```

The almost simple case

From now on, we consider the case G is almost simple.

Hypothesis

Let Γ be a connected *G*-vertex-primitive (G, 2)-arc-transitive digraph of valency at least 3, where *G* is almost simple with socle *T*. Take an arc $u \to v$ of Γ . Let *g* be an element of *G* such that $u^g = v$ and let $w = v^g$. Then $u \to v \to w$ is a 2-arc in Γ .

We have seen that:

- $|G_v:G_{vw}| \geq 3$, and
- $g^{-1} \notin G_v g G_v$, or equivalently, Γ arises from a non-self-paired G-suborbit.
- Γ is *T*-arc-transitive, and so Γ also arises from a non-self-paired *T*-suborbit.
- $G_v = G_{uv}G_{vw}$ is a homogeneous factorization and $G_{uv}^g = G_{vw}$. (In particular, G_{uv} is not conjugate to G_{vw} in G_v .)

The arc-transitivity of T

Why consider the arc-transitivity of T?

Note that $T \leq G \leq \operatorname{Aut}(T)$. There may be many candidates for G. If T has good property, then we only need to do computation in T, not in all candidates for G.

Lemma 2

 Γ is *T*-arc-transitive. Let *t* be the orbits of T_{uv} on $\Gamma(v)^+$ and o = |G|/|T|.

(1) $t = |T_v|/|T_{uv}T_{vw}|$ and t divides o;

(2) If $T_v = T_{uv}T_{vw}$, then Γ is (T, 2)-arc-transitive;

(3) If $|T_v| \ge o$, then T_{uv} is not conjugate to T_{vw} in T_v .

(Note that T_{uv} is a normal subgroup of G_{uv} and G_{uv} is transitive on $\Gamma(v)^+$. Consider the action of T_{uv} on $\Gamma(v)^+$.)

nonsolvable composition factor of G_v

Let $\mathbf{R}(G_v)$ be the largest solvable normal subgroup of G_v . Set

$$\overline{G_v} = G_v / \mathbf{R}(G_v), \ \overline{G_{uv}} = G_{uv} \mathbf{R}(G_v) / \mathbf{R}(G_v), \ \text{and} \ \overline{G_{vw}} = G_{vw} \mathbf{R}(G_v) / \mathbf{R}(G_v).$$

Then

- From the factorization $G_v = G_{uv}G_{vw}$, we have $\overline{G_v} = \overline{G_{uv}G_{vw}}$.
- $\overline{G_{uv}}$ and $\overline{G_{vw}}$ has the same nonsolvable composition factors (count with multiplicities). (In particular, both solvable or both nonsolvable).
- If G_v has only one nonsolvable composition factor, then $\overline{G_v}$ is almost simple.

Factorization of almost simple groups: two factors are solvable

For an integer n, we use $\pi(n)$ be the set of primes dividing n; for a group G, we use $\pi(G)$ be the set of primes dividing the order of G. For convenience, we define two sets of simple groups

$$\mathcal{T}_1 := \{ A_6, M_{12}, Sp_4(q)(q \text{ even}), P\Omega_8^+(q) \}.$$

$$\mathcal{T}_2 := \{ PSL_2(q), PSL_3(3), PSL_3(4), PSL_3(8), PSU_3(8), PSU_4(2) \}.$$
 (1)

Proposition 6

Let H be an almost simple group with socle M. Suppose M = KL, where K and L are solvable and $M \not\leq K, L$, then (H, K, L) are determined by [8,Proposition 4.1], in particular, $M \in \mathcal{T}_2$ and $\pi(K) \neq \pi(L)$.

⁸C.H. Li, B.Z. Xia, Factorizations of almost simple groups with a solvable factor, and Cayley graphs of solvable groups, arXiv :1408.0350.

PROPOSITION 4.1. Let G be an almost simple group with socle L. If G = HKfor solvable subgroups H, K of G, then interchanging H and K if necessary, one of the following holds.

- (a) $L = \text{PSL}_2(q), H \cap L \leq D_{2(q+1)/d}$ and $q \leq K \cap L \leq q:((q-1)/d)$, where q is a prime power and d = (2, q-1).
- (b) L is one of the groups: PSL₂(7) ≅ PSL₃(2), PSL₂(11), PSL₃(3), PSL₃(4), PSL₃(8), PSU₃(8), PSU₄(2) ≅ PSp₄(3) and M₁₁; moreover, (G, H, K) lies in Table 4.1

Conversely, for each prime power q there exists a factorization G = HK satisfying part (a) with $soc(G) = L = PSL_2(q)$, and each triple (G, H, K) in Table 4.1 gives a factorization G = HK.

row	G	H	K
1	$PSL_2(7).O$	7: \mathcal{O} , 7: $(3 \times \mathcal{O})$	S_4
2	$PSL_2(11).O$	$11:(5 \times O_1)$	$A_4.O_2$
3	$PSL_2(23).O$	$23:(11 \times O)$	S_4
4	$PSL_3(3).O$	$13:O, 13:(3 \times O)$	$3^2:2.S_4$
5	$PSL_3(3).O$	$13:(3 \times O)$	$A\Gamma L_1(9)$
6	$PSL_3(4).(S_3 \times O)$	$7:(3 \times O).S_3$	$2^4:(3 \times D_{10}).2$
7	$PSL_3(8).(3 \times O)$	$73:(9 \times O_1)$	$2^{3+6}:7^2:(3 \times \mathcal{O}_2)$
8	$PSU_3(8).3^2.O$	$57:9.O_1$	2^{3+6} :(63:3). O_2
9	$PSU_4(2).O$	$2^4:5$	$3^{1+2}_{+}:2.(A_4.\mathcal{O})$
10	$PSU_4(2).O$	$2^4:D_{10}.O_1$	$3^{1+2}_+:2.(A_4.\mathcal{O}_2)$
11	$PSU_4(2).2$	$2^4:5:4$	$3^{1+2}_+:S_3, 3^3:(S_3 \times \mathcal{O}),$
			$3^3:(A_4 \times 2), 3^3:(S_4 \times \mathcal{O})$
12	M_{11}	11:5	M ₉ .2

TABLE.	4.1	L
		м.,

where $\mathcal{O} \leq C_2$, and $\mathcal{O}_1, \mathcal{O}_2$ are subgroups of \mathcal{O} such that $\mathcal{O} = \mathcal{O}_1 \mathcal{O}_2$.

