On Compatible Groups

Zhaochen Ding

Throughout, all groups and digraphs are finite. Let digraph Γ be *G*-arc-transitive and $v \in V \Gamma$.

- $\Gamma^{-}(v)$: in-neighborhood
- $\Gamma^+(v)$: out-neighborhood

 $G_{\nu}^{\Gamma^{\epsilon}(\nu)}$: induced permutation group on $\Gamma^{\epsilon}(\nu)$, where $\epsilon \in \{+, -\}$. **Remark.** $G_{\nu}^{\Gamma^{+}(\nu)}$ and $G_{\nu}^{\Gamma^{-}(\nu)}$ may not be isomorphic.

Figure: Local actions of G at v

Example

Coset digraph Let $H \le G$ and $e \notin S \subset G$. Define $\Gamma = Cos(G, H, HSH)$. • $\nabla \Gamma := [G : H]$. • Let $Hk, H\ell \in \nabla \Gamma$. $Hk \to H\ell \iff \ell k^{-1} \in HSH$.

Example

Coset digraph

Let $H \leq G$ and $e \notin S \subset G$. Define $\Gamma = Cos(G, H, HSH)$.

• $V \Gamma := [G : H].$

• Let $Hk, H\ell \in V \Gamma$. $Hk \to H\ell \iff \ell k^{-1} \in HSH$.

Let $G = C_4 \wr C_3 = \langle a \rangle \wr \langle g \rangle$ and $H := \langle a^2, a^g \rangle \cong C_2 \times C_4$. Consider Coset digraph $\Gamma = Cos(G, H, HgH)$. Let v := H.

- vertex stabilizer: $G_v = H$
- neighborhood: $\Gamma^+(v) = \{Hgh; h \in H\}, \Gamma^-(v) = \{Hg^{-1}h; h \in H\}$
- local actions: $G_v^{\Gamma^+(v)} \cong H/\operatorname{Core}_H(H \cap H^g) \cong C_2^2$, $G_v^{\Gamma^-(v)} \cong H/\operatorname{Core}_H(H \cap H^{g^{-1}}) \cong C_4$.

The compatible groups

Two transitive groups L^+ and L^- are compatible if $L^+ \cong G_v^{\Gamma^+(v)}$ and $L^- \cong G_v^{\Gamma^-(v)}$ for some *G*-arc-transitive digraph Γ .

Problem

Given two permutation groups. Determine whether they are compatible.

Let $u_1 = v^{g}$. Then $v^{g^{-1}} \in \Gamma^-(v)$. $G_v^{\Gamma^{\epsilon}(v)} \cong G_v^{[G_v:G_v \cap G_v^{g^{\epsilon}}]}$.

Fact

 $L^+ \text{ and } L^- \text{ are compatible } \iff \exists \ G, H \leq G, g \in G \text{ s.t. } L^\epsilon \cong H^{[H:H \cap H^{g^\epsilon}]}.$

Let $u_1 = v^{g}$. Then $v^{g^{-1}} \in \Gamma^-(v)$. $G_v^{\Gamma^{\epsilon}(v)} \cong G_v^{[G_v:G_v \cap G_v^{g^{\epsilon}}]}$.

Fact

 $L^+ \text{ and } L^- \text{ are compatible } \iff \exists \ G, H \leq G, g \in G \text{ s.t. } L^\epsilon \cong H^{[H:H \cap H^{g^\epsilon}]}.$

Question: Is G necessary?

Theorem (Giudici et al. 2019)

 L^+ and L^- are compatible $\iff \exists$ a group H with subgroups $K^+ \cong K^-$ s.t. $L^+ \cong H^{[H:K^+]}$ and $L^- \cong H^{[H:K^-]}$.

Let L^+ and L^- be transitive.

Witness: (G, H^+, H^-) with $H^+ \cong H^-$ such that $L^+ \cong G^{[G:H^+]}$ and $L^- \cong G^{[G:H^-]}$.

Remark. L^+ and L^- are compatible $\iff \exists$ a witness of L^+ and L^- .

Theorem

Let (G, H^+, H^-) be a witness s.t. |G| is minimal. Then $G \neq \text{Core}_G(H^+)H^$ or $G \neq \text{Core}_G(H^-)H^+$.