Factorization of almost simple groups: two factors have same nonsolvable composition factor

Lemma 3

Let H be an almost simple group with socle M. Suppose H = KL with nonsolvable core-free subgroups K and L such that K and L have the same nonsolvable composition factors and the same multiplicities. Then $H = (K \cap M)(L \cap M)$ with $M \in \mathcal{T}_1$, and interchanging K and L if necessary, one of the following holds:

(1)
$$M = A_6, (H, K, L) \cong (A_6, A_5, A_5)$$
 or (S_6, S_5, S_5) .

(2)
$$M = M_{12}, (H, K, L) \cong (M_{12}, M_{11}, M_{11}).$$

(3)
$$M = \operatorname{Sp}_4(q)$$
 with $q \ge 4$ even, $H \le \operatorname{P}\Gamma\operatorname{Sp}_4(q)$, and
 $(K \cap M, L \cap M) \cong (\operatorname{Sp}_2(q^2).2, \operatorname{Sp}_2(q^2).2)$ or $(\operatorname{Sp}_2(q^2).2, \operatorname{Sp}_2(q^2))$

(4) $M = P\Omega_8^+(q), H \le P\Gamma O_8^+(q), \text{ and } (K \cap M, L \cap M) \cong (P\Omega_7(q), P\Omega_7(q)).$

(It is easy to prove by using the result of [9-11].)

⁹C.H. Li, B. Xia, Factorizations of almost simple groups with a factor having many nonsolvable composition factors. Journal of Algebra 528 (2019) 439-473.

 $^{^{10}\}mathrm{C.H.}$ Li, L. Wang, B. Xia, The exact factorizations of almost simple groups, arxiv 2012.09551v2.

¹¹R.W. Baddeley, C.E. Praeger, On classifying all full factorisations and multiple-factorisations of the finite almost simple groups. Journal of Algebra 204 (1998) 129-187.

The case G_v has only one nonsolvable composition factor

For a group X, let $X^{(\infty)}$ be the smallest normal subgroup of X such that $X/X^{(\infty)}$ is soluble.

A group X is called quasisimple if X = X' and $X/\mathbb{Z}(X)$ is simple. Note that X is the unique subgroup of X which has a composition factor isomorphic to $X/\mathbb{Z}(X)$. (If Y < X has a composition factor isomorphic to $X/\mathbb{Z}(X)$, then $Y' = (Y\mathbb{Z}(X))' = X' = X$, a contradiction.)

> $\mathcal{T}_1 := \{ A_6, M_{12}, Sp_4(q)(q \text{ even}), P\Omega_8^+(q) \}.$ $\mathcal{T}_2 := \{ PSL_2(q), PSL_3(3), PSL_3(4), PSL_3(8), PSU_3(8), PSU_4(2) \}.$

Lemma 4

Suppose that G_v has only one nonsolvable composition factor M.

- (1) If G_v is almost simple, then Γ is (T, 2)-arc-transitive, and (G_v, G_{uv}, G_{vw}) satisfies (1)-(4) of Lemma 3.
- (2) If M ∉ T₁ ∪ T₂, then both G_{uv} and G_{vw} have a nonsolvable composition factor M and G_v^(∞) is not quasisimple.
- (3) If $G_v^{(\infty)}$ is quasisimple, then $M \in \mathcal{T}_1 \cup \mathcal{T}_2$, and the factorization $\overline{G_v} = \overline{G_{uv}G_{vw}}$ satisfies Lemma 3 or Proposition 6.

(1) was proved in [GLX2019,Corollary 3.4]. (2) and (3) was proved similarly. The key is Proposition 2, that is, each nontrivial normal subgroup of G_v is not normalized

hv a Fu-Gang Yin (BJTU) I use an examples to illustrate the proof of (2). Let $G = Co_1$, $G_v = 3.Suz$:2.

- Then $G_v^{(\infty)} = 3.Suz$ and $\overline{G_v} = Suz$:2.
- Since $Suz \notin \mathcal{T}_1 \cap \mathcal{T}_2$, both $\overline{G_{uv}}$ and $\overline{G_{vw}}$ contains a composition factor Suz, so do G_{uv} and G_{vw} .
- Note that $G_{uv}^{(\infty)} \leq G_{uv} \cap G_v^{(\infty)} \leq G_v^{(\infty)}$ as $G_{uv}/(G_{uv} \cap G_v^{(\infty)})$ is solvable and $G_{uv}^{(\infty)}$ is the smallest normal subgroup N of G_{uv} such that G_{uv}/N is solvable.
- Since $G_v^{(\infty)}$ is quasisimple, $G_{uv}^{(\infty)} = G_v^{(\infty)}$. Similarly, $G_{vw}^{(\infty)} = G_v^{(\infty)}$.
- Let $Y = (G_{uv}^{(\infty)})^g$. Then $Y/(Y \cap G_{vw}^{(\infty)}) \cong YG_{vw}^{(\infty)}/G_{vw}^{(\infty)} \leq G_{vw}/G_{vw}^{(\infty)}$ is solvable. Thus $Y \cap G_{vw}^{(\infty)}$ has a composition factor *Suz*.
- Since $G_{vw}^{(\infty)}$ is quasisimple, $Y \cap G_{vw}^{(\infty)} = G_{vw}^{(\infty)}$ and so $Y = G_{vw}^{(\infty)}$, that is $(G_{uv}^{(\infty)})^g = G_{vw}^{(\infty)} = G_v^{(\infty)}$, which contradicts Proposition 2.

Computation method

The homogeneous factorization $G_v = G_{uv}G_{vw}$ implies G_{uv} and G_{vw} are not conjugate in G_v but in G, and

$$|G_v||G_{vu} \cap G_{vw}| = |G_{uv}||G_{vw}| = |G_{uv}|^2.$$

- We use Magma commands AutomorphismGroupSimpleGroup and MaximalSubgroups to construct G and G_v.
- Let $|G_v| = p_1^{s_1} \dots p_t^{s_t}$. Then $|G_{vw}|$ is multiple of $p_1^{\lfloor \frac{s_1}{2} \rfloor} \dots p_t^{\lfloor \frac{s_t}{2} \rfloor}$. We use command **Subgroups(Gv :OrderMultipleOf:=m)** can compute all possibilities of G_{uv} and G_{vw} . Then check whether $|G_v||G_{vu} \cap G_{vw}| = |G_{uv}||G_{vw}|$.
- The step finding all candidates of G_{uv} and G_{vw} can be optimized when G_v has only one nonsolvable composition factors, or when G_v has a normal *p*-subgroup N such that G_v/N is small.

For example, Let G = Th.

- (1) Let $G_v := 2^5 . \text{PSL}_5(2)$. Consider the factorization $\overline{G_v} = \overline{G_{uv}G_{vw}}$, we have both G_{uv} and G_{vw} have a composition factor $\text{PSL}_5(2)$. Note that $|\text{PSL}_5(2)| = 2^{10} \cdot 3^2 \cdot 5 \cdot 7 \cdot 31$. So $|G_{uv}| = |G_{vw}|$ is multiple of $2^{13} \cdot 3^2 \cdot 5 \cdot 7 \cdot 31$.
- (2) Let $G_v := 3.[3^8].2S_4$. Now G has a normal p-subgroup $N = 3.[3^8]$ such that $G_v/N \cong 2S_4$. Note that $G_v/N \cong (G_{uv}N/N)(G_{vw}N/N)$. Since $G_{uv} \cong G_{vw}$ and N is a 3-group, a Sylow 2-subgroup of $G_{uv}N/N$ is isomorphic to $G_{vw}N/N$'s. By computing all factorizations of G_v/N satisfying that two factors have isomorphic Sylow 2-subgroups, we obtain $G_{uv}N/N = G_{vw}N/N = G_v/N \cong 2S_4$. Then $|G_{uv}| = |G_{vw}|$ is multiple of $2^4 \cdot 3^5$.

- When T is a simple classical group of Lie type of large order, we may do computation only in T. The command **ClassicalMaximals** is used to constructed the preimage of T_v in the quasisimple group relative to T.
- However, the above MAGMA computational method is not feasible if |G| and $|G:G_v|$ are very large, for example, T is a simple group of Lie type and T_v is a parabolic subgroup. This case is dealt with by considering the suborbits of T.

$T = A_n$

By the classification of maximal subgroups of alternating and symmetric groups, G_v satisfies one of the following:

- (1) $G_v = (S_m \times S_k) \cap G$, where n = m + k, m > k (intransitive case);
- (2) $G_v = (S_m \wr S_k) \cap G$, where n = mk, m > 1 and k > 1 (imprimitive case);
- (3) $G_v = \operatorname{AGL}(k, p) \cap G$, where $n = p^k$ (affine case);
- (4) $G_v = (S^k : (\text{Out}(S) \times S_k)) \cap G$ where S is a nonabellain simple group, $k \ge 2$ and $n = |S|^{k-1}$ (diagonal case);
- (5) $G_v = (S_m \times S_k) \cap G$, where $n = m^k$, $m \ge 5$ and $k \ge 2$ (primitive wreath case);
- (6) $S \leq G_v \leq \operatorname{Aut}(S)$, where S is a nonabelian simple group, $S \neq A_n$ and G_v acts primitively on $\{1, 2, ..., n\}$ (almost simple case).

The case (1) and (3) are impossible by PWY2020. If (4) or (5) happens, then $|V(\Gamma)| > 30758154560$.

almost simple case

Let $\mathcal{N} := 30758154560$. Suppose G_v is of almost simple case, that is, $G_v \neq A_n$ is almost simple and H acts primitively on $\{1, 2, ..., n\}$.

- Now Soc $(G_v) \in \{A_6, M_{12}, PSp_4(2^f), P\Omega_8^+(q)\}.$
- From the upper bound for the order of primitive group given in [12,Theorem 1.1], we have $|G_v| < n^{1+\lfloor \log_2(n) \rfloor}$ (with some exceptions). Then $\frac{n!}{n^{1+\lfloor \log_2(n) \rfloor}} \leq \mathcal{N}$ implies $n \leq 20$.
- $PSp_4(2^f), P\Omega_8^+(q)$ has no primitive permutation representation of degree less than 20.
- If $G_v = A_6$, then n = 6 or 15 and $G_{uv} \cong G_{vw} \cong A_5$. When n = 6, G_{uv} is not conjugate to G_{vw} in G because one is transitive on $\{1, ..., 6\}$ while the other is not. When n = 15, G_{uv} is not conjugate to G_{vw} in G by Magma.