The properties of "minimal witness" (G, H^+, H^-) are generally difficult to determine. But we can determine one of its quotients.

Theorem

Let L^+ and L^- be transitive and compatible with a "minimal witness" (G, H^+, H^-) . Then $\exists N^{\epsilon} \triangleleft \neq L^{\epsilon}$ and isomorphism $\phi : L^+/N^+ \rightarrow L^-/N^-$ s.t.

$$G/(\operatorname{Core}_{G}(H^{+}) \cap \operatorname{Core}_{G}(H^{-})) \cong \{(x, y) \in L^{+} \times L^{-} \mid \phi(xN^{+}) = yN^{-}\}.$$

In particular, $G/(\operatorname{Core}_{G}(H^{+}) \cap \operatorname{Core}_{G}(H^{-})) \cong (N^{+} \times N^{-}).(L^{+}/N^{+}).$

Let L^+ and L^- be transitive groups. If they are compatible, then **Sims 1971:** L^+ and L^- have a common nontrivial homomorphic image.

Let L^+ and L^- be transitive groups. If they are compatible, then **Sims 1971:** L^+ and L^- have a common nontrivial homomorphic image. **Cameron 1972:** if L^+ is 2-transitive (or 2-homogenous), so is L^- .

Let L^+ and L^- be transitive groups. If they are compatible, then

Sims 1971: L^+ and L^- have a common nontrivial homomorphic image.

Cameron 1972: if L^+ is 2-transitive (or 2-homogenous), so is L^- .

Knapp 1973: if L^+ is 2-transitive, or 2-homogenous or has prime degree, then $L^+ \cong L^-$.

Let L^+ and L^- be transitive groups. If they are compatible, then

Sims 1971: L^+ and L^- have a common nontrivial homomorphic image.

Cameron 1972: if L^+ is 2-transitive (or 2-homogenous), so is L^- .

Knapp 1973: if L^+ is 2-transitive, or 2-homogenous or has prime degree, then $L^+ \cong L^-$.

Knapp 1973: if L^- and L^+ are both quasiprimitive, then one of them is a quotient of the other one.

Let L^+ and L^- be transitive groups. If they are compatible, then

Sims 1971: L^+ and L^- have a common nontrivial homomorphic image.

Cameron 1972: if L^+ is 2-transitive (or 2-homogenous), so is L^- .

Knapp 1973: if L^+ is 2-transitive, or 2-homogenous or has prime degree, then $L^+ \cong L^-$.

Knapp 1973: if L^- and L^+ are both quasiprimitive, then one of them is a quotient of the other one.

Giudici et al. 2019: L^+ and L^- have the same simple sections.

Let L^+ and L^- be transitive groups. If they are compatible, then

Sims 1971: L^+ and L^- have a common nontrivial homomorphic image.

Cameron 1972: if L^+ is 2-transitive (or 2-homogenous), so is L^- .

Knapp 1973: if L^+ is 2-transitive, or 2-homogenous or has prime degree, then $L^+ \cong L^-$.

Knapp 1973: if L^- and L^+ are both quasiprimitive, then one of them is a quotient of the other one.

Giudici et al. 2019: L^+ and L^- have the same simple sections.

Properties implying compatibility? None is known in general case.

Assume L^+ and L^- are regular.

Corollary (Giudici et al. 2019)

 L^+ and L^- are compatible $\iff \exists$ a group G with normal subgroups $H^+ \cong H^-$ s.t. $L^+ \cong G/H^+$ and $L^- \cong G/H^-$.

In particular, we can treat regular groups as abstract groups.

(Abstract) Compatible: Two (abstract) groups L^+ and L^- are compatible $\iff \exists G \text{ with } N^+ \cong N^- \text{ s.t. } L^{\epsilon} \cong G/N^{\epsilon}$.

Let L^+ and L^- be two abstract groups. If \exists two subnormal series

$$1 = N_0 \trianglelefteq \cdots \trianglelefteq N_n = L^+$$

and

$$1 = M_0 \trianglelefteq \cdots \trianglelefteq M_n = L^-$$

such that $N_{i+1}/N_i \cong M_{i+1}/M_i$ for all $0 \le i \le n-1$, then we say that L^+ and L^- have compatible subnormal series.