- If $G_v = M_{12}$, then n = 12 and $G_{uv} \cong G_{vw} \cong M_{11}$. K and L are not conjugate in T.

 $^{^{12}\}mathrm{A}.$ Maróti, On the orders of primitive groups. Journal of Algebra 258 (2002) 631-640.

imprimitive case

Suppose G_v is of imprimitive case, that is, $G_v = (S_m \wr S_k) \cap G$, where n = mk, m > 1and k > 1. Then $|V(\Gamma)| = |S_n|/|S_m \wr S_k| = (mk)!/(m!)^k k!$.

• By computation with computer, the (m, k) such that $V(\Gamma) \leq \mathcal{N}$ are

$$\begin{aligned} (3 \le m \le 19, 2), (2 \le m \le 9, 3), (2 \le m \le 5, 4), \\ (2 \le m \le 4, 5), (3, 6 \le k \le 7), (2, 6 \le k \le 11). \end{aligned}$$

- The case $(2 \le m \le 4, 5)$, $(3, 6 \le k \le 7)$ and $(2, 6 \le k \le 11)$ can be direct ruled out by computation in MAGMA.
- The case k = 2 with $m \ge 11$, and the case k = 3 and $m \ge 7$ is difficult. (The reason is G_v is solvable, leading that G_v has many subgroups of order multiple of $p_1^{\lfloor \frac{s_1}{2} \rfloor} .. p_t^{\lfloor \frac{s_t}{2} \rfloor}$.) So we consider the suborbits of T.

suborbits of G with G_v an imprimitive wreath product group

For two elements v, w in Ω , where $v = \{V_1, V_2, ..., V_k\}$ and $w = \{W_1, W_2, ..., W_k\}$, we have

$$V_i = \bigcup_{1 \le j \le k} (V_i \cap W_j), \text{ and } \sum_{1 \le j \le k} |V_i \cap W_j| = m.$$
$$W_j = \bigcup_{1 \le i \le k} (V_i \cap W_j), \text{ and } \sum_{1 \le i \le k} |V_i \cap W_j| = m.$$

We say the matrix $M(v, w) := [|V_i \cap W_j|]_{k \times k}$ is a representation of the intersection of v and w. Note that the intersection of v and w may have may representations (if changing the order of V_i and W_j we may obtain a different representation), but all representations form the next set

 $\{P_1M(v, w)P_2|P_1, P_2 \text{ are } k \times k \text{ permutation matrix}\}.$

(Recall a $k \times k$ permutation matrix is a matrix obtained by permuting the rows of an $k \times k$ identity matrix according to some permutation on $\{1, 2, ..., k\}$.)

Lemma 5

Let $G = S_n$, $T = A_n$, Ω the set of imprimitivity partitions of $\{1, 2, ..., n\}$ with k blocks of size $m, v, w \in \Omega$, and let M(v, w) be a representation of the intersection of v and w. Then

- (1) $w' \in w^{G_v}$ if and only if $M(v, w') = P_1 M(v, w) P_2$, where P_1, P_2 are two $k \times k$ permutation matrices.
- (2) v, w are interchanged by $g \in G$ if and only if $M(v, w)^{\mathrm{T}} = P_1 M(v, w) P_2$, where $M(v, w)^{\mathrm{T}}$ is the transpose of M(v, w) and P_1, P_2 are two $k \times k$ permutation matrices.
- (3) Suppose that v, w are interchanged by an odd permutation $g \in G$. Then v, w are interchanged by some $t \in T$ if and only if G_{vw} contains odd permutations.

imprimitive case

Suppose G_v is of imprimitive case, that is, $G_v = (S_m \wr S_k) \cap G$, where n = mk, m > 1and k > 1. Then $|V(\Gamma)| = |S_n|/|S_m \wr S_k| = (mk)!/(m!)^k k!$.

• By computation, we remain the case k=2 with $m\geq 11$, and the case k=3 and $m\geq 7$

Apply Lemma 5.

- If k = 2, then M_{vw} is always symmetric and hence all suborbits of T are self-paired.
- If k = 3, then $2 \le m \le 9$. By computation, the non-self-paired orbital cases are:

(1)
$$m = 6$$
, and $M_{vw} = \begin{bmatrix} 0 & 2 & 4 \\ 3 & 2 & 1 \\ 3 & 2 & 1 \end{bmatrix}$ or its transpose;
(2) $m = 7$, and $M_{vw} = \begin{bmatrix} 0 & 2 & 5 \\ 3 & 3 & 1 \\ 4 & 2 & 1 \end{bmatrix}$ or its transpose;
(3) $m = 8$, and $M_{vw} = \begin{bmatrix} 0 & 3 & 5 \\ 4 & 2 & 2 \\ 4 & 3 & 1 \end{bmatrix}$ or its transpose.

For the case m = 6, and $M_{vw} = \begin{bmatrix} 0 & 2 & 4 \\ 3 & 2 & 1 \\ 3 & 2 & 1 \end{bmatrix}$:

- Now, n = 18, $G_v = S_6 \wr S_3 \cap G$, $G_{vw} = (S_3^2 \times S_2^3 \times S_4):S_2 \cap G$.
- Let $N = S_m^k \cap G$ be the base group of G_v , then $N \trianglelefteq G_v$ and $G_v/N \cong S_n$ (This is clear when $G = S_n$. If $G = A_n$, then N is with index 2 in S_m^k as S_m^k contains odd permutations, so $|G_v/N| = |S_k|$ and hence $G_v/N \cong S_k$).
- In the factorization $S_k \cong G_v/N = (G_{uv}N/N)(G_{vw}N/N)$, one factor should be transitive (on k points) (see [13,1.3,1.4] for a proof).
- Now $G_{vw}N/N \cong S_2$ and $G_{uv}N/N \cong 1$, a contradiction. (A subgroup of $G_v/N = S_3$ describes the symmetry of rows. In M_{vw} , the second and third row can be interchanged, so $G_{vw}N/N \cong S_2$. While for G_{uv} , we have
 - $M_{vu} = \begin{bmatrix} 0 & 3 & 3 \\ 2 & 2 & 2 \\ 4 & 1 & 1 \end{bmatrix}, \text{ there is no pair of rows can be interchanged, this means } G_{uv} \leq N \text{ and } G_{uv}N/N \cong 1. \text{ })$

¹³J. Wiegold and A.G. Williamson, The factorization of the alternating and symmetric groups, Math. Z. 175 (1980), 171-179.

T is a simple sporadic group

Lemma 6

Suppose that Hypothesis holds, then T is not one of the next 22 groups:

 $M_{11}, M_{12}, M_{22}, M_{23}, M_{24}, J_1, HS, J_2, McL, Suz, J_3, Co_3, Co_2, He, Fi_{22}, Ru.$ Th, Fi₂₃, J₄, Ly, HN, O'N.

- If T is one group in the first row, then G has a permutation representation of small degree (less than 10000). We can obtain G and G_v in MAGMA using its commands, then computation shows that G_v has no homogeneous factorization $G_v = KL$ such that $|G_v: K| \geq 3$ and K and L are conjugate in G.
- Let T be one group in the second row. If $T = Fi_{23}$, then we can construct G and G_v using the MAGMA commands. For other groups, we can construct G and G_v using the information of generators given in the Web Atlas [14].

¹⁴R. A. Wilson, S. J. Nickerson, J. N. Bray et al., An Atlas of Group Representations, ver. 3, http://brauer.maths.qmul.ac.uk/Atlas/v3/.

Note that the information of generators for maximal subgroups 2^{3+2+6} . $(3 \times PSL_3(2))$, $3^4:2.(A_4 \times A_4).4$ and $(A_6 \times A_6).D_8$ of HN is not given in the Web Atlas.

- The groups $2^{3+2+6}.(3\times PSL_3(2))$ and $3^4:2.(A_4\times A_4).4$ can be constructed using the method as in [15, p.318]. For example, to construct $2^{3+2+6}.(3\times PSL_3(2))$, we can first construct a Sylow 2-subgroup P of HN (note that $|HN|_2 = |2^{3+2+6}.(3\times PSL_3(2))|_2 = 2^{14}$), then compute all normal 2-subgroups of order 2^{11} of P, and their normalizer in HN; if the normalizer has order $|2^{3+2+6}.(3\times PSL_3(2))|$, then the normalizer is the required maximal group $2^{3+2+6}.(3\times PSL_3(2))$.
- The group $(A_6 \times A_6).D_8$ has a normal subgroup $(A_6 \times A_6).2^2$ contained in A_{12} (the information of generators of A_{12} is given in Web Atlas), so we can construct the group $(A_6 \times A_6).2^2$ in A_{12} first and then compute its normalizer, which is the required $(A_6 \times A_6).D_8$.

¹⁵T.C. Burness, E.A. O'Brien, R.A. Wilson, Base sizes for sporadic simple groups. Israel J. Math. 177 (2010) 307-333.

- If G_v has only one nonsolvable composition factor and $G_v^{(\infty)}$ is quasisimple, then we may apply Lemma 4 to rule out this candidate directly. For example G = Thand G_v is ${}^{3}D_4(2)$:3, or PSU₃(8):6, or PSL₂(19):2, or PSL₃(3), or M_{10} (note that M_{10} is not a subgroup of S₆), or S₅, or (3×G₂(3)):2.
- If G_v is a metacyclic Frobenius group, then we may apply Proposition 2 to rule out it. For example, G = Th and $G_v = 31:15$. Now from the homogeneous factorization $G_v = G_{uv}G_{vw}$ we see both G_{uv} and G_{vw} contains the normal subgroup $M \cong C_{31}$ of G_v . Since G_v has only one subgroup isomorphic to C_{31} , $M^g = M$, which contradicts Proposition 2.

There are two cases is difficult to compute.

• $G = Fi_{23}$ and $G_v = 3^{1+8} \cdot 2^{1+6} \cdot 3^{1+2} \cdot 2S_4$. Then $|G_{uv}|$ is multiple of $2^6 \cdot 3^7$ as $|G_v| = 2^{11} \cdot 3^{13}$. It is difficult to compute all subgroups of order multiple of $2^6 \cdot 3^7$ in G_v . So we take $N = 3^{1+8}$ and consider the factorizations of $2^{1+6} \cdot 3^{1+2} \cdot 2S_4 \cong G_v/N = (G_{uv}N/N)(G_{vw}N/N)$, where $G_{uv}N/N, G_{vw}N/N$ have order multiple of 2^6 . Since $G_{uv} \cong G_{vw}, G_{uv}/O_3(G_{uv}) \cong G_{vw}/O_3(G_{vw})$. Note that $G_{uv} \cap N \leq O_3(G_{uv})$ and $G_{vw} \cap N \leq O_3(G_{vw})$. Thus $G_{uv}N/N \cong G_{uv}/(G_{uv} \cap N)$ has a normal 3-subgroup M_1 isomorphic $O_3(G_{uv})/(G_{uv} \cap N)$, and $G_{vw}N/N \cong G_{vw}/(G_{vw} \cap N)$ has a normal 3-subgroup M_2 isomorphic $O_3(G_{vw})/(G_{vw} \cap N)$ such that $(G_{uv}N/N)/M_1 \cong (G_{vw}N/N)/M_2$. By computing all factorizations of $2^{1+6} \cdot 3^{1+2} \cdot 2S_4$, we find no desired factorization. Therefore this case is impossible.