An easy induction yields the following theorem.

Theorem

Two compatible abstract groups have compatible subnormal series.

Weak forms of the converse can also be established. Method: construct a witness.

Theorem

Let L^+ and L^- be abstract groups. If

- L⁺ and L⁻ have compatible subnormal series of length 2 are compatible; or
- $|L^+| = |L^-| = pqr$, where p, q, r are distinct prime numbers; or
- L^+ and L^- are abelian and of the same order,

then L^+ and L^- are compatible.

Weak forms of the converse can also be established. Method: construct a witness.

Theorem

Let L^+ and L^- be abstract groups. If

- L⁺ and L⁻ have compatible subnormal series of length 2 are compatible; or
- $|L^+| = |L^-| = pqr$, where p, q, r are distinct prime numbers; or
- L^+ and L^- are abelian and of the same order,

then L^+ and L^- are compatible.

Conjecture

(Abstract) L^+ and L^- are compatible \iff They have compatible normal series.

Computability

Given two transitive groups. Recall our problem is to determine whether they are compatible.

Algorithm

- Input two groups. Take n = 1.
- Check all groups of order *n*. Determine whether any of them are witness.
- If so, the two groups are compatible. If not, take n = n + 1 and return to step 2.

Computability

Given two transitive groups. Recall our problem is to determine whether they are compatible.

Algorithm

- Input two groups. Take n = 1.
- Check all groups of order *n*. Determine whether any of them are witness.
- If so, the two groups are compatible. If not, take n = n + 1 and return to step 2.

Difficulty on computation: If compatible, algorithm will stop in finite time. But what if incompatible?

Question: \exists ? an algorithm which can determine whether two groups are compatible.

General case:

• Is there an algorithm to determine compatibility?

General case:

- Is there an algorithm to determine compatibility?
- Given a witness (H, K^+, K^-) . How to construct $G, g \in G$ s.t. $H \leq G$, $K^+ = H \cap H^g$ and $K^- = H \cap H^{g^{-1}}$?

General case:

- Is there an algorithm to determine compatibility?
- Given a witness (H, K^+, K^-) . How to construct $G, g \in G$ s.t. $H \leq G$, $K^+ = H \cap H^g$ and $K^- = H \cap H^{g^{-1}}$?
- Compatibility of transitive groups of degree 6?

General case:

- Is there an algorithm to determine compatibility?
- Given a witness (H, K^+, K^-) . How to construct $G, g \in G$ s.t. $H \leq G$, $K^+ = H \cap H^g$ and $K^- = H \cap H^{g^{-1}}$?
- Compatibility of transitive groups of degree 6?

Regular case:

• Regular compatible groups have compatible subnormal series. What about the converse?

General case:

- Is there an algorithm to determine compatibility?
- Given a witness (H, K^+, K^-) . How to construct $G, g \in G$ s.t. $H \leq G$, $K^+ = H \cap H^g$ and $K^- = H \cap H^{g^{-1}}$?
- Compatibility of transitive groups of degree 6?

Regular case:

- Regular compatible groups have compatible subnormal series. What about the converse?
- Are groups of the same square-free order mutually compatible?

General case:

- Is there an algorithm to determine compatibility?
- Given a witness (H, K^+, K^-) . How to construct $G, g \in G$ s.t. $H \leq G$, $K^+ = H \cap H^g$ and $K^- = H \cap H^{g^{-1}}$?
- Compatibility of transitive groups of degree 6?

Regular case:

- Regular compatible groups have compatible subnormal series. What about the converse?
- Are groups of the same square-free order mutually compatible?
- Are all groups of the same prime-power order mutually compatible?

General case:

- Is there an algorithm to determine compatibility?
- Given a witness (H, K^+, K^-) . How to construct $G, g \in G$ s.t. $H \leq G$, $K^+ = H \cap H^g$ and $K^- = H \cap H^{g^{-1}}$?
- Compatibility of transitive groups of degree 6?

Regular case:

- Regular compatible groups have compatible subnormal series. What about the converse?
- Are groups of the same square-free order mutually compatible?
- Are all groups of the same prime-power order mutually compatible?
- Are A₄ and C₁₂ (smallest pair with compatibility unknown) compatible?