• G = HN:2 and $G_v = (S_6 \times S_6) \cdot 2^2$. Computation shows that G_v indeed has homogeneous factorization $G_v = KL$, where $K \cong L$ and $|G_v: K| \ge 3$. However, some computation evidences show that K and L is not conjugate in G. We do as follows. The groups G and G_v are constructed by 133×133 matrices over \mathbb{F}_5 (note that the minimal degree of permutation representation of G is 1140000 and it is too large for computation.) Computation shows that G_v has 10 homogeneous factorizations $G_v = KL$, 8 of them with |K| = 1440 and the other 2 with |L| = 2880. The difficulty is that the MAGMA command **IsConjugate** is not valid when checking whether K and L. So we compute the conjugacy classes of K and L to check whether K and L are conjugate in G. In a homogeneous factorization $G_v = KL$, we find there is an element of order 2 in L such that it is not similar to any element of order 2 in L (using the MAGMA command **IsSimilar**). This implies K and L is not conjugate in G as $G \leq GL_{133}(5)$. For other homogeneous factorizations, we also find such element. Therefore this case is impossible.

Lemma 7

Suppose that Hypothesis holds and suppose that $|V\Gamma| \leq \mathcal{N}$. Then T is not one of $\mathbb{M}, \mathbb{B}, Fi'_{24}, Co_1$.

- The Monster group \mathbb{M} has no maximal subgroup of index no more than \mathcal{N} .
- If $T = \mathbb{B}$, then G = T and $G_v = 2.^2 E_6(2):2$.
- If $T = Fi'_{24}$, then G = T and $G_v = Fi_{23}$, $2 \cdot Fi_{22}$:2, $(3 \times P\Omega_8^+(3):3)$:2. (Note that if $T_v = (3 \times P\Omega_8^+(3):3)$:2, then $\overline{G_v} = P\Omega_8^+(3)$:S₃ contains a graph automorphism of order 3 and hence $\overline{T_v}$ is not a subgroup of $P\Gamma O_8^+(q)$. This can be verified by MAGMA).
- If $T = Co_1$, then G = T and the possible G_v are

 $Co_{2}, 3.Suz.2, Co_{3}, \text{PSU}_{6}(2):\text{S}_{3}, (\text{A}_{4} \times G_{2}(4)):2,$ $2^{1+8}.\text{P}\Omega_{8}^{+}(2), 2^{11}:M_{24}, 2^{2+12}:(\text{A}_{8} \times \text{S}_{3}), 2^{4+12}.(\text{S}_{3} \times 3.\text{S}_{6}), 3^{2}.\text{PSU}_{4}(3).\text{D}_{8}, 3^{6}:2.M_{12}.$

T is a simple group of Lie type

Some helpful results:

- Alavi and Burness [16] determined all large maximal subgroups of finite simple groups and their automorphism groups. Formally, a subgroup X is called *large* in group Y if $|X| > |Y|^{1/3}$. Note that if $|T|^{2/3} > \mathcal{N}$, then our assumption $|V(\Gamma)| = |T: T_v| \leq \mathcal{N}$ implies that T_v is large in T.
- Maximal parabolic subgroups are always subgroups of T with small index. So we need often considering the case that T_v is a parabolic subgroup. If T_v is a parabolic subgroup, then the information of T-suborbits can be computed by computing on the Weyl group of T and roots of T. See [17, Chapter 2].
- Degree of the minimal permutation representation of T, see [18, Table 4]).

¹⁶S.H. Alavi, T.C. Burness, Large subgroups of simple groups. J. Algebra 421 (2015) 187-233.

¹⁷R.W. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters. John Wiley & Sons, New York, 1985.

¹⁸S. Guest, J. Morris, C.E. Praeger, P. Spiga, On the maximum orders of elements of finite almost simple groups and primitive permutation groups. Transactions of the American Mathematical Society 367 (2015) 7665-7694.

Lemma 8

Suppose that T is a simple group of Lie type such that $|T|^{2/3} \leq \mathcal{N}$ and $T \neq \text{PSL}_2(q)$. Then T is one of the following groups:

- (1) $PSL_n(q)$, or $PSU_n(q)$, where (n,q) is $(3, q \le 97)$, $(4, q \le 11)$, $(5, q \le 4)$, (6, 2), or (7, 2);
- (2) $PSp_n(q)$, where (n,q) is $(4,q \le 37)$, $(6,q \le 5)$, or (8,2);
- (3) $P\Omega_n^{\epsilon}(q)$, where (n,q) is (7,3), (7,5), (8,2), (8,3), or (10,2).
- (4) ${}^{2}B_{2}(2^{3}), {}^{2}B_{2}(2^{5}), {}^{2}B_{2}(2^{7}), {}^{2}B_{2}(2^{9}), {}^{2}F_{4}(2)', {}^{2}G_{2}(3^{3}), {}^{3}D_{4}(2), {}^{3}D_{4}(3), F_{4}(2), G_{2}(q)(q \le 11).$

Parabolic subgroup

Let T be a simple group of Lie type in characteristic p. Let U be a Sylow p-subgroup of T.

- The normalizer of U in T is called a *Borel subgroup* of T, and B = U:H, moreover, H is called the *Cartan subgroup*. $(H \neq 1.)$
- A subgroup P of T is called a *Parabolic subgroup* of T if P contains a conjugate of B.

When P is a standard parabolic subgroup, the method of how to computing the subdegrees of T (acting on [T : P]) were introduced in [19].

¹⁹A.E. Brouwer, A.M. Cohen, Computation of some parameters of Lie geometries, Mathematisch Centrum. ZW, afdeling zuivere wiskunde, 1983, pp. 21.

(B, N)-pair

A pair of subgroups B, N of a group G is called a (B, N)-pair if the following axioms are satisfied:

- (1) $G = \langle B, N \rangle$.
- (2) $H := B \cap N$ is normal in N.
- (3) The group W := N/H (Weyl group) is generated by a set of involutions w_i , $i \in I$.
- (4) If $n_i \in N$ maps to w_i under the natural homomorphism N to into W, and if $n \in N$, then
 - (i) $Bn_iB.BnB \subseteq Bn_inB \cup BnB$.
 - (ii) $n_i B n_i \neq B$.

Some important properties:

- $G = \bigcup_{w \in W} BwB$.
- any element w in W is a product of some w_i , the length of w, saying l(w), is smallest integer q > 0 such that w is the product of a sequence of q elements.
- $Bn_iB.BnB = Bn_inB \cup BnB$ if $l(n_i\overline{n}) = l(\overline{n}) 1$; $Bn_iB.BnB = Bn_inB$ if $l(n_i\overline{n}) = l(\overline{n}) + 1$;

- For each $J \subseteq I$, $P_J := BN_J B$ is a subgroup of G, where $N_J = H \langle n_i : i \in J \rangle$. If $J = \emptyset$, then $B = P_J$. The group P_J is called the standard parabolic subgroup (associated with J).
- For a double coset $W_J v W_J$ in W, there is a unique element $w \in W_J v W_J$ such that w is with shortest length (such w is called (J, J)-reduced), see [17]. Let D_J be the set of (J, J)-reduced elements in W.
- For a coset $W_J v$ in W, there is a unique element $u \in W_J v$ such that u is with shortest length (such u is called (J, \emptyset) -reduced). Let R_J be the set of (J, \emptyset) -reduced elements in W.
- $PwP = BW_J BwBW_J B = BW_J wW_J B$, where $w \in D_J$. As a consequence, each (P_J, P_J) -double coset PwP in G corresponds to a (W_J, W_J) -double coset $W_J wW_J$ in W, and it is a bijection.

Proposition 6 ([19, Proposition 2])

Let notations be as above. Then G (on $[G:P_J]$) has same rank and number of non-self-paired suborbits as its Weyl group W (on $[W:W_J]$). A suborbit of Gcorresponds to $P_J w P_J$, where $w \in D_J$, is selfpaired if and only if w is an involution, and its length is $\sum_{v \in R_J \cap w W_J} q^{l(v)}$, where l(v) is the length of v.

computation in Magma

For example, to compute the rank and suborbit of $G = PSL_5(2)$ acting on $[G : P_J]$, where $P_J = [2^7]:PSL_3(2)$, the stabilizer in G of a (1,4)-flag, we can do as follows

```
W := CoxeterGroup(GrpFPCox,"A4");J:={2,3};
DJ,_:=Transversal(W, J, J);print "the rank:", #DJ;
W0,phi := CoxeterGroup(GrpPermCox, W);
DJ1:=[phi(DJ[i]): i in [2..#DJ]| Order(DJ[i]) ne 2];
print "number of nonself-paired suborbits:", #DJ1;
RJ:=Transversal(W, J);
WJ:= StandardParabolicSubgroup(W0, J);
for g in DJ do
RJ_wWJ:=[w: w in RJ|g eq TransversalElt(W0,WJ,phi(W),WJ)];
RJ_wWJ1:=[Length(W): w in RJ_wWJ];
RJ_wWJ1; //the set [l(v):v \in R_J \cap wW_J]
end for;
```

Let $T_v = P_J$ be a parabolic subgroup of T. Now, we have find all non-self-paired T-suborbits and known their lengths.

- Since $T_v g T_v = P_J g P_J$, where $g \in W$, $T_{vw} = P_J \cap P_J^g$ and $T_{uv} = P_J \cap P_J^{g^{-1}}$.
- If we know $|T_{uvw}| = |P_J \cap P_J^g \cap P_J^{g^{-1}}|$, then we can check whether $|T_v| = t|T_{uv}T_{vw}| = \frac{t|T_{uv}||T_{vw}|}{|T_{uvw}|}$, where $t \mid |G/T|$.
- We can estimate the above equation by $|T_v|_q |T_{uvw}|_q = t_q |T_{uv}|_q^2$.
- The values of $|T_v|_q$ and $|T_{uv}|_q^2$ are known. The value of $|T_{uvw}|_q$ can be estimated by computing on the roots of T.

$|T_v|_q$, $|T_{uv}|_q^2$ and $|T_{uvw}|_q$

The next results can be found or obtained from Carter's book.

- $P_J = \langle H, X_r | r \in \Phi^+ \cup \Phi_J \rangle$, where Φ_J is the set of roots spanned by fundamental roots in J. Moreover, $|P_J|_q = q^{m_1}$, where m_1 is the number of positive roots in $\Phi^+ \cup \Phi_J$.
- $P_J \cap P_J^g = \langle H, X_r | r \in (\Phi^+ \cup \Phi_J) \cap (\Phi^+ \cup \Phi_J)^{g^{-1}} \rangle$. Therefore, $|P_J \cap P_J^g|_q = q^{m_2}$, where m_2 is the number of positive roots in $(\Phi^+ \cup \Phi_J) \cap (\Phi^+ \cup \Phi_J)^{g^{-1}}$.
- $B = \langle H, X_r | r \in \Phi^+ \rangle = UH$. So $B \cap B^g = \langle H, X_r | r \in \Phi^+ \cap (\Phi^+)^{g^{-1}} \rangle = (U \cap U^g)H$.
- $B \cap B^g \cap B^{g^{-1}} = \langle H, X_r | r \in \Phi^+ \cap (\Phi^+)^{g^{-1}} \cap (\Phi^+)^g \rangle = (U \cap U^g \cap U^{g^{-1}})H.$ Therefore, $|P_J \cap P_J^g \cap P_J^{g^{-1}}|_q$ is divisible by q^{m_3} , where m_3 is the number of positive roots in $\Phi^+ \cap (\Phi^+)^{g^{-1}} \cap (\Phi^+)^g.$

An example for $T = G_2(q)$

Let $T = G_2(q)$, $T_v = [q^6]:(q-1)^2$ be a Borel subgroup of T, and G contains a graph automorphism of T.

- Computation on the Weyl group of T shows that T has rank 12 and there are 4 non-self-paired suborbits of length q² or q⁴.
 The Weyl group W of G₂(q) is a dihedral group of order 12. So the rank is 12. In D₁₂, there are 4 elements with order greater than 2. So there are 4 non-self-paired suborbits.)
- If the length is q^4 , then $|T_{vw}|_p^2 = q^4 < q^6 = |T_v|_p$, a contradiction.
- Hence the length is q^2 and so $T_{vw} = [q^4]:(q-1)^2$. By computing the roots, $T_{uvw} = [q^2]:(q-1)^2$. Then $|T_v||T_{uvw}| = |T_{uv}||T_{vw}|$ and so $T_v = T_{uv}T_{vw}$, which means Γ is (T, 2)-arc-transitive. However, we next show that Γ is not (G, 2)-arc-transitive.

Let $\Phi = \Phi^+ \cup \Phi^-$ be a root system of T with fundamental roots a, b, and $\Phi^+ = \{b, a, b + a, b + 2a, b + 3a, 2b + 3a\}$. Let H be the Cartan subgroup of T. Take $T_v = \langle H, X_r : r \in \Phi^+ \rangle$ be the Borel subgroup. Label roots as follows:

b	a	b+a	b+2a	b+3a	2b+3a	-b	-a	-b-a	-b-2a	-b-a	-2b-3a
1	2	3	4	5	6	7	8	9	10	11	12

- $W = \langle w_a, w_b \rangle$, where $w_a = (1, 5)(2, 8)(3, 4)(7, 11)(9, 10)$ and $w_b = (1, 7)(2, 3)(5, 6)(8, 9)(11, 12)$. It can be view as a permutation group on Φ .
- G_v contains a graph automorphism γ normalizing T_v . By computation with MAGMA, $\gamma = (1, 2)(3, 5)(4, 6)(7, 8)(9, 11)(10, 12)$. (Graph automorphism can also be view as permutation group on Φ , see [19, Section 12.4], and it can be contained from the normalizer of W in Sym(Φ).)
- By computation, g = (1, 11, 12, 7, 5, 6)(2, 4, 3, 8, 10, 9) (or its inverse). Note that $\Phi^+ \cap (\Phi^+)^{g^{-1}} = \{2, 4, 5, 6\}$ as $1^{g^{-1}} = 6$, $6^{g^{-1}} = 5$, $3^{g^{-1}} = 4$ and $4^{g^{-1}} = 2$. So

$$T_{vw} := \langle H, X_r | r \in \{b, b+a, b+2a, 2b+3a\} \rangle.$$

¹⁹R.W. Carter, Simple groups of Lie type, Wiley, London, 1972.

- Recall G_v contains a graph automorphism γ and $|G_{vw}: T_{vw}| = |G_v: T_v| = |G: T|$. So T_{vw} is normalized by some element $h = \phi \gamma x \in G_{vw} \setminus T_{vw}$, where $x \in T_v = UH$ and ϕ is a field automorphism.
- Let $M = \langle X_r | r \in \{b, b+a, b+2a, 2b+3a\} \rangle$. Then M is the largest normal p-subgroup of T_{vw} , and hence $M = M^h = M^{\phi\gamma x} = M^{\gamma x}$ (as ϕ normalizes each root subgroup)
- Now $M^{\gamma} = \langle X_r | r \in \{a, b + 3a, b + 2a, 2b + 3a\} \rangle$ as $\{1, 3, 4, 6\}^{\gamma} = \{2, 5, 4, 6\}.$
- Since *H* normalizes each root subgroup, *x* can be taken as an element in $U = \langle X_r | r \in \Phi^+ \rangle$. By the structure of *U*, *U* has a normal subgroup $N := \langle X_{2b+3a}, X_{b+3a} \rangle$.
- Since $M = (M^{\gamma})^x$, $M/N = (M^{\gamma}/N)^x$. However, $|M/N| = q^3$ while $|M^{\gamma}/N| = q^2$, a contradiction.

Difficult cases when T_v is a parabolic subgroup

- $T = G_2(q), T_v$ is a Borel subgroup.
- $T = PSp_4(q), T_v$ is a Borel subgroup.
- $T = P\Omega_8^+(q), T_v$ is of type A_1 .

Difficult cases when T_v is not a parabolic subgroup

- $T = G_2(q),$
 - (i) $T_v = \mathrm{SL}_2(q) \times \mathrm{SL}_2(q)$ with $q \in \{4, 8, 16\}$.
 - (ii) $T_v = (\mathrm{SL}_2(q) \circ \mathrm{SL}_2(q)).2$ with $q \in \{3, 5, 7, 9, 11, 13, 17, 19\}.$
- $T = PSU_n(q), T_v$ is a \mathcal{C}_5 -subgroup of type $Sp_n(q)$, where $q \in \{4, 8, 16, 32, 64\}$.
- $T = PSp_4(q), T_v$ is a C_2 -subgroup of type $Sp_2(q) \wr S_2$, where $q \le 471$.
- $T = P\Omega_9(q), T_v$ is a C_1 -subgroup of type $GO_1(q) \perp GO_8^+(q)$, where $q \leq 19$.